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Abstract—Networked data are common in domains where instances are characterized by both feature values and inter-dependency

relationships. Finding cluster structures for networked instances and discovering representative features for each cluster represent a

special co-clustering task usefully for many real-world applications, such as automatic categorization of scientific publications and

finding representative key-words for each cluster. To date, although co-clustering has been commonly used for finding clusters for both

instances and features, all existing methods are focused on instance-feature values, without leveraging valuable topology relationships

between instances to help boost co-clustering performance. In this paper, we propose CFOND, a consensus factorization based

framework for co-clustering networked data. We argue that feature values and linkages provide useful information from different

perspectives, but they are not always consistent and therefore need to be carefully aligned for best clustering results. In the paper, we

advocate a consensus factorization principle, which simultaneously factorizes information from three aspects: network topology

structures, instance-feature content relationships, and feature-feature correlations. The consensus factorization ensures that the final

cluster structures are consistent across information from the three aspects with minimum errors. Experiments on real-life networks

validate the performance of our algorithm.

Index Terms—Networked data, networks, co-clustering, topology, nonnegative matrix factorization
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1 INTRODUCTION

RECENT advancements in networking and communica-
tion systems have witnessed an increasing number of

domains with networked data representation [1], [2], [3],
[4], [5], where instances are characterized by using (1) fea-
ture values to represent the content of the instances; and (2)
linkages to denote dependency relationships between
instances. For example, in a citation network, nodes can
denote publications and linkages represent citation relation-
ships between papers. One can use bag-of-words as features
to represent the content of each paper. It would be very use-
ful if a tool exists to not only automatically separate papers
into different groups, but also help identify representative
key-words for each group of papers. For many other types
of networks, such as human disease networks [6], protein
interaction networks [7], [8], terrorist networks [9], [10] etc.,
finding clusters and identifying representative features for
each cluster can be very helpful for discovering nodes

sharing similar content and structure information, as well
as uncovering most representative features for each node
group, so users or domain experts can understand the
essential difference of the node clusters by comparing their
representative features.

Existing research has shown that simultaneously cluster-
ing instances and features are beneficial for discovering pat-
terns from data with tabular instance-feature representations.
Research in this field, commonly referred to as co-clustering
(or bi-clustering), can be roughly categorized into two groups:
(1) iterative partitioning or merging, and (2) factorization. For
iterative partitioning ormerging, co-clustering starts by parti-
tioning (or merging) instances into groups, and then validate
the utility of the clusters with respect to the features’ values
and then iteratively partition (or merge) instances and fea-
tures to form co-clusters [11], [12], [13]. Such a partitioning or
merging process is typically heuristic driven without consid-
ering a global objective, so may be stuck to local maximum
and result in suboptimal results. Alternatively, factorization
based approaches intend to factorize an instance-feature tabu-
lar matrix into instance and feature groups, respectively [14],
[15]. Such a co-clustering process is guided by a well-defined
objective function with sound theoretical foundations. In
addition, the factorization results also directly specify the like-
lihood/probability of each instance (or feature) belonging to a
specific cluster, so one can easily form fuzzy clusters
without exclusively assigning instances and features into
clusters (i.e., hard membership assignments). As a result,
factorization based methods have recently been used in
co-clustering. This includes efforts to improve the robust-
ness of factorization based co-clustering methods w.r.t.
noise and outliers [16].
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In networked settings, linkages provide useful informa-
tion. A commonly observed phenomenon [17] is that nodes
close to each other in the network topology structure space
tend to share common content information. For example,
friends in the same cohort group are likely to share similar
experiences. In a citation networkwhere nodes denote papers
and edges represent their citation relationships, a paper
belonging to the data mining field may have content directly
related to data mining, and majority references cited in the
paper should also belong to the data mining field as well. As
a result, linkages can help identify clusters which are incapa-
ble of being detected byusing tabular instance-feature content
matrix alone (e.g., Fig. 1). Unfortunately, to date, all existing
methods carry out co-clustering by exploring instance-feature
relationships, without utilizing network topology structures
to help find clusters from networked data. This observation
raises a concern on what type of additional information link-
ages can provide for co-clustering, and how to leverage link-
ages to improve co-clustering results.

Indeed, using instance-instance graph relationships for
co-clustering has been addressed in a number of studies,
particularly in the context of manifold or k-NN graphs [18],
[19]. For example, some works propose to build an instance-
instance nearest neighbour graph by using k-NN relation-
ships, and later enforce the k-NN graph in the objective
function to discover cluster structures in a lower dimen-
sional feature space (i.e., manifold). In this context, the algo-
rithm works on artificially created synthetic networked
data. Intuitively, one can replace the synthetic instance-
instance k-NN graph by using topology structure of the net-
works, and then apply existing co-clustering methods for
networked data. However, as our experiments in Section 5
will soon demonstrate that existing k-NN graph based
methods [18], [19] are ineffective in handling real-world

networks. This is mainly because that instance-instance
graphs created from the feature space are fundamentally
different from real-world networks, in terms of the network
characteristics and the consistency between network topol-
ogy and node content. More specifically,

Scale-Free versus Geometric. One fundamental difference
between a k-NN graph and a real-world network is that the
former is built based on geometric distribution [20] whereas
the latter usually follows Scale-free distribution [21], as
shown in Fig. 2. For real-world networks with scale-free dis-
tributions P ðdÞ � d�g , where P ðdÞ denotes node degree dis-
tributions and g is a parameter (typically within the range
2 < g < 3), majority nodes have very few connections. In
comparison, each node in a k-NN graph (i.e., a random geo-
metric graph) has at least k neighbors (assume using k-NN
graphs) and some nodes have an extremely large number of
node degree as shown in Fig. 2. This means that synthetic
k-NN graphs are more smooth and have denser connections
than real-world networks whereas real-world networks are
more sparse and have severely biased node degree distribu-
tions. Therefore, directly replacing a smooth graph by using
a network topology structure is ineffective, because all exist-
ing methods [18], [19] are based on k-NN graphs where
majority nodes have similar node degree distributions.

Topology Structures versus Node Content. The k-NN graphs
used in existing co-clustering methods are often constructed
by using feature based similarity between instances, under
the assumption that k-NN graph structure should be consis-
tent with the instance feature values (i.e., instances similar to
each other in feature space are subject to a connection). In
reality, network topology structures are, however, not always
consistent with the node content, and nodes can be connected
even if they do not share similar content. In Fig. 2, we build a
5-NN graph from CiteSeer data set by using feature values
and compare 5-NN graph with the real CiteSeer citation net-
work. The results show that instances (nodes) with high
degrees are largely different between real CiteSeer network
versus 5-NN graph (Detailed information about CiteSeer is
given in Experiments Section). Therefore, directly utilizing
linkage relationships to regularize the objective function, as
most existing methods do (GNMF [22], DRCC [18], and

Fig. 1. An example of co-clustering on a citation network. The upper
panel denotes a citation network, where each node represents a publica-
tion and green lines represent their citation relationships (each paper
contains bag-of-words to represent the paper content). The lower panel
shows co-clustering results on publications and keywords, respectively.
Co-clustering on the citation network can help discover good node clus-
ters (i.e., papers in different categories), and identify representative fea-
tures (keywords) for each node group (i.e., keywords for a specific
category of papers). Citation relationships are beneficial for inter-
relationship finding and improving clustering results.

Fig. 2. The difference between real-world network topology structures
versus synthetic k-NN graph (affinity graph) on CiteSeer data set. The
left figures show logarithmic scale node degrees (y-axis) w.r.t. nodes
indexed by the x-axis. The lower panel shows node degrees for genuine
CiteSeer networks and the upper panel shows node degrees for the 5-
NN graph. Results show that instances (nodes) with high degrees are
different in real network versus the 5-NN graph. The right figure shows
that real network follows power-law distribution whereas the 5-NN graph
follows geometric distribution, where the colored lines show the fitted
functions. The results confirm that a k-NN graph does not capture real-
world network distributions.
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LP-NMTF [23]), will propagate the inconsistency into the
objective function and lead to deteriorated clustering results
for networked data.

The above observations motivate our new co-clustering
framework for networked data. To take special care of net-
work topology structures, we advocate a consensus factoriza-
tion principle to simultaneously factorize three types of
relationships: network topology structures, feature-instance
correspondences, feature-feature correlations, and further
enforce the consensus of the factorized results for best clus-
tering outcomes.

Compared to existing k-NN graph regularization based
approaches, such as using regularization terms [18], our
multi-relationship based factorization approach has two
major advantages. First, simultaneously carrying out factor-
ization for each relationship ensures that each factorization
can best capture data distribution w.r.t. the underlying rela-
tionships, while a regularization can only restrict a solution
but cannot discover new solutions. Second, our model uses
a consensus approach to find the optimization factorization
results which are consistent to all three types of relation-
ships. This will eventually help solve the inconsistency
between network topology structure and the node contents.

The key contribution of the paper is twofold:

� Co-clustering for networked data: We formulate a novel
co-clustering research problem to simultaneously
explore cluster structures for networked instances
and features. Our solutions will help develop inter-
esting approaches to find clusters and their respec-
tive features values under a network setting. Our
research indicates that existing k-NN affinity graph
based approaches cannot be directly utilized for net-
worked data, mainly because they do not comply
with real-world network characteristics. This obser-
vation will help interested readers design their own
co-clustering methods by taking networked data dis-
tributions into consideration.

� Consensus factorization: We propose a consensus fac-
torization model to factorize different types of rela-
tionships, and further explore their consensus for
best clustering outcomes. Our consensus factoriza-
tion approach can be extended to many other appli-
cations with a rich set of relationships in the data.
Although some existing co-clustering methods have
also considered instance and feature manifold (like
DRCC and LP-FNMTF), these methods use strong
constraints to force co-clustering results to be strictly
consistent to the manifold. When topology structures
and feature distributions are inconsistent, the results
of these methods are severely inferior to our consen-
sus factorization based approach.

The remainder of the paper is structured as follows.
Notations and problem formulation are given in Section 2.
Section 3 introduces the proposed CFOND algorithm and
the derivation of the optimal solutions. The convergence
analysis is reported in Section 4. Experiments are reported
in Section 5, followed by literature review and related work
in Section 6. We conclude the paper in Section 7.

2 NOTATIONS AND PROBLEM FORMALIZATION

In networked data setting, we are given a network
G ¼ fV;Eg, where each node (or instance) vi 2 V is

represented by a feature vector x�i 2 Rd
þ, and each edge

fvi; vjg � E encodes the relationship between nodes vi and
vj. Typically, network G can be formulated by using two
matrices X 2 Rd�n

þ and Ws 2 Rn�n
þ . X ¼ ½x�1; x�2; . . . ; x�n� ¼

½x>1�; . . . ; x>d��> is a Instance-feature Adjacency Matrix represent-
ing the content of each node, and Ws is a Network Topology
Matrix which encodes the linkages between all nodes (i.e.,
½Ws�ij ¼ 1, if fvi; vjg � E otherwise ½Ws�ij ¼ 0).

In the context of clustering, the goal is to cluster instances
into different groups, with similar instances being assigned
in one group. An instance may be exclusively assigned to
only one cluster (i.e., hard clustering) or multiple clusters
(i.e., soft clustering). We use an indicator matrix G ¼
½g>1�; . . . ; g>n�� 2 Rn�c

þ to represent potential clustering result
of instances. gij is the cluster membership of the ith node
corresponding to cluster Cj. By using indicator matrix G,
the final clustering results can be obtained by choosing the
cluster to which each node has the highest membership
value. Similarly, we use another indicator matrix F 2 Rd�k

þ
to represent clustering membership values of features.

The aim of co-clustering for networked data is to opti-
mally group all nodes (instances) fx�1; . . . ; x�ng into c clusters
fCjgcj¼1, and simultaneously group features fx1�; . . . ; xd�g
into k clusters fKjgkj¼1 (c	 n and k	 d), such that the clus-
ters have the best quality with respect to certain assessment
criteria (we use clustering accuracy and normalized mutual
information NMI in our experiments).

3 CFOND ALGORITHM

For networked data, information can be obtained from two
major channels: network node content and topology struc-
tures. Network nodes provide detailed feature values to char-
acterize node content information. We can collect all nodes as
an independent tabular instance-feature matrix (denoted by
X), named Instance-feature Content Matrix, to characterize net-
work node content.Many existing co-clusteringmethods [18],
[22], [23] can be applied to explore co-clustering results by fac-
torizing X. Meanwhile, network topology structures charac-
terize dependency relationships between nodes in networks,
and such relationships can be explicitly captured by using as
an n� n matrix (denoted by Ws), named Network Topology
StructureMatrix.

Although some works have considered k-NN similarity
based relationships between instances [24], [25], they cannot
reveal the characteristics of each group but can only provide
one-side clustering result on instances rather than co-
clustering for both instances and features. More impor-
tantly, since we are trying to explore cluster structures for
both instances and features, it is necessary to explicitly cap-
ture correlations between features (denoted by Wf ), named
Feature-feature Correlation Matrix, and further integrate such
relationships into the co-clustering process.

In this paper, we propose a consensus factorization
method, CFOND, to incorporate all three types of informa-
tion, node content (X), network topology structures (Ws),
and feature-feature correlations Wf , into consideration
for co-clustering. CFOND employs a factorization based
approach to factorize X, Ws, and Wf separately, and further
enforces constraints to ensure the consensus of their factori-
zation results. This is essentially different from existing fac-
torization based approaches [24], [25], which only factorize
instance-featurematrix X and add other information as regu-
larization terms to filter factorized results from X.
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In the following, we will introduce individual factoriza-
tion components of CFOND and address its consensus fac-
torization process. The overall framework of CFOND is
shown in Fig. 3.

Instance-Feature Content Matrix Factorization. Instance-
feature content matrix (X) provides tabular relationships
between instances (nodes) and features. We can use Non-
negative Matrix Factorization (NMF) to factorize X into two
non-negative matrices F and G, with the objective of mini-
mizing squared errors between X and its approximation,

argmin
F;G

J1 ¼ jjX� FG>jj2F ; s:t: F 
 0 and G 
 0; (1)

Where jjAjjF is the Frobenius norm of the matrix A [26].
In reality, because two-factor NMF in Eq. (1) is restrictive, in
which the cluster numbers c and k have to be equal, one can
introduce an additional factor S 2 Rc�k to absorb the differ-
ent scales of X, F and G. This leads to an extension of NMF,
named NMTF [14], [15]:

argmin
F;G

J2 ¼ jjX� FSG>jj2F ; s:t: F 
 0 and G 
 0; (2)

In Eq. (2), latent matrix S provides increased degrees of
freedom such that the low-rank matrix representation
remains accurate, while c andm can have different values.

Our factorization process is different from a previous
orthogonal NMF [14]. In [14], the encoding matrix needs to
satisfy both orthogonality and non-negativity constraints,
so their encoding matrix has a form of a cluster indicator
matrix, with only one non-zero element existing in each
row. This results in hard-clustering and has been further
improved for k-NN method [15]. However, our method is a
soft-clustering method that gives the confidence degree of a
node belonging to each cluster, so we can further discover
intra-relationships between different clusters.

Network Topology Structure Matrix Factorization. Network
topology structure matrix Ws contains pairwise node topol-
ogy relationships in the structure space, which offers addi-
tional information for characterizing similarity between
nodes for co-clustering. Accordingly, we can factorize
matrix Ws as an n� c matrix Gs, where Gs 2 Rn�c

þ is an
indicator matrix showing potential clustering results of net-
work nodes by only using topology structures

argmin
Gs

J3 ¼ jjWs �GsG
>
s jj2F ; s:t: Gs 
 0; (3)

It is noteworthy thatG 2 Rn�c in J2 andGs 2 Rn�c in J3 each
contains separated factorization results for all network nodes.
By using this approach, we allow factorization for X andWs to
have maximum freedom to explore its optimal results, respec-
tively. The consensus factorization process will latter enforce
these two sets of results to be consistent for optimal outcomes.

Feature-Feature Correlation Matrix Factorization. Similarly,
to enhance feature clustering results, CFOND also uses a
feature-feature correlation matrix Wf 2 Rd�d

þ to capture
pair-wise feature correlations. Intuitively, if features xi� and
xj� are highly correlated (e.g., two keywords always co-
occur), they should be more likely being clustered to the
same feature cluster. Therefore, we can use correlation
measures, such as heat Kernels [27] or Neighbor-based
method [18], to construct Wf . For simplicity, we use linear
kernel ½Wf �ij ¼ hxi�; xj�i in our experiments, where xi� is a
vector representation of the ith feature across all nodes, and
hxi�; xj�i is the similarity degree of xi� and xj�.

Similar to Eq. (3), the factorization of feature matrixWf is
as follows,

argmin
Ff

J4 ¼ jjWf � FfF
>
f jj2F ; s:t: Ff 
 0; (4)

Consensus Factorization. In the above factorization processes,
the objective functions J2, J3 and J4 each provides cluster-
ing results from different aspects (node content, topology
structures, and feature correlations). To ensure that final
results are consistent, CFOND proposes a consensus factori-
zation objective function to jointly formulate J2, J3 and J4
into a unified objective function:

J5 ¼ jjX� FSG>jj2F þ ajjWs �GsG
>
s jj2F þ bjjWf � FfF

>
f jj2F

þ rðjjG�Gsjj2F þ jjF� Ff jj2F Þ;
s:t: F 
 0;G 
 0;Gs 
 0; and Ff 
 0;

(5)

The objective function in Eq. (5) is to factorize X, Wg, and
Wf separately, and enforce the factorization consensus
among all three aspects: node content, network structures,
and feature correlations. For instance, G and Gs provide
clustering results from instance-feature and topology struc-
tures, respectively. jjG�Gsjj2F enforces that G should be
maximally consistent with Gs. Similarly, jjF� Ff jj2F makes F
and Ff close to each other. a and b in Eq. (5) are regulariza-
tion parameters to balance each factorization part. r trade-
offs the consistent degree. Intuitively, a very large r value
will make G ¼ Gs and F ¼ Ff , while a small r would make

Fig. 3. An overview of the proposed CFOND framework. CFOND carries out co-clustering by considering information from three aspects: network
topology structures, feature-instance content relationships, and feature-feature correlations. CFOND factorizes each of them and then explores the
consensus of their factorized results by using squared error terms to achieve optimal co-clustering results.
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G and Gs totally independent (e.g., r ¼ 0). As a result, our
method provides increased degrees of freedom to exploit
different information encoded in networked data.

Latent matrix S not only absorbs the different scales of X,
F and G, but also reveals the corresponding relationships
between the node clustering and feature clustering results.
Sij uncovers the relative weight between feature cluster i
and node cluster j. In the experiments, we will report the
detailed analysis of S.

3.1 CFOND Optimal Solutions
Minimizing Eq. (5) is with respect toG,Gs, F, Ff , and S, and
the function is not convex in all variables together. We will
present an alternating scheme to optimize the objective. In
other words, we will optimize the objective w.r.t. one vari-
able while fixing the other variables. This procedure repeats
until convergence.

To optimize Eq. (5) w.r.t. G, Gs, F, Ff , and S, five
Lagrangian multipliers are introduced as follows:

�G 2 Rn�c; �G? 2 Rn�c; �F 2 Rd�k; �F? 2 Rd�k;

and �S 2 Rk�c;
(6)

Then the Kuhn-Tucker condition (KKT condition) [28]
characterizes the necessary and sufficient condition that the
optimal solutions need to satisfy

�G �G ¼ 0; �G? �Gs ¼ 0; �F � F ¼ 0;

�F? � Ff ¼ 0; �S � S ¼ 0:
(7)

and “�” is the Hadamard product operator (as the opera-
tor “.*” in matlab), i.e.,½A� B�ij ¼ Aij � Bij. Thus the
Lagrangian function is

L ¼ J5 � trð�GGÞ � trð�G? GsÞ � trð�FFÞ
� trð�F? FfÞ � trð�SSÞ
¼ trððX� FSG>Þ>ðX� FSG>ÞÞ
þ atrððWs �GsG

>
s Þ>ðWs �GsG

>
s ÞÞ

þ btrððWf � FfF
>
f Þ>ðWf � FfF

>
f ÞÞ

þ rtrððG�GsÞ>ðG�GsÞÞ
þ rtrððF� FfÞ>ðF� FfÞÞ
� trð�GGÞ � trð�G? GsÞ
� trð�FFÞ � trð�F? FfÞ
� trð�SSÞ:

(8)

Setting partial derivatives of G, Gs, F and Ff to zero, we
have

@L

@G
¼ �2X>FSþ 2GS>F>FSþ 2rG� 2rGs � �G ¼ 0

@L

@F
¼ �2XGS> þ 2FSG>GS> þ 2rF� 2rFf � �F ¼ 0

@L

@Gs
¼ �2aW>

s Gs � 2aWsGs þ 4aGsG
>
s Gs

� 2rGþ 2rGs � �G? ¼ 0

@L

@Ff
¼ �2bW>

s Ff � 2bWsFf þ 4bFfF
>
f Ff

� 2rFþ 2rFf � �F? ¼ 0

@L

@S
¼ �2F>XGþ 2F>FSG>G� �S ¼ 0:

(9)

To eliminate Lagrangian multipliers by using Eq. (7), we
have

ðX>FSþ rGsÞ �G ¼ ðGS>F>FSþ rGÞ �G

ðXGS> þ rFfÞ � F ¼ ðFSG>GS> þ rFÞ � F

ðrGþ 2aW>s GsÞ �Gs ¼ ð2aGsG
>
s Gs þ rGsÞ �Gs

ðrFþ 2bW>
s FfÞ � Ff ¼ ð2bFfF>f Ff þ rFfÞ � Ff

F>XG� S ¼ F>FSG>G� S:

(10)

Eq. (10) leads to the following updating formulas

G G� X>FSþ rGs

GS>F>FSþ rG
; F F� XGS> þ rFf

FSG>GS> þ rF

Gs  Gs � rGþ 2aW>
s Gs

2aGsG
>
s Gs þ rGs

j

Ff  Ff � rFþ 2bW>s Ff
2bFfF

>
f Ff þ rFf

; S S� F>XG
F>FSG>G

:

(11)

After updating, the final clustering indicator matrices are
the results of consensus factorizations, i.e., GFinal ¼ GþGs

and FFinal ¼ Fþ Ff , respectively. In summary, we present
the alternating iterative algorithm for optimizing Eq. (5) in
Algorithm 1. The convergence analysis of Algorithm 1 is in
Section 4.

3.2 Differentiation from Other NMF/NMTF
Objectives

In Table 1, we summarize the objective functions of three
state-of-the-art NMF/NMTF based co-clustering methods:
GNMF [22], DRCC [18], and LP-NMTF [23]. It is clear that
GNMF is an extension of the NMF method [14], with one
additional constraint enforcing the feature clustering indica-
tor matrix F to be consistent to the network topology struc-
tures (Ws). For DRCC method, it factorizes instance-feature
content matrixX, and also enforces the consistency between
feature partitioning matrix G and feature affinity matrix
(LG), as well as the consistency between instance partition-
ing matrix F and instance affinity matrix (LF ). LP-NMTF
has a similar objective function as DRCC but uses a locality
preserved way to make it computationally efficient.

Compared to GNMF, DRCC, and LP-NMTF, CFOND has
the following noticeable differences. First, the factorization of
CFOND is explicitly carried out on three sources: instance-
feature content relationships (X), network topology struc-
tures (Ws), and feature-feature correlations (Wf ), whereas the
other three methods’ factorization is only limited to the
instance-feature content matrix X. Second, GNMF, DRCC,

TABLE 1
Objective Functions of GNMF, DRCC, and LP-NMTF

Method Objective Function

GNMF O1 ¼ jjX �GF>jj2F þ �TrðF>LF Þ
where Djj ¼

P
l ðWsÞjl; L ¼ D�Ws

DRCC O2 ¼ jjX �GSF>jj2F þ �TrðF>LFF Þ
þmTrðG>LGGÞ

LP-NMTF O3 ¼ jjX � FSGT jj2F þ ajjG�BdQdjj2F
þbjjF �BfQf jj2F

s.t. Q>d Qd ¼ I;Q>f Qf ¼ I
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and LP-NMTF have all considered instance (or feature) corre-
lations in their regularization, which are captured in the sec-
ond and/or the third terms of their objective functions.
However, their instance correlations are based on affinity
matrix derived k-NN graphs. As we have explained in
Section 1, k-NN graphs are synthetic, and are fundamen-
tally different from real-world networks. Therefore these
methods cannot effectively accommodate network topol-
ogy structure matrix Ws as regularizations to co-cluster
networked data (the restrictions of real-world networks
will be too strong for them to discover suitable solutions).
As a result, the consensus factorization of multiple rela-
tionship matrices allows CFOND to maximally consider
both content and structure information in networked data
for best clustering results.

Algorithm 1. CFOND

Require: Data Matrix X ¼ ½x�1; � � � ; x���n� 2 Rd�n
þ , Structure

MatrixWs 2 Rn�n
þ , and Clustering number c and k.

1: ConstructedWf , i.e., ½Wf �ij ¼<xi�; xj�>
2: InitializeG and F using K-means on X and X>, respectively;
3: InitializeGs ¼ G and Ff ¼ F;
4: bf repeat
5: G G� X>FSþrGs

GS>F>FSþrG;

6: F F� XGS>þrFf
FSG>GS>þrF;

7: Gs  Gs � rGþ2aW>s Gs

2aGsG
>
s GsþrGs

;

8: Ff  Ff � rFþ2bW>s Ff
2bFfF

>
f
FfþrFf

;

9: S S� F>XG
F>FSG>G;

10: until Converges;
11: GFinal ¼ GþGs;
12: FFinal ¼ Fþ Ff ;
13: Output: Cluster indicator matricesG,Gs, F and Ff for

instance and feature clustering tasks, respectively.

4 CFOND CONVERGENCE ANALYSIS

In the following, we will use the auxiliary function
approach [29] to analyze the convergence of the updating
rule in Eq. (11).

Definition 1. Zðh; h0Þ is an auxiliary function for P ðhÞ if the
following conditions are satisfied.

Zðh; h0Þ 
 P ðhÞ; Zðh; hÞ ¼ P ðhÞ:

The auxiliary function is a useful concept because of the
following lemma, which is also graphically illustrated in
Fig. 4.

Lemma 1. If Z is an auxiliary function for P , then P is non-
increasing under the update

hðtþ1Þ ¼ argmin
h

Zðh; htÞ:
Proof.

P ðhðtþ1ÞÞ � Zðhðtþ1Þ; hðtÞÞ � ZðhðtÞ; hðtÞÞ ¼ P ðhtÞ: tu
We will show that by defining the appropriate auxiliary

functions Zðh; htÞ for J5, the update rules in Eq. (11) easily
follow from Lemma 1. The objective value J5 in Eq. (5)
will monotonically decreasing during iterations. Take the
update rule of Gs for instance, for any element gsðijÞ in Gs,
We use Pij to indicate the part of L which is relevant to
gsðijÞ. The first and second order of derivatives of Pij are
computed as

P 0ij ¼
@L

@Gs

� �
ij

P 00ij ¼ �2aðWs þW>
s Þjj þ 4aðG>s GsÞjj þ 2r

¼ 4aðG>s GsÞjj þ 2r:

The last equation holds because the topological proxim-
ity matrix ½Ws�jj ¼ 0 as there is no link for a node to itself.

Lemma 2. Function

Zðg; gðtÞsðijÞÞ ¼ PijðgðtÞsðijÞÞ þ P 0ijðgðtÞsðijÞÞðg� g
ðtÞ
sðijÞÞ

þ ð2aGsG
>
s Gs þ rGsÞij
g
ðtÞ
sðijÞ

ðg� g
ðtÞ
sðijÞÞ2:

is a proper auxiliary function for PijðgÞ.
Proof. It is straight-forward that Zðg; gÞ ¼ PijðgÞ, and thus

we only need to verify that Zðg; gðtÞsðijÞÞ 
 PijðgÞ. Using Tay-
lor series,

PijðgÞ ¼ PijðgðtÞsðijÞÞ þ P 0ijðgðtÞsðijÞÞðg� g
ðtÞ
sðijÞÞ

þ ð2aðWT
s WsÞjj þ rÞðg� g

ðtÞ
sðijÞÞ2;

Because,

ð2aGsG
>
s Gs þ rGsÞij 
 g

ðtÞ
sðijÞð2aðW>s WsÞjj þ rÞ;

Thus Zðg; gðtÞsðijÞÞ 
 PijðgÞ, and Lemma 2 holds. tu
Theorem 1. The objective value J5 in Eq. (5) is nonincreasing

under the updated rules of Eq. (11).

Proof. Replacing the auxiliary function in Lemma 2 into
Lemma 1, we can get g by minimizing Zðg; gðtÞsðijÞÞ. Setting

the derivative
@Zðg;gðtÞ

sðijÞÞ
@g ¼ 0, we have:

g ¼ g
ðtþ1Þ
sðijÞ ¼ g

ðtÞ
sðijÞ �

g
ðtÞ
sðijÞP

0
ij

4aGsG
>
s Gs þ 2rGs

¼ g
ðtÞ
sðijÞ

ðrGþ 2aW>
s GsÞij

ð2aGsG
>
s Gs þ rGsÞij

:

Since Lemma 2 is an auxiliary function, J5 is nonin-
creasing under this update rule, according to Lemma 1.
This updating rule is essentially consistent with Eq. (11).

Fig. 4. Minimizing the auxiliary function Zðh; htÞ 
 P ðhÞ guarantees that
P ðhtþ1Þ � P ðhtÞ for hnþ1 ¼ argminhZðh; htÞ.
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Similarly, J5 can be shown to be nonincreasing under the
updating rule for G, F, Fs, and S in Eq. (11). As the objec-
tive function is lower bounded by 0, the convergence
aspect is proved. tu
It is worth noting that our multiplicative update rules in

Eq. (11) follow the similar ideas of Lee and Seung’s proof in
the originalNMFpaper [29] andGNMF in [22]. A recent study
[30] shows that Lee and Seung’s multiplicative algorithm [29]
cannot guarantee the convergence to a stationary point. Partic-
ularly, Lin [30] suggests minor modifications on Lee and
Seung’s algorithmwhich can converge. Our updating rules in
Eq. (11) are essentially similar to the updating rules for NMF
and therefore Lin’smodifications can also be applied.

5 EXPERIMENTS

Benchmark Methods.We compare CFONDwith the following
state-of-the-art co-clustering methods: GNMF [22], DRCC
[18], LP-NMTF [23], and iTopicModel [31]. Meanwhile, we
also report the clustering results from k-means and
NMF [29] (although they are not co-clustering methods,
they are used as the baseline to justify the performance of
all co-clustering methods).

- k-means is a method of vector quantization, originally
from signal processing, popularly used as a baseline
for clustering analysis [32]. k-means aims to partition
n instances into k clusters with each instance being
assigned to the cluster whose center has the smallest
distance to the instance.

- NMF is a relaxation technique for clustering. It has
shown remarkable progress in the past decade [15],
[29], [33]. NMF finds a low-rank approximating
matrix to the input non-negative data matrix, where
the most popular approximation criterion or diver-
gence in NMF is the Least Square Error (LSE).

- GNMF is a graph based approach for parts-based
data representation in order to overcome the limita-
tion that NMF fails to consider geometric structures
in the data. GNMF constructs an affinity graph to
encode geometrical information and seeks a matrix
factorization consistent to the graph structures [22].

- DRCC is a Dual Regularized Co-Clustering method
based on semi-nonnegative matrix tri-factorization.
It constructs two synthetic graphs, data graph and
feature graph, to explore the geometric structure of
data manifold and feature manifold. By using two
graph regularizers, DRCC formulates a semi-non-
negative matrix tri-factorization objective function,
requiring that cluster labels of data points are
smooth with respect to the data manifold, while the
cluster labels of features are smooth with respect to
the feature manifold [18].

- LP-NMTF is a Locality Preserved Fast Nonnegative
Matrix Tri-Factorization approach to constrain the
factor matrices of NMF to be cluster indicator matri-
ces. As a result, the optimization problem can be
decoupled, which results in much smaller size sub-
problems requiring much fewer matrix multiplica-
tions. This approach was claimed to work well for
large-scale input data [23].

- iTopicModel follows the traditional topic model to
characterize the generation of text for each

document, by formulating a joint distribution func-
tion which considers texts and inter-connection rela-
tionships between documents. iTopicModel seeks to
maximize the log-likelihood of the joint probability
in order to estimate topic models [31].

Performance Metrics. In order to assess the performance of
different algorithms, we employ two commonly used clus-
tering performance metrics: clustering accuracy and nor-
malized mutual information (NMI) [22]. More specifically,
each node of our benchmark data sets (networks) has a
ground truth label (because they are built for classification
purposes). In our experiments, we set the number of clus-
ters as the same number of classes in the network. For each
node cluster, we will find majority class label of nodes in
this cluster, and divide the number of nodes with the major-
ity class label by the cluster size, which will result in a clus-
tering accuracy. The total clustering accuracy is based on
the average clustering accuracy across all clusters. Mean-

while, NMI ¼MIðC; P Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðCÞHðP Þp

, where the random
variables C and P denote the cluster and class sizes, respec-
tively. The value of NMI is in the interval: ½0; 1�, and a larger
value indicates a better clustering result.

Benchmark Networks. In our experiments, we use five real-
world networks and one synthetic network to evaluate the
algorithm performance. Table 2 summarizes their data
characteristics.

Synthetic Network. In order to visually examine the co-
clustering quality, we design a synthetic network with 4,000
nodes. We equally divide instances into four clusters, so
each cluster has 1000 nodes (the four clusters are shown in
Fig. 5). In addition, each instance has eight features, which
are also equally divided into four parts with each part con-
taining two features. For each feature part, the two features
are unique for one instance cluster but randomly appearing
in other three clusters (we refer to the two unique features
as the effective features of the instance cluster).

For each instance cluster Ci, the values of the allocated two
effective features of the cluster form a specific shape (which
defines the underlying cluster). In other words, the two
features’ values in the instances in cluster Ci follow a given
distribution, including a circle function, a sine function, a
star function, and an absolute value function, respectively,
which are shown in Fig. 5). Meanwhile, we also add white
Gaussian noise with the signal-to-noise ratio snr ¼ 25 dB to
gently perturb the data distributions in the effective features,
which will make the clustering tasks more challenging. The
appearances of the two features in the instances with other
clusters Cj, where j 6¼ i, follow a random distribution. For
example, (a) and (b) in Fig. 5 show the genuine cluster struc-
tures corresponding to features 1 & 2, and features 3 & 4,
respectively. By doing so, we can visually show the cluster-
ing results in a two-dimensional space to compare the perfor-
mance of different methods.

TABLE 2
Description of Benchmark Data

Data Sets # instance # feature # edge # class

Cora 2,708 1,433 5,429 7
CiteSeer 3,312 3,703 4,732 6
PubMed 19,717 500 44,338 3
Attack1 1,293 106 3,172 6
Attack2 1,293 106 571 6
Synthetic 4,000 8 3,057 4
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The topology structures of the synthetic network follow a
scale-free distribution. The probability P ðmÞ of nodes
(instances) in the network having m connections follow a
power-law distribution P ðmÞ � m�g , where g is the depen-
dency parameter (we set g ¼ 2:5 in our experiments). More
specifically, we randomly set the fraction P ðmÞ of nodes
having m connections to other nodes in the synthetic net-
work, where 1 � m � 10. For each node with m edges, we
set the fraction 0.7 of its edges connecting to the nodes
within the same class and 0.3 of its edges being connected
to the nodes in other classes, randomly. By doing so, the
edge connections will ensure majority nodes within the
same class to have a better chance of being connected to
nodes within the same class, and the random connects to
nodes from other classes will simulate the real-world sce-
nario where edges are not always consistent with the node
content and therefore complicate the clustering tasks.

Real-world Networks: The Cora,1 CiteSeer1 and PubMed1

networks consist of scientific publications from different
domains. For Cora and CiteSeer, each publication in the net-
works is described by a 0/1-valued word vector indicating
the absence/presence of the corresponding word from the
dictionary. For pubMed, each publication in the dataset is
described by a TF/IDF weighted word vector from the dic-
tionary. The citation relations are used to construct the net-
work structures. Attack11 and Attack21 data sets contain two
types of information related to terrorism attack entities: the
attributes of the entities and the links that connect various
entities together to form a graph structure. Attack1 is based
on co-located attacks and Attack2 is based on co-located
attacks organized by the same terrorist organization.

For all benchmark networks, each instance/node has a
true class label, which is used for validation only. In other
words, the class labels are unseen (not exposed) for all co-
clustering methods (including parameter tuning process).
When validating the clustering accuracy, we compare the
clustering results with the instance labels and validate the
algorithm performance.

Parameters Setting. Each clustering algorithm has one or
more parameters to be tuned. In order to make fair compari-
sons, we run these algorithms under different parameter set-
tings and select the best average result for comparisons
(using normalized mutual information NMI). For all cluster-
ing methods, we set the number of clusters equal to the true
number of classes for all the data sets. We construct nearest-
neighbor graphs following [18], where the neighborhood
size for graph construction is set by searching the grid of

f1; 2; � � � ; 10g, and the regularization parameters (i.e., a, b
and r in Eq. (5)) are set by searching the grid of f0:1;
0:5; 1; 5; 10; 50; 100; 500; 1000g. For iteration-based methods,
we set the iteration number to 80 in order tomake sure all the
comparedmethods can fully reach their convergence.

For each method (including CFOND), clustering is
repeated multiple times by using all assortments of parame-
ters with the values of f0:1; 0:5; 1; 5; 10; 50; 100; 500; 1000g,
and report the best NMI result (Similar to the experimental
setting in [23]). We also report the co-clustering results of
CFOND by changing parameters on real-world networks.

GNMF, DRCC and LP-NMTF deal with co-clustering on
manifold, so we use the same Ws and Wf as the data mani-
folds and feature manifold, respectively.

For co-clustering methods, including GNMF, DRCC, LP-
NMTF, and our CFOND methods, the number of feature
clusters is set to be the same as that of the data clusters,
i:e:; c ¼ k. The same constraint is applied to iTopicModel
method as well.

All experiments are conducted on a cluster machine with
16 GB RAM and Intel Core i7 3.20 GHZ CPU.

5.1 Experimental Comparisons on Synthetic
Network

In Fig. 6, we visually report the results of major compared
methods: iTopicModel, DRCC, GNMF, LP-FNMTF and
CFOND on Synthetic Data (Each column in Fig. 6 corre-
sponds to one method). Fig. 6 shows that CFOND and iTo-
picModel have the best clustering results, and their outputs
are mostly close to the true distributions. iTopicModel is a
Bayesian-based method and has shown good performance
on the synthetic network. Indeed, the synthetic networks
and the noise in the network are generated following given
distributions which can be better fitted by Bayesian-based
methods. In Section 5.5, we will further compare CFOND
and iTopicModel on real-world networks.

Because GNMF does not consider feature-feature correla-
tions, its clustering results are mainly influenced by the
structure information (or data manifold). For DRCC and
LP-FNMTF, although both methods are claimed to consider
data and feature manifolds, they use strong constraints
to force co-clustering results to be consistent with the mani-
folds. Their results are severely deteriorated when topology
structures and feature distributions are inconsistent (which
are common for real-world networks).

5.2 Experimental Results on Real Networks
Node Clustering Results. For each comparison method (includ-
ing CFOND), we repeat clustering 50 times for each data set,
and calculate the average clustering results. We report the

Fig. 5. The genuine clusters of the synthetic network (best viewed in color). (a) The distribution of features 1 and 2 is a circle. (b) The distribution of
features 3 and 4 is a sine function. (c) The distribution of features 5 and 6 is a star function. (d) The distribution of features 7 and 8 is a absolute value
function.

1. http://linqs.cs.umd.edu/projects//projects/lbc/index.html
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best average result with optimal parameters for each method
on six data sets in Table 3.

The results in Table 3 show that CFOND consistently
outperforms other methods, with noticeable performance
gain, which demonstrate its advantage in terms of cluster-
ing performance. A more careful examination on the results
shows that, the co-clustering methods, including GNMF,
DDRC, and LP-FNMTF methods, somehow exploit the geo-
metric structures in data or feature spaces and generally
achieve better clustering results comparing with traditional
clustering methods, like k-means and NMF, in some data
sets. In addition, we observed that iTopicModel performs
very well on Synthetic and Cora data, but its performance
on other data is inferior to GNMF, DRCC, LP-FNMTF, and
CFOND with quite significant loss. This suggests that iTo-
picModel is likely sensitive to feature distributions and

noise distributions. In Section 5.5, we will further investi-
gate iTopicModel’s performance w.r.t. different network
characteristics.

Indeed, CFOND considers instance-feature, instance-
instance, feature-feature as three separated relationships, and
simultaneously carries out factorization on each relationship
to ensure that factorization can best capture data distributions
w.r.t. the underlying relationship. This is essentially better
than using regularization terms (such as GNMF, DRCC, and
LP-FNMTF do), because a regularization term can only
restrict a solution but cannot discover new solutions.

Feature Clustering Results. Because there is no feature
cluster ground truth, we list Top-20 keywords of each topic
of our results on PubMed data set and compare them with
the Top-20 words selected by using Normalized Mutual
Information (NMI) and RELIEF algorithm in Table 4.

Fig. 6. Co-clustering results from iTopicModel, DRCC, GNMF, LP-FNMTF, and CFOND on the synthetic network. The genuine clusters are a circle
function, a sine function, a star function, and a absolute value function showing in Fig. 5. Each column shows co-clustering results of one method.

TABLE 3
Clustering Results on Instances Measured by Accuracy/NMI of the Compared Methods

Data Sets Kmeans
(ACC-NMI)

NMF
(ACC-NMI)

iTopicModel
(ACC-NMI)

GNMF
(ACC-NMI)

DRCC
(ACC-NMI)

LP-FNMTF
(ACC-NMI)

CFOND
(ACC-NMI)

Attack1 45.33%-0.2185 44.03%-0.2055 41.05%-0.1796 47.07%-0.2371 49.60%-0.2508 49.65%-0.2176 68.36%-0.4693
Attack2 45.42%-0.2243 43.45%-0.2036 40.10%-0.1627 47.85%-0.2339 49.71%-0.2541 45.63%-0.2191 70.07%-0.5046
Cora 34.90%-0.1609 33.56%-0.1351 47.33%-0.3014 39.07%-0.1719 42.71%-0.2198 28.61%-0.0261 54.91%-0.3425
CiteSeer 47.15%-0.2289 40.10%-0.1567 48.59%-0.2302 49.93%-0.2471 55.12%-0.2852 23.27%-0.0143 56.34%-0.3696
PubMed 56.99%-0.2451 60.17%-0.2506 55.78%-0.2367 53.90%-0.1531 61.75%-0.2618 54.37%-0.1532 64.14%-0.4550
Synthetic 49.55%-0.3599 49.37%-0.3479 66.38%-0.3927 50.85%-0.4025 50.48%-0.3516 55.12%-0.3756 68.65%-0.4103

714 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 4, APRIL 2019



NMI is a commonly used measure to compare feature
selection methods [34]. In our case, the normalized mutual
information of two discrete randomvariables: the distribution
of feature (keyword) i among nodes (instances) x�i 2 Rd

þ
and the one-against-all ground-truth labelling of group k, y�k 2f0; 1gdþ, is defined as follows:

NMIðx�i; y�kÞ ¼
Iðx�i; y�kÞ

½Hðx�iÞ;Hðy�kÞ�=2
; (12)

where I is the mutual information function and H is the
entropy function. Because y�k denotes the ground-truth
labels of topic k, for each topic, the Top-20 keywords listed
in Table 4 represent the most distinguished features selected
by using NMI.

RELIEF is a feature selection algorithm used in binary
classification (applicable to polynomial classification by
decomposition into a number of binary problems) [35]. Simi-
lar toNMImethod in our case, RELIEF repetitively calculates
the weights of features. At each iteration, it considers the fea-
ture vector X of one random instance, and the feature vectors
of the instance closest to X (by Euclidean distance) from each
class. The closest same-class instance is called ’near-hit’, and
the closest different-class instance is called ’near-miss’. The
weight vector of the feature is updated as follows:

Wi ¼Wi � ðx�i � nearHitiÞ2 þ ðx�i � nearMissiÞ2: (13)

Table 4 shows that there is a fair share of overlapping
(colored words) between top features selected by using
CFOND and NMI (12/20 for Topic a, 11/20 for Topic b and
8/20 for Topic c), whichmeans clustering tasks carried on the
data and features are strongly correlated and clearly not inde-
pendent. In addition, feature clustering results also match to
the three instance clusters with very good correspondence.
Similarly, the overlapping of top features selected by using

CFOND and RELIEF is high as well: 9/20 for Topic a, 12/20
for Topic b and 9/20 for Topic c.

Parameter Analysis. For our CFONDmethod,we have three
parameters in Eq. (5), where a and b are regularization
parameters to balance each factorization part, and r trade-
offs the consistent degree. Fig. 7 shows that parameter values
have different effect on real-world data sets. For Attack data
set, a relatively larger constraint on (G, Gs) and (F, Fs) is
needed, G should be close to Gs, and F should be close to Fs
in Eq. (5) to achieve high clustering performance. While for
CiteSeer data set, the constraint should not be too strong.
This is because the nodes’ feature distances are not always
consistent with the topology distances. Because CFOND is an
iterative co-clustering method using feature and node cluster
results in each iteration to improve the co-clustering results
on the next iteration, the regularisation parameters a and b
also effect algorithm performance. The choose of regularisa-
tion parameters are based on users’ preference on whether to
focus on node clustering results or feature clustering results.

5.3 Convergence and Efficiency Analysis
We also report the convergence analysis by setting the num-
ber of iterations to 80 for each method, with optimal param-
eter setting for each data set.

Because the updating rules of minimizing the objective
function for CFOND are iterative, we need to show that
these rules are indeed empirically convergent. In order to
investigate the actual convergence performance of these
rules, we report the convergence curves of all state-of-the-
art co-clustering methods (CFOND, DRCC, GNMF and LP-
FNMTF) and one topic model method (iTopicModel) on all
the five real-world data sets in Fig. 8, where the y-axis is the
normalized value of the objective function and the x-axis
denotes the iteration number. The results in Fig. 8 show that
the multiplicative updating rules for both CFOND and LP-
FNMTF converge very fast, usually within 20 iterations.

TABLE 4
The Comparisons of Top-20 Features (Words) for Each Topic in the PubMed Network

Using CFOND, NMI, and RELIEF, Respectively

Topic a Topic b Topic c

CFOND NMI RELIEF CFOND NMI RELIEF CFOND NMI RELIEF

Patient syndrom develop rat cell glucose group group group
type Patient type cell glucose insulin children children male
iddm type Patient mice acid inhibit subject male subject
gene develop mass glucose rat acid niddm min plasma
develop care syndrom islet beta antibodies plasma subject correl
disease associate age control increase nod rate year factor
associate import care active impair mice compar fat sex
age low active increase express resist year factor year
risk mellitus risk nod mice hyperglycemia dure higher ml
factor data low express produce kidney nondiabetic heart rate
differ marker associate protein transport depress serum ratio similar
use clinic direct animal animal liver albuminuria baselin excret
mellitus detect insulindepend effect antibodies increase weight index mean
function high data antibodies depress data heart ml albumin
excret gene marker kidney resist pathway albumin preval niddm
clinic provid gene reduce nod year hyperglycemia bmi children
relate risk aim significant year active ratio similar detect
studi direct screen inhibit active transport adolesc mm reduce
high aim iddm human significant rat cpeptid sex bmi
data studi inject response inject cell baselin excret heart
intervention differ provid insulin data express mass rate onset
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In addition, we also report the average convergence time
of the compared iteration-based methods on real-world
data sets in Fig. 9. From the results, we can observe that
CFOND is only slightly slower than LP-FNMTF, but is
much faster than all other state-of-the-art co-clustering
methods. This is mainly because LP-FNMTF constrains fac-
tor matrices of NMF to be cluster indicator matrices, there-
fore requires much fewer matrix multiplications. GNMF
and DRCC require much more iterations in order to reach
convergence, and are therefore more time-consuming. If we
take the clustering results in Table 3 and the runtime perfor-
mance in Fig. 9 into consideration, CFOND demonstrates a
clear advantage for co-clustering on large-scale data.

The runtime performance in Fig. 9 shows that iTopic-
Model is the most time-consuming method, and its con-
vergence curves on real-world data are not as smooth as
others. This is because iTopicModel is an EM-based
method which requires more iterative times, and much
more space-time consumption for each iteration. As a
result, its execution speed and convergence spped are
slow as shown in Fig. 8, comparing to other NMF/NMTF
based methods.

5.4 The Relationship between Node Clusters and
Feature Clusters

An inherent advantage of CFOND is that the latent matrix S
in consensus factorisation function Eq. (5) can also reveal
the corresponding relationship between the node clustering

and feature clustering results. In this section, we report the
results of latent matrix S on PubMed dataset (Table 5) and
Synthetic network (Table 6).

As we have described in Section 2, Sij represents the rela-
tive weight between feature cluster i and node cluster j. In
Tables 5 and 6, we use the best matching method to evalu-
ate the accuracy results. Based on the best matching princi-
ple, for PubMed dataset, node clusters 1, 2, 3 by using
CFOND are corresponding with real classes “Diabetes Mel-
litus Type 1”, “Diabetes Mellitus Type 2”, and “Diabetes
Mellitus, Experimental”, respectively. Feature clusters 1, 2,
3 are shown as Topics (a), (b), (c) in Table 4.

From Table 5, we can see that node cluster 1 is most
related to feature cluster 2 (S12), node cluster 2 is the closest
to feature cluster 1 (S21), and node cluster 3 is most related
to feature cluster 3. This is, in fact, consistent with the data
domain characteristics. For example, “Diabetes Mellitus,
Experimental” studies wet lab diabetes mellitus models
used for different experiments, such as the type of proce-
dures used to cause a lab animal, such as a mice, becoming
a diabetes test bed. Because this category is closely related
to the lab and experiments, the words “plasma” and
“nondiabet(ic)” etc. are representative words to this
cluster, so Topic c is matched to the “Diabetes Mellitus,
Experimental”. Therefore, the larger the Sij value, the
higher the correlation between node cluster i and feature
cluster j is a similar conclusion can also be derived from the
synthetic network in Table 6.

Fig. 7. Clustering results of using CFOND on five real-world data sets respect to changing parameter values.

Fig. 8. Convergence comparisons of different co-clustering methods on real-world data sets. The x-axis denotes the number of iterations, and the
y-axis denotes the normalized residue of the objective function.

Fig. 9. Runtime comparisons of different co-clustering methods on real-world data sets.
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5.5 Case Study

In this section, we further compare Bayesian-based method
(iTopicModel) and NMF/NMTF based method (CFOND)
on the Cora data set, by varying the network characteristics.
Our purpose is to observe how do iTopicModel and
CFOND behave (1) for networks with different edge den-
sity, and (2) for networks with various degree of consistency
between node content and topology structures.

To generate networks with various consistency between
node content and topology structures, we sort all node fea-
tures in a descending order according to their Information
Gain (IG) scores. In Fig. 10a, we continuously remove fea-
tures based on their IG scores from high to small and gener-
ate networks whose node content is less and less consistent
to structures. In comparison, we also randomly remove the
same number of node features and report the results in
Fig. 10(b).

To generate networks with different edge density, we
gradually reduce edges between nodes in the same class,
followed by removing edges between nodes in different
classes, and report the results in Fig. 10c. This will help gen-
erate networks with less and less edge density (so topology
structures is playing less and less important role). In com-
parison, we also randomly remove the same number of
edges and report the results in Fig. 10d.

The results from Fig. 10 show that with the reduction of
node features and edges, iTopicModel’s performance dete-
riorates dramatically. It is more sensitive to node features
rather than edges, because comparing to feature reduction
versus edge reduction, the former results in a larger perfor-
mance loss. In comparison, CFOND’s performance is rela-
tively balanced between features and edges.

6 RELATED WORK

In traditional clustering, the aim is to divide an unlabeled
data set into groups of similar data points. This can be
achieved by comparing feature based similarities/distances
between instance pairs, and assigning each instance to the
group mostly similar to. k-means [36] is the classical

clustering method which follows the traditional clustering
principle. From a geometrical point of view, a data set can
be seen as a set of nodes connected with structure relation-
ships, and clustering aims to find intrinsic groups of the
data. Spectral clustering [37], [38], [39] and Non-negative
Matrix Factorization (NMF) [29] are typical methods which
carry out clustering from the geometrical point of view.
Some studies have also been proposed to combine tradi-
tional clustering and geometrical relationships between
instances for better clustering results (commonly referred to
as attributed graph clustering [40], [41], [42]).

The above clustering methods mainly focus on one-side
clustering. In other words, clustering is based on the simi-
larities along either the feature or the structure relation-
ships, respectively. Motivated by the duality between data
points (e.g., documents) and features (e.g., words), several
co-clustering algorithms have been proposed to cluster data
based on their distributions in the feature space, as well as
cluster features into groups by using their distributions in
the sample space. Such two-side co-clustering approaches
have demonstrated better performance than traditional one-
side clustering. For example, [43] employs a bipartite spec-
tral graph partition approach to co-cluster words and docu-
ments, which requires that each document cluster is
associated to a word cluster (which is a rather restrictive
constraint). To overcome this drawback, [13] presents a
co-clustering algorithm that monotonically increases the
preserved mutual information by intertwining both the row
and column clusterings at all stages, which is an informa-
tion theoretic method and can be seen as the extension of
information bottleneck method [44] to two-side clustering.
Alternatively, factorization based approaches are also used
to factorize an instance-feature matrix into instance and fea-
ture groups respectively [15], [16]. [14] proposed an orthog-
onal nonnegative matrix tri-factorization (ONMTF) to co-
cluster words and documents, with sound mathematical
form and encouraging performance.

Recently, several studies have shown that many real-
world data are actually sampled from an intrinsic network

TABLE 5
The Latent Matrix S on PubMed Network (S 2 Rc�k
Where c ¼ 3 and k ¼ 3 Representing the Number of
Node Clusters (Rows) and the Number of Feature

Clusters (Columns), Respectively)

5.67E-03 0.008456 0.000812
0.028237 1.70E-05 0.001195
0.000415 0.000826 0.031455

TABLE 6
The Latent Matrix S on Synthetic Network (S 2 Rc�k
Where c ¼ 4 and k ¼ 4 Representing the Number of
Node Clusters (Rows) and the Number of Feature

Clusters (Columns), Respectively)

0.64732 0.00273 0.02784 0.00673
0.03654 0.00876 0.59272 0.00219
0.00145 0.29562 0.07365 0.00227
0.03497 0.01162 0.00758 0.39654

Fig. 10. Case study of CFOND versus iTopicModel on networks with various degree of consistency between node content and topology structures (a)
and (b), and networks with different degree of edge density (c) and (d).
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structure [1], [45], [46], in which linkages provide useful
information for clustering. Co-clustering algorithms [18],
[19] try to build instance-instance nearest neighbours graph
and enforce the k-NN graph in the objective function to dis-
cover cluster structures with respect to low dimensional fea-
ture space (i.e., manifold). However, as we have elaborated
in Section 1, these methods are ineffective for co-clustering
networked data, mainly because k-NN graphs have differ-
ent characteristics from real-world networks, and the topol-
ogy of k-NN graphs are consistent with the node similarity
assessed in the feature space. The unique characteristics of
real-world networks and the inconsistency of the node con-
tent and topology structure of the networks suggest that
existing manifold based co-clustering methods [18], [19] are
ineffective for networked data.

Ourwork is also related to relational topicmodels. Jonathan
and David developed a relational topic model (RTM) which is
a model of documents and links between them [47], with a
hierarchical model of links and node attributes. However,
RTM models nodes and links separately and therefore results
in information loss. In [31] and [48], the inter-dependence of a
set of high-level topics and the documents are considered to
develop a Bayesian hierarchical approach. Unfortunately,
Bayesian-based methods are too sensitive to samples selected
and therefore often lead to sensitive result as shown in
Section 5.

Although the factorization framework employed in
CFOND is similar to the factorization approach in [18], [19],
the differences between CFOND and existing works are fun-
damental: (1) CFOND considers three-factor relationship
matrices, instance-feature, instance-instance, and feature-
feature, in the factorization framework, whereas existing
methods [18], [19] only consider two-factor relationships
(instance-feature and instance-instance relationships). The
integration of feature-feature matrix in the factorization
allows CFOND to explicitly capture feature-to-feature rela-
tionships for finding optimal feature clustering results; and
(2) CFOND employs a consensus factorization principle
where three relationship matrices are factorized simulta-
neously, conditioned by the consensus objective function,
whereas existing methods [18], [19] only factorizes one
(instance-feature) matrix and uses other relationships as
hard constraints. The three independent factorizations in
CFOND provide maximum degree of freedom for CFOND
to explore solutions best fit for each individual relationship
matrix, and the consensus factorization further ensures that
the solutions are consistent across all relationship matrices
for optimal clustering results.

7 CONCLUSION

In this paper, we proposed a consensus factorization based
method, CFOND, to simultaneously cluster networked
instances (nodes) and features which represent node content
in the network. CFOND is rooted on NMF/NMTF based co-
clustering, but has its uniqueness in (1) leveraging auxiliary
information in networked data for simultaneous factoriza-
tion of three types of relationships: Instance-feature,
instance-instance, feature-feature; and (2) enforcing the con-
sensus of the factorized results for optimal clustering results.
Compared to existing proximity graph regularization based
methods, the consensus factorization ensures that the final
cluster structures are consistent across information from dif-
ferent types of relationships, and therefore results in

minimum errors. Theoretical analysis confirms the conver-
gence of the solutions derived from CFOND. Extensive
experiments and comparisons on benchmark data sets dem-
onstrate that CFOND consistently outperforms baseline
approaches for co-clustering networked data.
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