IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

CogBoost: Boosting for Fast Cost-Sensitive
Graph Classification

Shirui Pan, Jia Wu, and Xingquan Zhu, Senior Member, IEEE

Abstract—Graph classification has drawn great interests in recent years due to the increasing number of applications involving objects
with complex structure relationships. To date, all existing graph classification algorithms assume, explicitly or implicitly, that
misclassifying instances in different classes incurs an equal amount of cost (or risk), which is often not the case in real-life applications
(where misclassifying a certain class of samples, such as diseased patients, is subject to more expensive costs than others). Although

2933

cost-sensitive learning has been extensively studied, all methods are based on data with instance-feature representation. Graphs,
however, do not have features available for learning and the feature space of graph data is likely infinite and needs to be carefully
explored in order to favor classes with a higher cost. In this paper, we propose, CogBoost, a fast cost-sensitive graph classification
algorithm, which aims to minimize the misclassification costs (instead of the errors) and achieve fast learning speed for large scale
graph data sets. To minimize the misclassification costs, CogBoost iteratively selects the most discriminative subgraph by considering
costs of different classes, and then solves a linear programming problem in each iteration by using Bayes decision rule based optimal
loss function. In addition, a cutting plane algorithm is derived to speed up the solving of linear programs for fast learning on large

scale data sets. Experiments and comparisons on real-world large graph data sets demonstrate the effectiveness and the efficiency

of our algorithm.

Index Terms—Graph classification, cost-sensitive learning, subgraphs, boosting, cutting plane algorithm, large scale graphs

1 INTRODUCTION

DUE to the rapid advancement in networking and data
collection technology, recent years have witnessed an
increasing number of applications involving data with
complex structure relationships, e.g., chemical compounds
[1], social networks [2], and scientific publications [3]. Dif-
ferent from traditional data represented in deterministic
feature space by using an instance-feature representation,
structure data are not represented by using attribute vec-
tors, but by graphs with dependency relationships
between objects. Because graphs do not have features
immediately available for learning, this challenge has
motivated a number of graph classification methods,
which either directly learn global similarities between
graphs measured by graph kernels or graph embedding
[1], [4], or select some informative subgraphs as features to
represent graphs into feature space for learning [3], [5],
[6], [7], [8], [9], [10], [11]. Nevertheless, all existing meth-
ods for graph classification suffer from two major

e S. Pan is with the College of Information Engineering, Northwest A&F
University, Yangling 712100, China, and also with the Centre for Quan-
tum Computation & Intelligent Systems, FEIT, University of Technology
Sydney, Sydney, NSW 2007, Australia.

E-mail: shirui.pan@student.uts.edu.au.

o J. Wu is with the Centre for Quantum Computation and Intelligent Sys-
tems, FEIT, University of Technology, Sydney, NSW 2007, Australia.
E-mail: jia.wu@student.uts.edu.au.

o X. Zhu is with the Department of Computer & Electrical Engineering and
Computer Science, Florida Atlantic University, Boca Raton, FL 33431.
E-mail: xzhu3@fau.edu.

Manuscript received 5 May 2014; revised 5 Dec. 2014; accepted 26 Dec. 2014.
Date of publication 11 Jan. 2015; date of current version 2 Oct. 2015.
Recommended for acceptance by H. Xiong.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2015.2391115

deficiencies: ineffective for cost-sensitive classification and
inefficient for large scale graphs.

1.1 Cost-Sensitive Graph Classification

For graph classification, all existing methods assume,
explicitly or implicitly, that misclassifying a positive graph
incurs an equal amount of cost (or risk) to the misclassifica-
tion of a negative graph, i.e., all misclassifications are sub-
ject to the same cost (In this paper, positive class and
minority class are equivalent, and they both denote the
class with the highest misclassification cost). The induced
decisions are commonly referred to as cost-insensitive. In
real-life graph applications, the equal-cost assumption is
rarely the case, or at least too strong. Some examples are
given as follows.

Biological domains. In structure based medical diagnose
[12], [13], chemical compounds active against cancer are
very rare and are expected to be carefully identified and
investigated. A false negative identification (i.e., predicting
an active compound to be inactive) has a much more severe
consequence (i.e., a higher cost) than a false positive identifi-
cation (i.e., predicting an inactive compound to be active).
Therefore, a false negative and a false positive are inher-
ently different and a false negative prediction may result in
the delay and wrong diagnose, leading to severe complica-
tions (or extra costs) at a later stage.

Cyber security domains. In intrusion detection systems,
each traffic flow can be represented as a graph by present-
ing traffic destinations (such as IP addresses and port num-
bers) as nodes. Malicious traffics may impose threat or
damage to computer servers, leading to severe security
issues, such as private information leakage or internet
breakdown. Therefore, misclassification of a malicious

1041-4347 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2934

traffic (graph) has a much higher economic and social cost
in terms of its potential impacts.

Motivated by its significance in practice, cost-sensitive
learning has established itself as an active topic in data min-
ing and machine learning areas [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]. Common solutions to cost-sensitive
problems includes sampling [19], [25], decision tree model-
ling [17], [26], boosting [20], [21], and SVM adaptations [15],
[22], [27]. However, all these methods are only dedicated
to generic data sets with feature-vector representation,
whereas graphs do not have features immediately available
and only contain nodes and their dependency structure
information. Indeed, simply enumerating subgraph struc-
tures as features is clearly a suboptimal solution for cost-sen-
sitive learning, because substructure space is exponentially
large w.r.t. the size of the graph and may be infinite. We
need a good strategy to find high quality features to help
avoid misclassifications on positive classes.

Recently, an igBoost [11] algorithm has been proposed
to handle imbalanced graph data sets. The igBoost
approach, extended from a standard cost-insensitive graph
classification algorithm gBoost [5], assigns proper weight
values to different classes by taking data imbalance into
consideration, so the algorithm is potentially useful to
tackle the cost-sensitive learning for graphs. However, the
loss function defined in igBoost is not cost-sensitive but
only aims to minimize the misclassification errors. As a
result, if the training data are separable [22], the algorithm
will have limited power to enforce a cost-sensitivity learn-
ing because it only tries to separate training samples with-
out using costs associated to different classes to tune the
decisions for minimum costs. From a statistical point of
view, the minimum risk could be achieved by following
Bayes decision rules to predict graph samples. The objec-
tive functions in [11] is non-optimal because it simply
employs some heuristic schemes, rather than implements
the Bayes decision rules to minimize the conditional risk
for cost-sensitive setting. To summarize, the current boost-
ing style algorithms are not targeting cost-sensitive learn-
ing problems for graph data.

1.2 Fast Training for Large Scale Graphs

Another deficiency of existing graph classification algo-
rithms is that they are only designed for small size graph
data sets and are inefficient to scale up to large size graph
data sets. Taking existing boosting-based graph classifica-
tion algorithms [5], [11] as examples, a boosting algorithm
iteratively selects the most discriminative subgraphs from
the graph data set and then solves a linear programming
problem for graph classification. In practice, although one
may use an appropriate support value in the first step to
find subgraphs, by using subgraph mining based algorithm
such as gSpan [28], solving linear programming in each iter-
ation of the second step is a very time-consuming process,
which prevents the algorithms from scaling up to large
graph data sets.

In Fig. 1, we report the runtime of boosting-based graph
classification algorithms with respect to different numbers
of training graphs. For a small number of graphs, e.g. 100 to
1,000, both gBoost [5] and igBoost [11] are relatively efficient
(requiring 5 to 300 seconds for training). However, when the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

Time Complexity with Different No. of Training Graphs
100000

10000 F

1000 F

100 |
10 b
s BN

NN i
100 500 1000 10000 20000 25000
No. of Training Graphs

Time (Seconds)

igBoost E===1  gBoost zizIin

Fig. 1. Training time w.r.t. different number of graphs on NCI-1 data set
for gBoost [5] and igBoost algorithm [11]. Runtime of existing graph
classification algorithms exponentially grows w.r.t. the increase of the
training set size.

number of training graphs is considerably large (25,000
graphs or more), the training time for both gBoost and
igBoost increase dramatically (about 50,000 seconds), and
requires over 13 hours to complete the training task! As big
data applications [29] are becoming increasingly popular
for different domains and result in graph data sets with
large volumes, finding effective boosting algorithms for
large scale graph data sets is highly desired.

If we consider both cost-sensitive learning and fast graph
classification as a whole, the following issues should be
taken into consideration to ensure the efficiency and the
effectiveness of the algorithm:

1) Cost-sensitive subgraph selection. In a cost-sensitive set-
ting, we are given a cost matrix representing misclas-
sification costs. To ensure minimum costs for graph
classification, we should take cost of individual sam-
ples into consideration to cost-sensitively select dis-
criminative subgraphs. A cost-sensitive subgraph
exploration process is, therefore, essential, but has
not been addressed by existing research.

2) Model learning with cost-sensitivity. For existing
boosting-based graph classification algorithms,
they have non-optimal loss function, and therefore
have limited capability to handle cost-sensitive
problems. Alternatively, we should employ a
proper loss function, which not only implements
the cost-sensitive Bayes decision rule, but also
approximates the Bayes risk. By doing this, the
induced model will have maximum power for
cost-sensitive graph classification.

3)  Fast training on large graph data sets. Boosting algo-
rithms are difficult to scale to large graphs because
the optimization procedures involved in each itera-
tion needs to resolve a large scale linear program-
ming problem, which is typically time-consuming,.
We need new optimization techniques to enable fast
training on large scale graph data sets.

Motivated by the above observations, we report in this
paper, CogBoost, a fast cost-sensitive learning algorithm for
graph classification. Instead of simply assigning weights to
different classes, CogBoost employs a Bayes decision rule
based loss function to guarantee minimum risk for predic-
tion. Meanwhile, in order to identify discriminative sub-
graphs for cost-sensitive graph classification, CogBoost
progressively selects the most informative subgraphs based
on current learned model, and the newly selected subgraph
is added to current feature set to refine the classifier model.



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

To enable fast training on large graph data sets, an
advanced optimization technique, cutting plane algorithm, is
derived to solve linear programming in an efficient way.
Experiments on real-word large graph data sets demon-
strate CogBoost’s performance.

The remainder of the paper is structured as follow.
Section 2 reviews related work. The problem definition and
overall framework are discussed in Section 3. Section 4
reports our CogBoost algorithm for cost-sensitive graph
classification. The cutting plane algorithm for fast training
is reported in Section 5, followed by the time complexity
analysis in Section 6. The experiments are reported in
Section 7, and we conclude the paper in Section 8.

2 RELATED WORK

Our work is closely related to graph classification and cost-
sensitive learning.

Graph classification. Learning and classifying graph data
have drawn much attention in recent years. Because graphs
involve node-edge structures whereas most existing classifi-
cation methods use instance-feature representation model,
the major challenge of graph classification is to transfer
graphs into proper format for learning methods to train
classifiers. Existing methods in the area mainly fall into two
categories: (1) global similarity-based approaches [1], [4];
and (2) local subgraph based approaches [5], [7], [8]. For
global similarity-based methods, graph kernels and graph
embedding are used to calculate the distance between a pair
of graphs, and the distance matrix can be fed into a learning
algorithm, such as k-NN and SVM, for graph classification.

For subgraph feature based methods, the major goal is to
identify significant subgraphs which can be used as signa-
ture for different classes [5], [7], [9], [30], [31]. By using sub-
graph features selected from the graph set, one can easily
transfer graphs into a vector space so existing machine
learning methods can be applied for classification [7], [30].
In [32], the authors propose a structure feature selection
method to consider subgraph structural information for
classification. Jin et al. [33] proposes to extract subgraph pat-
terns and use their co-occurrence to build classifier for
graph classification. Other method [34] regards subgraph
selection as combinatorial optimization problem and uses
heuristic rules, in combination with frequent subgraph min-
ing algorithm such as gSpan [28], to find subgraph features.

After obtaining subgraph features, one can also employ
Boosting algorithms for graph classification [5], [9], [35],
[36]. In [9], the authors proposed to boost the subgraph deci-
sion stumps from frequent subgraphs, which means they
first need to provide a minimum support to mine a set of
frequent subgraphs and then utilize the function space
knowledge for boosting. In contrast, gBoost [35] and its var-
iants [5], [11] do not require a minimum support, the prun-
ing search space relies on some carefully derived rules.
gBoost adopts an Adaboost procedure in [35], and it is for-
malized as a mathematical margin maximization problem
in its latter variant [5]. The mathematical LP-boost style of
algorithm in [5] demonstrated that the method is effective
and converges very fast.

The above algorithms, regardless of whether they trans-
fer graphs into a feature space or boosting directly from the

2935

weak subgraph decision stumps, are designed for cost-insen-
sitivity scenarios, i.e., they assume that all misclassifications
are subject to the same cost/risk. Recently, an igBoost [11]
algorithm has been proposed to deal with imbalanced
graph data sets (we extend igBoost to handle dynamic data
streams in [37]). igBoost assigns different weight values to
different classes in order to combat class imbalance issue,
which can deal with cost-sensitive problem to some extent.
However, the loss function of igBoost is rather heuristic and
cannot guarantee the minimization of the misclassification
costs. In other words, igBoost is a sub-optimal solution to
deal with cost-sensitive graph classification.

Cost-sensitive learning. Cost-sensitive learning has been
extensively studied in the last decade. Existing approaches
mainly fall into the following four categories: (1) Sampling
methods [19]; (2) Decision tree approaches [17], [26]; (3)
Boosting algorithms [20], [21], [38]; and (4) SVM adaptation
[15], [22].

Sampling approaches [19] aim to re-weight training sam-
ples proportional to their cost values, by over-sampling or
cost-proportionate rejection sampling. The main goal is to
change sample distributions so that any classifier can be
directly used to handle cost-sensitive problems. Decision
tree modelling approaches [17], [26] incorporate costs into
the tree construction process, so that misclassification cost
at the leaves is minimized. Boosting algorithms [20], [21],
[38], such as AdaCost [38], use the misclassification costs to
update the training distributions on successive boosting
rounds, which has been proved to be effective to reduce the
upper bound of cumulative misclassification cost of the
training set. SVM adaptation [15], [22] represents a set of
approaches using SVM adaptation for cost-sensitive learn-
ing. They either shift the decision boundaries by adjusting
the threshold of standard SVMs [27] or by introducing dif-
ferent penalty factors C; and C_; for positive and negative
SVM slack variables during training [15]. Recently a CS-
SVM algorithm [22] is proposed by utilizing an optimal
hinge loss function, and has demonstrated better perfor-
mance than previous approaches [15], [27].

In summary, the scope of all existing cost-sensitive meth-
ods is limited to data in vector format. In this paper, we con-
sider unique challenges of graph data and propose a novel
algorithm for cost-sensitive graph classification.

3 PROBLEM DEFINITION AND OVERALL
FRAMEWORK

Definition 1 (Connected Graph). A graph is denoted as
G=(V,E,L), where V ={vy,...,v,,} is a set of vertices,
ECVxVisa set of edges, and L is a labeling function
assigning labels to a node or an edge. A connected graph is a
graph such that there is a path between any pair of vertices.

In this paper, each labeled graph G; is a connected graph
with a class label y; € Y = {—1,+1}, i.e., we consider binary
classification. If y; = +1, G; is a positive graph, or negative
otherwise.

Definition 2 (Subgraph). Given two connected graphs
G=W,EL)and g, = (V,E', L), g; is a subgraph of G (i.e
9i € G) if there is an injective function f V' — V, such that
V(a,b) € E', we have (f(a),f(b)) € E, L'(a)=L(f(a)),



2936
TABLE 1
Important Notations Used in the Paper
Symbols Definition
T={Giyi}ic1. 4 Training graphs with size [

joe

Lyl Number of positive and negative graphs
T; Vector representation of graph G;
F={q1, -, 9m} The full set of subgraphs

S Selected discriminative subgraphs
Weight vectors for all subgraphs
Classifier prediction on graph G;

A loss function

f(Gi)> f(%‘)
L(f(Gi)a yi)

C1,C_4 Cost of positive and negative graphs,
respectively

E=1{&}io Vector, slack variables for cost-sensitive

' learning

I3 Slack variable (a scalar) for cutting plane
algorithm

wo= ity Weight vectors of training graphs

Cy Parameters for cost-sensitive learning

Tnax Maximum number of iterations

min_sup Mininum support for subgraph mining

€ Cutting-plane termination threshold

L£'(b) = L(f(b)), £'(a,b) = L(f(a), f(b)). If g; is a subgraph
of G (g9; C G), G is a supergraph of g; (G 2 g;).

Classifier model for graphs. A classifier model f(-), which is
learned from a set of training graphs 7' = {(G1,y1),...,
(G1,u1)}, is a function to map a connected graph G; from
graph space G (G; € G) to the label space J = {+1, —1}. For
cost-sensitive learning, the classifier f(-) is required to
minimize the expected misclassification cost/risk R =
Eq, 4, [L(f(Gy),y:)], where L(f(G;),y;) is a non-negative loss
function with respect to the misclassification cost. A typical
loss function is defined as follows:

0 s f(G) =i
L(f(Gi)vyi) =< C
C_y

The loss function in Eq. (1) is extended from the standard
0-1loss function, i.e., L(f(-),y) = I(f(-) # y), where I(-) isan
indicator function, I(a) = 1 if a holds, or I(a) = 0 otherwise.
In Eq. (1), when C; = C_; =1, the function L(f(G,),v;)) is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

Optimal Subgraph

g (g*, 7)) — —

NOVEMBER 2015

cost-insensitive and degenerates to the standard 0-1 loss. For
cost-sensitive learning, a false negative (f(G;) = —1,y;, = 1)
prediction usually incurs a larger cost than a false positive
(f(G;) = 1,y; = —1) prediction, i.e.,, C; > C_;.

Given a set of training graphs T' = {(G1,v1),--., (G, u)},
and C; and C_; for the cost of misclassification, cost-sensi-
tive graph classification aims to build an optimal classifica-
tion model f(-) from T to minimize the expected
misclassification cost (also known as loss or risk) R =
Eq, 4, [L(f(Gy),y:)]. Some important notations used in the
paper are listed in Table 1.

3.1 Overall Framework

In this paper, we propose a boosting framework for cost-
sensitive graph classification. Our framework (Fig. 2) con-
sists of three major steps.

1) Optimal subgraph exploration. One optimal subgraph
is selected at each step, and the cost-sensitive dis-
criminative subgraph exploration is guided by the
model learnt from the previous step. The newly
extracted subgraph is added to the most discrimina-
tive set S to enhance the learning in the next step.

2)  Risk minimization and fast training. A linear program
is solved to achieve minimum risk based on cur-
rent selected subgraphs. To enable fast training on
large scale graphs, a novel cutting plane algorithm
is employed.

3)  Updating graph weights for new iteration. After the lin-
ear program is solved, the weight values for training
graphs are updated and the algorithm continues to
next iteration until the whole algorithm converges.

4 CoOST-SENSITIVE LEARNING FOR GRAPH DATA

For graph classification, boosting [5], [11] has been previ-
ously used to identify subgraphs from the training graphs
as features. After that, each subgraph is regarded as a deci-
sion stump (weak classifier) to build a boosting process:

Ty, (Gis ) = (21 (gr € G3) — 1); (2

where 7, € Y ={—1,+1} is a parameter controlling the
label of the classifier. In this paper, a weak classifier is writ-
ten as h,, (G;) for short.

ves,  Obtain Classifiers
and their weights

Cutting Plane
Solver

Update
c‘lsss‘:r.'::'we'@n!

Update

Graph Weights

weak classifiers

Fig. 2. The proposed fast cost-sensitive boosting for graph classification framework. In each iteration, CogBoost selects an optimal subgraph fea-
ture (g*,7*) based on current learned model and weights of training graphs. Then (¢*,7*) is added to the current selected set S. Afterwards,
CogBoost solves a linear programming problem to achieve cost/risk minimization. To enable fast training on large scale graph data sets, a cutting
plane solver is used to improve the algorithm efficiency. After solving the linear program, two sets of weights (green arrows) are updated: (1)
weights for training graphs, and (2) weights for weak learners (subgraphs). The feature selection and risk minimization procedures continue until
CogBoost converges or reaches the predefined number of iterations.



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

(A) Standard Hinge Loss Function

(B) Cost-sensitive Hinge Loss with Cy=4, C ;=2

C) Cost-sensitive SVM and Standard SVM in a Linearly Separable Case

2937

4 Fo— 4 5 4 O Negative Class

0s §ros X Positive Class
3 Neg " 3 :.-‘ Neg (0] o - --SVM

\ 2 —— Cost SVM
2 2 o] ---Non Max Margin Classifier

: P
0 St
1 1 3 \ ,': -
E o x x
. L
0 0 - -7,
i - 2 X X
A 4 4k- ,
-3 2 -1 0 1 2 3 -3 2 -1 0 1 2 3 -4 -2 0 2 4

Fig. 3. Different loss functions and formulations with respect to support vector machines (SVMs): (A) Standard Hinge Loss, (B) Cost-sensitive Hinge
Loss with C; =4 and C_; = 2, and (C) Different SVM formulations with standard hinge loss and cost-sensitive hinge loss (cf.[22]).

Let F = {q1,...,gm} be the full set of subgraphs in 7. We
can use F as features to represent each graph G; into a vec-
tor space as z; = {hy, (Gi),....hy, (G;)}, with zF = h, (G;).
In the following section, we use G; and z; interchangeably
as they are both refereed to the same graph.

The prediction rule for a graph G; is a linear combination
of weak classifiers:

fla) = w'z; = Z

(9 p)€F XY

wihy, (G), (3)

where w = {wy},_, ,, is the weight vector for all weak clas-
sifiers. The predicted class label of z; is +1 (positive) if
f(z;) > 0 or -1 otherwise.

Similar to SVM, gBoost [5] aims to achieve minimum loss
w.r.t. a standard hinge loss function L(f,y) = [1—yf],,
where |z], =max(z,0). igBoost [11] extends gBoost by
assigning larger weight values to graphs in positive classes.
Both gBoost and igBoost are not optimal when dealing with
cost-sensitive cases, because their loss functions do not fol-
low the Bayes decision rules to minimize the expected risk/
loss. In this section, we will first present an optimal hinge
loss function, and then formalize our algorithm as a boost-
ing paradigm.

4.1 Optimal Cost-Sensitive Loss Function

A graph classifier f(-) maps a graph G; to a class label
y; € {—1,1}. Assume graphs and class labels are drawn
from probability distribution FPg(G;) and Py(y;), respec-
tively. Given a non-negative loss function L(f(G;),v:), a
classifier f(G;) is optimal if it minimizes the loss/risk
R = Eg,,,[L(f(Gi),yi)]. Let n = Pyg(1|G;) be the probability
of G; being 1, from a Bayes decision rule point of view, this
is equivalent to minimizing the conditional risk,

Eyg(L(f(G:), yi)|G = Gi) =nL(f(Gi), 1) N
+ (=) L(f(Gi), =1).

The loss function in Eq. (1) is a Bayes consistent loss func-
tion [39], i.e., it implements the Bayes decision rule to achieve
minimum conditional risk (Eq. (4)). This suggests that ideally
Eq. (1) can be used to design some cost-sensitive algorithms
for minimizing conditional risk. However, Eq. (1) is extended
by a 0-1 loss function. Minimizing the 0-1 loss is computation-
ally expensive because it is not convex. State of the art
algorithms usually use surrogate loss functions to approxi-
mate the 0-1 loss (e.g., SVM and gBoost [5] employ hinge
loss). The hinge loss induced SVM algorithms enforce maxi-
mum margins between the support vectors and the hyper-
planes, in order to achieve good classification performance.

A recent work on SVM [22] theoretically suggests that the
standard hinge loss can be extended to be cost-sensitive, by
setting the loss function L(f(G;), y;) as follows:

|C1 = Cy - f(G)] Coyi=1

1+QCa-1)-fG),: pi=—1

L(f(Gi),yi) = {

It is proved in [22] that the new hinge loss function
Eq. (5) implements the Bayes decision rule. Additionally,
Eq. (5) also enjoys the merit of maximum margin principal
for classification. The standard hinge loss and its cost-sen-
sitive hinge loss are illustrated in Fig. 3. They have differ-
ent explanations with respect to the loss and the margins
(distance from support vectors to the hyperplane). Specifi-
cally, for standard hinge loss (Fig. 3A), the positive and
negative classes both have equal margins (unit margins);
whereas for cost-sensitive hinge loss (Fig. 3B), the negative
class has a much smaller margin when the positive class
still have a unit margin. As shown in Fig. 3C, the margins
for positive and negative classes are uneven when cost-sen-
sitive hinge loss function Eq. (5) is utilized in a SVM
formulation.

Note that the loss function employed in igBoost [11] is
heuristically adapted from standard hinge loss, which does
not necessarily follow the Bayes decision rule. In other
words, it is a sub-optimal loss function for cost-sensitive
learning. In the following section, we will use the cost-sensi-
tive hinge loss function in Eq. (5), and re-formulate it into a
linear program boosting framework.

4.2 Cost-Sensitive Formulation for Graphs
Motivated by the optimal loss function in Eq. (5), we formal-
ize our learning task as the following regularized risk mini-
mization problem:

C
min |“’”+z{ > L)1)+ L(f(wj),m}
{ilyi=1} {ly=-1}
s.t. w > 0.

(6)

In Eq. (6), we enforce the weight for each subgraph to be
positive, i.e.,, w > 0. We also impose 1-norm regularization
on w (i.e., |w||) to favor sparse solutions with many varia-
bles being exactly 0. This strategy is similar to the problem
of LASSO for variable shrinking [40]. By using i and j as the
index of positive and negative training graphs, respectively,
and denoting C' a parameter to trade-off the regularization
term and loss term, the objective function in Eq. (6) can be
reformulated as follows:



2938

mlgn ||w||—|—— Gy Z &+vy Z §j

{ily;=1} {1|Uj771}
sit. flz)>21-§&yi=1
1
f(z)) < —;+€j7yj =-1 n

m

= wy - Ty, (Gy)
k=1
w>0,6=0,y=2C_1 — 1.

In Eq. (7), & and &; are slack variables concerning the loss of
misclassifying a positive and a negative graph, respectively.
In this case, the cost-sensitivity is controlled by € and y,
which impose a smaller margin on negative examples than
positive examples (In example shown in Figs. 3B and 3C,
we have () =4 and y = 2C_; — 1 = 3, the margin for nega-
tive example is }—1, =1). As suggested in [39], we can set y as a

parameter subject to 1 <y < () instead of a fixed value
(2C_; — 1) to achieve better classification.

Solving objective function in Eq. (7) requires a complete
set of subgraph features (i.e,, represent G; as z; =
{hg,(Gi), ..., hy,(Gi)}), which are unavailable unless we
enumerate the whole subgraph space in advance. In prac-
tice, this is likely impossible because the whole subgraph
set is very large or even infinite. In the following section,
we will transfer this formulation to its Lagrange dual
problem and use a boosting algorithm to solve it in an
iterative way.

4.3 Boosting for Cost-Sensitive Learning on Graphs
The Lagrange dual of a problem usually provides additional
insights to the original (primal) problem. The dual problem
of Eq.(7) is’

s.t. Zu, i ( ZMJ a(Gj) < 1L Vg. € F ®)
i—1
0<p <—Li=1,...0
C
OSMJSVTa]:LJf

where [, and [_ indicate the number of graphs in positive
and negative sets (I = [, +1_ ), respectively. While solving
the primal problem in Eq. (7) returns a vector w indicating
the weights of each subgraphs, the dual problem in Eq €))
and Eq. (8) will generate the same ob]ectlve Values.

Insights of dual problem. (1) The solution {y;},_, ; can be
interpreted as the weight values of graphs in order to

achieve minimum loss. (2) Each constraint 30| u;hy, (G;) —
ijl Wihg, (G;) <1 in Eq. (8) indicates a subgraph pattern

1. The derivation from the primal problem Eq. (7) to dual problem
Eq. (8) is shown in Appendix A.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2014.2391115.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

g over the whole training graphs. It provides a natural met-
ric to assess the cost-sensitive discriminative power of a
subgraph.

Definition 3 (Cost-sensitive Discriminative Score). For a
subgraph decision stump hy, (G;), its cost-sensitive discrimi-
native score over all training graphs is:

Zm o ZMJ o )

gk7nk

The first constraint of Eq. (8) requires discriminative
scores for all subgraphs < 1, which latter will serve as an
termination condition of our iterative algorithm.

Linear program boosting framework. Because we do not
have a predefined feature set 7 in advance, we cannot solve
Eq. (7) or Eq. (8). Therefore, we propose to use column gener-
ation (CG) techniques [41] to solve the objective function
(Eq. (7). The idea of CG is to begin with an empty feature
set S, and iteratively selects and adds one feature/column
to S which violates the constraint in the dual problem
(Eq. (8)) mostly. After S is updated, CG re-solves the primal
problem Eq. (7). This procedure continues until no more
subgraph violates the constraint in (Eq. (8)).

Algorithm 1. for

Classification

CogBoost  Algorithm Graph

Require:
T, = {(G1,%),- .., (Gi,y)} : Training Graphs;
Tnae: Maximum number of iteration;
Ensure:
f(@i) = X (gmp)es wg_l)hgk(Gi): Classifier;
1. S« @;
2: t+—0;
3: while true do
4:  Obtain the most discriminative decision stump (¢*,7*);
//Algorithm 2;
if@(g*,n*) <1+ Aort="T,,,then
break;
S—=SU (", 7);
Solve Eq. (7) based on S to get w, and Lagrange multi-
pliers of Eq. (8) u®);
9: t—t+1;
10: return f(z;)

t—1
= Z(gk.ﬂk)es wgv )hgk-,(Gi);

Our cost-sensitive graph boosting framework is illus-
trated in Algorithm 1. CogBoost iteratively selects the most
discriminative subgraph (¢*,7*) at each round (step 4). If
the current optimal pattern no longer violates the constraint
or it has reached the maximum number of iterations T},,.,
the iteration process stops (steps 5-6). Because in the last few
iterations, the optimal value only changes subtlety, we add a
small value A to relax the stopping condition (typically, we
use A = 0.01 in our experiments). On step 8, we solve the lin-
ear programming problem based on the selected subgraphs
to recalculate two sets of weight values: (1) w®, the weights
for subgraph decision stumps in S; and (2) u.(t), the weights
of training graph for optimal subgraph mining in the next
round, which can be obtained from the Lagrange multipliers
of the primal problem. Once the algorithm converges or the



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

number of maximum iteration is reached, CogBoost returns
the final classifier model f(z;) on step 10.

4.4 Cost-Sensitive Subgraph Exploration

To learn the classification model, we need to find the most
discriminative subgraph which considers each training
graph’s weight in each step (step 4 in Algorithm 1). The
subgraph exploration is completely model driven, i.e., we
select a subgraph which violates the constraint in Eq. (8)
mostly. Based on the definition of discriminative score in
Eq. (9), we need to perform a weighted subgraph mining
over training graphs.

In CogBoost, we employ a Depth-First-Search (DFS)
based algorithm gSpan [28] to enumerate subgraphs. The
key idea of gSpan is that each subgraph has a unique DFS
Code, defined by its lexicographic order of the discovery
time during the search process. Two subgraphs are isomor-
phism iff they have the same minimum DFS Code. By
employing a depth first search strategy on the DFS Code
tree (where each node is a subgraph), gSpan can enumer-
ate all frequent subgraphs efficiently. To speed up the enu-
meration, we further employ a branch-and-bound scheme
to prune the search space of DFS Code tree by utilizing an
upper bound of discriminative score [5] for each subgraph
pattern.

Algorithm 2. Cost-sensitive Subgraph Exploration

Require:
T ={(G1,11), ..., (G,y1)} : Labeled Graphs;
u={ny,..., 1} : Weights for labeled graph examples;
man_sup: mininum support for subgraph mining;
Ensure:
(g*,7*): The most discriminative subgraph;
t=0, (g%, 7*) — 0
while Recursively visit the DFS Code Tree in gSpan do
gp < current visited subgraph in DFS Code Tree;
if g, has been examined or sup(g,) < min_sup then
continue;
Compute score O(g,, 7,) for subgraph g, according Eq. (9);
if ©(gp,m,) > 7 then
(¢°,7%) — (9, 7p); T — O(gp, mp);
if The upperbound of score ©(g,) > 7 then
Depth-first search the subtree rooted from node g,;
return (g* , 7 );

DY RNDIT RPN

b

Our subgraph mining algorithm is listed in Algorithm 2.
The minimum value 7 and optimal subgraph (¢*,7*) are
initialized on step 1. We prune out duplicated subgraph fea-
tures or subgraph with low support (sup(-) returns the sup-
port of a subgraph) on steps 4-5, and compute the
discriminative score ©(g,, ,) for g, on step 6. If O(g,, 7,) is
larger than 7, we update the optimal subgraph on step 8.
We use a branch-and-bound pruning rule in [5] to prune
the search space on steps 9-10. Finally, the optimal subgraph
pattern (g*, 7*) is returned on step 11.

5 FAST TRAINING FOR LARGE SCALE GRAPHS

For CogBoost algorithm, it needs to iteratively mine an opti-
mal subgraph (step 4 of Algorithm 1) and solve a linear
problem (step 8 of Algorithm 1). To enable fast training for

2939

large scale graph data sets, we can apply a proper support
and some heuristic techniques to step 4, such as reusing the
search space during the enumeration of subgraphs rather
than re-mining subgraph from scratch, just as [5] does. For
step 8, we derive a cutting plane algorithm to speed up the
training process.

5.1 From I-Slacks to 1-Slack Formulation

Eq. (7) on step 8 of Algorithm 1 has [ = [, +{_ slack varia-
bles & and ¢j, inspired by the techniques used in the SVM
formulation [42], we propose to solve it efficiently by reduc-
ing the number of slack variables as follows,

[[wl| + C¢

1
7wT (& Z CGTi — Y Z CiT;
yi=1 yj=—1

min
w,§

s.t. Vee{0,1},

(10

z}{azwzq}—s,
yi=1

yj=1

w >0, >0.

The above formulation only has one slack variable ¢,
which can be proved to be equal to Eq. (7)?, with ¢ =
{C 2 i1y & + ¥ 2ogjy=—1y &3/ Note  that  although
Eq. (10) has 2! constraints in total, such a formulation can be
solved by cutting plane algorithm in linear time by itera-
tively selecting a small number of most violated constraints
(Cutting Planes). This leads to an efficient solution to the
optimization, so our algorithm can effectively scale to large
data sets.

The dual of I-slack formulation in Eq. (8) provides solu-
tion p which can interpret the graph weights for subgraph
mining in the next iteration. To establish the same relation-
ship between the new objective function Eq. (10) and the
graph weights u, we also refer to its dual problem, which is
given as follows™:

mAax %Z)\CZQ—F%Z)\CZQ
C . /.
sit. lec:)\cgjcizf—%zc:Aczj:cj:E;Sl,Vk (11)

0<> A <C

Comparing the dual problems of Eq. (8) and Eq. (11), they
are identical if:

¢ y
ily=1 = TIZ/\CCH Ijy=1 = TZACCJ" (12)
¢ c

5.2 Cutting-Plane Algorithm for Fast Training
The basic idea of cutting-plane algorithm is similar to the
column generation algorithm, or it can be regarded as a row

2. Appendix A.2, available in the online supplemental material,
proves the equality of Eq. (7) and Eq. (10).

3. The derivation from Eq. (10) to Eq. (11) is given in Appendix A.3,
available in the online supplemental material.



2940

generation algorithm (each constrain in Eq. (11) is a row).
Instead of considering all constrains (rows) as a whole, our
cutting-plane algorithm considers only the most violated
constraint (row) each time. The selected most violated con-
straints form a working set W, and whole process follows
an iterative procedure to solve the problem. By doing this,
the linear program can be solve efficiently.

Our detailed cutting plane algorithm is shown in
Algorithm 3. Initially, the working set JV is an empty set on
step 1. In each iteration, we solve the optimization problem
based on current working set W on step 3 (w =0 and { =0
for the first iteration). Steps 4-6 find the most violated con-
straint, which is determined by the cost-sensitive loss func-
tion in Eq. (5). Step 9 adds the current most violated
constraint to the working set. The iteration continues until it
reaches the convergence (steps 7-8). Also, we add a small
constant e (In experiments, we set e = 0.01 as default value)
to enable early termination of iterations.

Algorithm 3. Cutting Plane Algorithm for Linear
Problem Eq. (7)

Require:
{z1, ...,z }: Training graphs with subgraph representation.
C, Cy, C_y: Parameters for classifier learning.
e: Cutting-plane termination threshold.
Ensure:
w: Classifier weights;
1: Initialize W — (;
2: while true do
3:  Obtain primal and dual solutions w, {, A by solving

p: Graph weights;

min |w| + C¢
w,

1
T
s.t. Ve e W, w 7{01 Z CiTi — Y Z Cjiﬂzz} >
yi=+1 yj=-1
1
l<clzci+zcj>+f, w=0,§>0.

yj=1 yi=—1

4: fori=1---ldo
5 applying the following rule the find the most con-
straint variables on positive graphs (y; = 1)

ey flr) <1
“70: else
6: applying the following rule to negative graphs
(y; = -1
1 yey flm) <1
GT0: else

7 if ((C1Y, et D=6 — w1 (C1 Y, cimi —
szj:q cjz;) < £+ ethen
8: break;
99 W—WUg
10: update p; and j1; according to Eq. (12);
11: return w and u;

Our cutting plane algorithm can always return an e-toler-
ance accurate solution (approximate the solution of Eq. (7)
very well). It is efficient because each time we solve a linear

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

program in a small working set, so the cutting plan algo-
rithm is independent of the number of sample size. This
essentially ensures that our solutions can scale to very large
graph data sets.

6 TiME COMPLEXITY ANALYSIS: THEORETICAL
ASPECT AND PRACTICE

The time complexity of CogBoost includes two major com-
ponents: (1) mining a cost-sensitive discriminative sub-
graphs O(P(l)) (step 4 of Algorithm 1), and (2) solving a
linear program problem O(Q(l)) (step 8 of Algorithm 1),
where P and @ are functions for mining subgraph and solv-
ing LP problem of size /. For subgraph mining, CogBoost
employs a gSpan based algorithm (Algorithm 2) for sub-
graph enumeration in the first iteration (O(P(l))), and re-
uses the search space [5] of the first iteration (O(P(1))).
Because re-using search space can significantly reduce the
mining time, we have O(P(l)) < O(P(l)). Suppose the
number of iterations of CogBoost (Algorithm 1) is 7},,,., the
total time complexity of CogBoost is:

DOP() + TneO(Q(D).  (13)

6.1 Time Complexity of Subgraph Mining

Theoretical aspect. Intuitively, because the subgraph space
may be infinitely large, the time complexity for subgraph
mining is NP-hard, and O(P(l)) for subgraph mining is
inevitable for graph classification. Therefore all existing sub-
graph feature selection algorithms for graph classification
[5], [7], [34] rely on some upper-bounds to prune the search
space. In CogBoost, we incorporate the upper-bound in [5]
and the support threshold min_sup to reduce the subgraph
space. It is worth noting that CogBoost can still function
property even if users do not specify the min_sup value for
subgraph mining. If min_sup were not specified, CogBoost
will only rely on the upper-bound in [5] to prune the search
space.

Practice. In practice, we observe that when the data set is
considerably large (e.g., 40,000 chemical compounds or
more), setting a support threshold min_sup = 5% can signif-
icantly speed up the mining progress. However, setting a
threshold may incur missing of discriminative subgraphs
because some infrequent subgraphs are not checked.
Accordingly, we suggest removing the min_sup threshold
for small graph data set while setting a proper support for
large data sets. The proper support value depends on the
domains of applications. For instance, when the average
number of nodes and edges of the graph data set are large,
a large support (5-10 percent) is preferred. On the other
hand, if the average number of nodes and edges are small, a
small support (about 1-3 percent) is a good choice. For real-
world applications, it is useful to first check the statistics of
the graph samples before carrying out the graph
classification tasks.

6.2 Time Complexity of LP Solving

Theoretical aspect. To solve the LP problem, Eq. (7) is solvable
in polynomial time O(Q(l)) = O(I*) with some constant k
[43]. In other words, gBoost [5] and igBoost [11] needs



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

TABLE 2

Graph Data Sets Used in the Experiments
Data sets #Pos #Total #Nodes #Edges Descriptions
NCI-1 1,793 37,349 26 28 Lung Cancer
NCI-33 1467 37,022 26 28 Melanoma
NCI-41 1,350 25,336 27 29 Prostate Cancer
NCI-47 1,735 37,298 26 28 Central Nerve
NCI-81 2,081 37,549 26 28 Colon Cancer
NCI-83 1,959 25,550 27 29 Breast Cancer
NCI-109 1,773 37,518 26 28 Ovarian
NCI-123 2,715 36,903 26 28 Leukemia
NCI-145 1,641 37,041 26 28 Renal Cancer
Twitter 66,458 140,949 4 5 Sentiment

polynomial time for this step. By using cutting plane
algorithm, the time complexity would be O(Q(1)) = O(sl),
where s is the number of non-zeros features in the original
problem (please refer to [42] for detailed analysis). Therefore,
CogBoost can significantly reduce the runtime when the
graph sample size [ is large. In Section 7, our experiments
will soon demonstrate that the improvement of LP problem
solving without using cutting plan algorithm is marginal.
Practice. The cutting plane algorithm uses a working set
W (in Algorithm 3), W overlaps significantly during two
consecutive iterations of Algorithm 1. Therefore, in our
implementations, we re-use top 200 most violated con-
strains in W in the previous iteration, which can signifi-
cantly improve the algorithm efficiency. In practice, the
classifier weights w in two consecutive iterations may be
very close to each other, one can also use the warm-start
technique (using w in previous iteration as initial value for
linear problem solving) to speed up the learning process.

7 EXPERIMENTS

In this section, we evaluate CogBoost in terms of its average
misclassification cost (or average cost) and runtime perfor-
mance. The average cost is calculated by using the total mis-
classification costs divided by the number of test instances.
The lower the average costs, the better the algorithm perfor-
mance is. The runtime performance is evaluated based on
the actual runtime of the algorithm.

7.1 Experimental Settings
Two types of real-life data sets, NCI chemical compounds
and Twitter graphs, are used in our experiments. Table 2
summaries the statistics of the two benchmark data sets.

NCI graph data sets are commonly used as the benchmark
for graph classification. In our experiments, we download
nine NCI data sets from PubChem.* Each NCI data set
belongs to a bioassay task for anticancer activity prediction,
where each chemical compound is represented as a graph,
with atoms representing nodes and bonds as edges. A
chemical compound is positive if it is active against the cor-
responding cancer, or negative otherwise.

Table 2 summarizes the NCI graph data used in our
experiments. We have removed disconnected graphs and
graphs with unexpected atoms (some graphs have atoms

4. http:/ /pubchem.ncbi.nlm.nih.gov

2941

represented as “*’) in the original graphs. Columns 2-3 show
the number of positive graphs and the total number of
graphs in each data set, and columns 4-5 indicate the average
number of nodes and edges in each data set, respectively.

Because of the inherently short and sparse nature, twitter
sentiment analysis (i.e., predicting whether a tweet reflects
a positive or a negative feeling) is a difficult task. To build a
graph data set, we collect tweets from Sentiment140°, a
Twitter Sentiment classification site, and represent each
tweet as a graph by using tweet content, with nodes in each
graph denoting the terms and/or smiley symbols (e.g, :-D
and :-P) and edges indicating the co-occurrence relationship
between two words or symbols in each tweet. To ensure the
quality of the graph, we only use tweets containing 20 or
more words. In our experiments, we use tweets from April
6 to June 16 to generate 140,949 graphs (in a chronological
order). Note that this data set has been used for graph
stream classification in our previous study [37]. In this
paper, we aggregate all graphs as one data set without con-
sidering their temporal order.

Baselines We compare our proposed CogBoost algorithm
with the following baseline algorithms.

e gBoost [5] is a state-of-the-art boosting method,
which has demonstrated good performance for
graph classification.

e igBoost [11] extends gBoost to handle imbalanced
graph data sets. The weight of a minority (positive)
graph is assigned a value g times higher than the
weight of a majority (negative) graph.

e Fre+CSVM first mines a set of frequent subgraphs
(with a minimum support 3 percent) from the entire
graph data set, and selects the top-K most frequent
subgraphs as features. Afterwards, each graph data
set is transformed into vector format by checking the
existence of selected subgraphs in the original graph
data sets. Finally, a cost-sensitive support vector
machine algorithm [15], [18] is applied to the trans-
ferred vectors.

e  ¢Semi+CSVM® employs a gSemi [7] algorithm to
mine top-K discriminative subgraphs from the
entire graph data set, and then transfers the original
graph database into vectors. Similar to Fre+CSVM,
the cost-sensitive SVM algorithm [18] is used to learn
a model from the transferred vectors.

To validate the effectiveness of the cutting plane solver in

our CogBoost algorithm for large scale graphs, we imple-
ment two variants of CogBoost,

e CogBoost-a. This variant discards the cutting plane
module and solves the linear program of Eq. (7)
directly. In other words, it uses all  slack variables.

e  CogBoost-1. The CogBoost-1 utilizes the cutting plane
module to solve the linear program (Eq. (10)) for
large scale graphs, i.e., it has only one (i.e., 1) slack
variable each time.

5. http:/ /help.sentiment140.com/home

6. We encounter an out-of-memory error for gSemi+CSVM algo-
rithm on Twitter graph data set, because gSemi algorithm [7] needs to
do matrix calculation to select subgraphs. Java fails to create such a
large “double” matrix (about 100,000%100,000).



2942

For each graph data set, we randomly split it into two sub-
sets. The training set consists of 70 percent of the graph data
set, and the rest is used as the test set. The results reported in
the paper are based on the average of five times random
train/test split repetitions. Note that for gBoost [5] and
igBoost [11], the previous studies only validate their perfor-
mance using a rather small number of graphs (from several
hundreds to several thousands graphs), whereas in our
experiments, our training data is much larger (e.g., 140,949
graphs for Twitter data set).

Parameter settings. For fair comparisons, the default mis-
classification cost for positive graphs is set as C; = 20 for

NCI graphs, which is actually the approximated imbal-
| Neg|
| Pos|

graphs, a large C; will result in that all graphs are classified
in one class for all algorithms. To avoid this case, we set the
default value C; = 3. For all experiments, the cost of nega-
tive graphs is always set as C_; = 1 for all data sets. As sug-
gested in [39], we selected the best parameter y instead of
fixing it to 2C_; — 1 for CogBoost algorithm. For igBoost,
we set § = ('}, so positive class graphs have a weight value
B times higher than negative graphs. The regularization
parameter in our algorithm is C, and D = 1/v for gBoost
and igBoost. To make them comparable, we vary C' from
{0.1,1, 10,100, 1,000, 10,000}, and v from {0.01,0.2,0.4, 0.6,
0.8,1.0}. These candidate values are set according to the
property of each algorithm. min_sup is set to 5 percent for
NCI graphs and 0.5 percent for Twitter graphs.

Because both igBoost and gBoost require over 10 hours to
complete a classification task, it is impractical to select the
best parameters for each algorithm on the whole training
graphs on each data set. Therefore, we select the parameters
for each algorithm which achieves the minimum misclassifi-
cation cost over a sample of 5,000 training graphs on each
data set. Then we train the classifiers with these selected
parameters on the whole training graphs. For Fre+CSVM
and gSemi+CSVM, the number of most informative sub-
grahps K is always equal to 7,,, employed in another
boosting algorithm, i.e., we ensure that all algorithms use
the same number of features for graph classification.

Unless specified otherwise, other parameters for our
algorithm are set as follows: T},,,, = 50 and € = 0.01.

All our algorithms are implemented using a Java pack-
age MoSS” and Matlab toolbox CVX.®> MoSS provides a
framework for frequent subgraph mining, and CVX serves
as a module for solving linear programs. JavaBuilder pro-
vided by Matlab bridges MoSS and CVX into a united
framework. All our experiments are conducted on a cluster
node of Red Hat OS with 12 processors (X5690 @3.47 GHz)
and 48 GB memory.

anced ratio ({52 of these graph data sets. For Twitter

7.2 Experimental Results

In this section, we evaluate the effectiveness of CogBoost for
cost-sensitive learning and fast cutting-plane training in
terms of average cost and runtime performance. The experi-
mental results for NCI and Twitter graphs under default
parameter settings are illustrated in Fig. 4.

7. http:/ /www.borgelt.net/ moss.html
8. http://cvxr.com/cvx/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

(A) Experimental Cost on NCI and Twitter Datasets
1 2 T T T T T T T T

k7]
o
(@]
1 33 41 47 81 83 10 123 145 Twitter
Dataset IDs
CogBoost-1 E===1 igBoost &= Fre+CSVM wawene
CogBoost-a =izt gBoost zzzzzzn gSemi+CSVM
50000
=% 40000
©
s
g 30000
e
g 20000 |
E
10000
0

1 33 41 47 81 83
Dataset IDs
CogBoost-1 E==<1

igBoost rEEEzzA Fre+CSVM wmwom
gBoost 9Semi+CSVM ]

Fig. 4. Experimental results. (A) Average cost, (B) Time complexity.

Average cost. For average cost, Fig. 4A demonstrates that
gBoost has the worst performance on five out of 10 data sets
(i.e., the largest average cost). This is mainly because gBoost
is a cost-insensitive algorithm, which considers that all
training graphs are equally important in terms of their costs.
As a result, gBoost fails to leverage the costs of graph sam-
ples to discover subgraph features mostly discriminative
for differentiating graphs in the positive class, leading to
deteriorated classification performance.

For igBoost, Fre+CSVM, and gSemi+CSVM, all of them
have a mechanism to assign weight values to different
classes. Fig. 4A shows that igBoost outperforms Fre
+CSVM and gSemi+CSVM, which is mainly attributed to
igBoost’s integration of discriminative subgraph selection
and classifier learning for graph classification. For Fre
+CSVM and gSemi+CSVM, they decompose subgraph
selection and classifier learning into two separated steps,
without integrating them to gain mutual benefits, i.e., the
subgraphs selected by frequency and gSemi score [7] may
not be a good feature set for SVM learning. As a result,
Fre+CSVM and gSemi+CSVM are inferior to igBoost. This
is, in fact, consistent with previous studies [5], which con-
firmed that gBoost outperforms a frequent subgraph
based algorithm (mine frequent subgraphs as features
and then apply SVMs).

The experimental results in Fig. 4A show that CogBoost
outperforms igBoost. This is because the loss function in
igBoost is not a cost-sensitive, but heuristically adapted
from the hinge loss function (i.e., simply assigning different
weights to different classes). Therefore, it does not necessar-
ily implement the Bayes decision rule and cannot guarantee
minimum conditional risk.

In contrast, CogBoost-1 and CogBoost-a adopt an optimal
cost-sensitive loss function which implements the Bayes



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

(A) Average Cost for NCI-1

(B) Average Cost for NCI-33

2943

(C) Average Cost for NCI-41

gBoost X Fre+CSVM --0-- gBoost X Fre+CSVM --@-- gBoost 3 Fre+CSVM --©--
4 igBoost - gSemi+CSVM -~ @-~ 4 igBoost - gSemi+CSVM -~ @ -~ 4 igBoost -#-- gSemi+CSVM --&
CogBoost —e— CogBoost —e— CogBoost —e—
3 ? 3
3 08 3 o8 8
o o o
g os g o
] o o
2 o4 : 2 z
0.2
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Value of C4 Value of C4 Value of C4
(D) Average Cost for NCI-47 (E) Average Cost for NCI-81 (F) Average Cost for NCI-83
1.2 1.2 1.2
gBoost X Fre+CSVM --0-- gBoost Fre+CSVM --@-- gBoost 3 Fre+CSVM
4 igBoost - gSemi+CSVM -~ @-~ 4 igBoost - gSemi+CSVM -~ @ -~ 4 igBoost - gSemi+CSVI
CogBoost —e— CogBoost —e— CogBoost —e—
3 8 08 8
o o o
g g os g
2 2 g
< < 04 <
02¥
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Value of C4 Value of C4 Value of C,
(G) Average Cost for NCI-109 (H) Average Cost for NCI-123 Average Cost for Twitter
1.2 1.2 1.8
gBoost Fre+CSVM --0-- gBoost Fre+CSVM gBoost - CogBoost —e—
1 igBoost --#-- gSemi+CSVM -~ @~ 1 igBoost - gSemi+CSV| igBoost - Fre+CSVM --0--
CogBoost —e— CogBoost —e— 15
k7] Q 3
3 3 3
[&] (&} o 12
o o o
8 g g
g oo
< < <
5 10 15 20 25 5 10 15 20 25 3 4 5
Value of C4 Value of C4 Value of C,

Fig. 5. Average Cost with respect to different C; value.

decision rule to achieve minimum cost. Evidently, both
CogBoost-1 and CogBoost-a outperform gBoost over all
graph data sets with significant performance gain, and out-
performs igBoost for most graph data sets.

Runtime performance. The algorithm runtime in Fig. 4B
shows that gBoost, igBoost, and CogBoost-a all require an
order of magnitude more time over CogBoost-1, Fre
+CSVM, and gSemi+CSVM. For instance, CogBoost-1 only
needs about 1,846 seconds on NCI-1 data set whereas all
other boosting algorithms take about over 50,000 seconds to
complete the task. Overall, CogBoost-1 is 25 times faster
than all other boosting algorithms. This result validates that
reformulating our problem from Eq. (7) to a new problem
(Eq. (10)) and using cutting plane algorithm to solve it can
efficiently speed up the problem solving.

Note that Fre+CSVM and gSemi+CSVM have a little less
runtime than CogBoost-1, this is because they only solve the
SVM formulation (quadratic program) once, while our algo-
rithm iteratively solves a linear program in each iteration.

Comparing the runtime of NCI and Twitter data sets, we
found that although twitter data set is significant larger than
NCI, the time consumption for NCI and Twitter does not dif-
fer much. This is because the average number of nodes and
edges for twitter data set is much smaller than NCI, making
it much efficient for subgraph mining for all algorithms.

Runtime consumption details for boosting algorithms. To bet-
ter understand why CogBoost is more efficient than its

TABLE 3
Average Time Consumption in Each Iteration (Seconds)

gBoost igBoost CogBoost-a CogBoost-1
Subgraph Mining 824  18.24 19.39 16.33
LP Optimization =~ 993.42  954.66 1046.12 21.58

peers, we investigate detailed runtime consumption in each
step for boosting algorithms. These boosting methods all
consist of two key steps in each iteration: i.e., optimal sub-
graph mining and linear problem solving. Accordingly, we
report the algorithm runtime in each iteration in Fig. 6, and
report average time consumption in Table 3.

Table 3 and Fig. 6 show that, on average, subgraph min-
ing can be done in less than 20 seconds for all algorithms.
At the first iteration, the subgraph mining step requires a
significant amount of runtime. This is because gSpan needs
to generate the search tree until the pruning condition is sat-
isfied. Creating a new node is time consuming, because the
list of embeddings is updated, and the minimality of the
DFS code has to be checked (See [5] for more details). In lat-
ter iterations, the time consumption for this process can be
reduced greatly because the searching space is reused. The
node creation is necessary only if it were not created in

(A) Time consumption in each iteration for gBoost (B) Time consumption in each iteration for igBoost

1400
1200 -
1000 [+

Subgraph Mining Step .
LP Optimazation Step

Subgraph Mining Step
LP Optimazation Step —e—

800
600
400 |
200 F—
ol

Time (seconds)
Time (seconds)

5 10 15 20 25 30 35 40 45 50
No. of Iterations

5 10 15 20 25 30 35 40 45 50
No. of Iterations.

(C) Time consumption in each iteration for CogBoost-a
1400

Subgraph Mining Step ~-x
1200 LP Optimazation Step —e— sl
1000 T 4 + i

800 ,...-'*'“ SN U S N |

600

(D) Time consumption in each iteration for CogBoost-1
250

Subgraph Mining Step -
LP Optimazation Step —e—
200 et +

150 f

100

Time (seconds)
Time (seconds)

400
200
0

me
5 10 15 20 25 30 35 40 45 50
No. of Iterations

5 10 15 20 25 30 35 40 45 50
No. of Iterations

Fig. 6. Runtime performance in each iteration. Runtime consumption for
(A) gBoost, (B) igBoost, (C) CogBoost-a, and (D) CogBoost-1.



2944

previous iterations. As a result, we can observe that the
algorithm is more efficient in the latter iterations.

As for the LP optimization steps, gBoost, igBoost, and
CogBoost-a all consume much more time than CogBoost-1.
This is because they all need to solve a linear problem (simi-
lar to Eq. (7) for gBoost and igBoost) with [ slack variables
&ili=1,..; in each iteration (/ is the total number of graph
examples). When [ is large, it will require a very large
amount of time to solve the linear problem. In contrast, Cog-
Boost-1 solves the linear problem (Eq. (10)) with only one
single slack variable £ by using cutting plane algorithms
(Algorithm 3). This new formulation can greatly reduce the
time required for linear problem solving.

The results in Table 3 and Fig. 6 show that CogBoost-1
only needs about 21.58 seconds for one iteration whereas all
other algorithms require about 1,000 seconds to complete
this step. Because LP optimization step is the most computa-
tionally intensive step for boosting algorithms, CogBoost-1
is much faster than all existing boosting algorithms for
graph classification.

Comparison of CogBoost-1 and CogBoost-a. The results in
Fig. 4 show that CogBoost-1 can always achieve similar (or
very close) classification performance as CogBoost-a. This is
because CogBoost-1 can always return an e-tolerance solu-
tion to CogBoost-a in each iteration. This, in fact, empirically
proves the correctness of our CogBoost-1 formulation.
Because CogBoost-1 can achieve accurate solutions to Cog-
Boost-a but with much less runtime consumption than Cog-
Boost-a, in the following experiments, we will report
CogBoost-1 (termed as CogBoost) for comparison with other
algorithms.

Meanwhile, we will mainly focus on the classification
performance for cost-sensitive learning because the time
complexity is relatively stable for each graph data set with
the same number of training graphs.

7.2.1  Performance w.r.t. Different Cost Values

In order to study the algorithm performance w.r.t. different
cost values, we vary the C) values from 5 to 25 for NCI
graphs and 1 to 5 for Twitter graphs and report the algo-
rithm performance in Fig. 5 where the z-axis in each subfig-
ure shows the C) values and the y-axis show the average
costs of different methods.

Fig. 5 shows that when increasing the C; value, the
average costs of all algorithms will increase. This is
because the increasing of C; value results in a higher
misclassification cost of positive graphs. Comparing to
gBoost, igBoost achieves less average cost on most graph
data sets. This is mainly attributed to the uneven weight
assignment scheme for different classes adopted in
igBoost, which allows igBoost to deal with the cost-sensi-
tive problem to some extent.

For all data sets, CogBoost achieves minimum average
cost with respect to different C values. This is attributed
to the optimal hinge loss function employed in CogBoost,
which implements the Bayes decision rules and forces
CogBoost to favor high cost samples in order to minimize
the misclassification costs. This result is actually consistent
with results from a previous study [22], Which addresses
cost-sensitive support vector machine algorithm for vector

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL. 27, NO.11, NOVEMBER 2015

(A) Time and Average Cost with Different & on NCI-1 (B) Time and Average Cost with Different e on NCI-33
2500 07 2500

0.
Time —— Cost .

2

Time —— Cost =

06 - 2000 06 - 4 2000

05 e - - 1500 4 1500
o . .

Average Cost
Time (seconds)
Average Cost
o
Time (seconds)

04 - - 1000 0.4 - - 4 1000

500 500
0.1 0.01 0.001 0.0001 0.00001 0.1 0.01 0.001 0.0001 0.00001

Value of ¢ Value of ¢

Fig. 7. Average cost (left y-axis) and algorithm runtime (right y-axis) with
respect to different e values (z—axis). (A) NCI-1, and (B) NCI-33.

data, while CogBoost is a boosting algorithm for graph
classification.

7.2.2 Performance w.r.t. Different e Values

In CogBoost, the parameter € controls CogBoost’s solutions
in solving the cutting plane algorithm (Algorithm 3). In
order to validate ¢’s impact on the algorithm performance,
we vary e values and report CogBoost’'s performance in
Fig.7.

Fig. 7 shows that for large € values (e.g. ¢ = 0.1 on NCI-1
data set), the corresponding average cost is also large. This
is because a large ¢ value returns a solution far away from
the optimal solution and results in poor performance for
CogBoost. As € continuously decreases (from 0.1 to 0.00001),
the average cost on both NCI-1 and NCI-33 data sets
decrease. This is because with a small ¢ value, CogBoost can
return accurate solution for classification. However, the run-
time consumption for smaller e values will also increase
because more iterations are required in the cutting algo-
rithm. Our empirical results suggest that a moderate value
(such as € = 0.01) has a good tradeoff between time com-
plexity and average cost. So we set € = 0.01 as a default
value in our experiments.

In summary, our experiments suggest that cost-sensitive
graph classification is a much more complicated problem
than traditional cost-sensitive learning, mainly because that
graph classification heavily replies on subgraph feature
exploration. Simply converting a graph data set into a vec-
tor representation, by using frequent subgraph features,
and then applying cost-sensitive learning (like Fre+CSVM
does) is far from optimal. Indeed, subgraph features play
vital role for graph classification. By using a cost-sensitive
subgraph exploration process and a cost-sensitive loss func-
tion, CogBoost demonstrates its superb performance for
cost-sensitive graph classification.

8 CONCLUSION

In this paper, we formulated a cost-sensitive graph classifica-
tion problem for large scale graph data sets. We argued that
many real-world applications involve data with dependency
structures and the cost of misclassifying samples in different
classes is inherently different. This problem motivates us to
consider effective graph classification algorithms with cost-
sensitive capability and suitable for large scale graph data
sets. To solve the problem, we proposed a fast boosting algo-
rithm, CogBoost, which embeds the costs into the subgraph
exploration and learning process. The boosting procedure
utilizes an optimal loss function to minimize the misclassifi-
cation costs by implementing the Bayes decision rule. To
enable fast training on large scale graphs, a cutting plane



PAN ET AL.: COGBOOST: BOOSTING FOR FAST COST-SENSITIVE GRAPH CLASSIFICATION

formulation is derived so that the linear problem can be
solved efficiently in each iteration. Experimental results on
large real-life graph data sets validate our designs.

ACKNOWLEDGMENTS

The authors thank anonymous reviewers whose criticisms
and insightful comments helped to improve this paper. This
work is partially supported by US National Science Founda-
tion under Grant No. IIP-1444949, and by National Scholar-

ship for

Building High Level Universities, China

Scholarship Council (No. 2011630030). X. Zhu is the
corresponding author.

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Kashima, K. Tsuda, and A. Inokuchi, Kernels for Graphs, Cam-
bridge (Massachusetts): MIT Press, 2004, ch. In: Schlkopf B, Tsuda
K, Vert JP, editors. Kernel methods in computational biology.

M. Fang and D. Tao, “Networked bandits with disjoint linear
payoffs,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2014, pp. 1106-1115.

S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classifica-
tion using labeled and unlabeled graphs,” in Proc. IEEE 29th Int.
Conf. Data Eng., 2013, pp. 398-409.

K. Riesen and H. Bunke, “Graph classification by means of lip-
schitz embedding,” IEEE Trans. Syst., Man, Cybern.-B, vol. 39,
no. 6, pp. 1472-1483, Dec. 2009.

H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda,
“gboost: A mathematical programming approach to graph classi-
fication and regression,” Mach. Learn., vol. 75, pp. 69-89, 2009.

Y. Zhy, J. Yu, H. Cheng, and L. Qin, “Graph classification: a diver-
sified discriminative feature selection approach,” in Proc. 21st
ACM Int. Conf. Inform. Knowl. Management, 2012, pp. 205-214.

X. Kong and P. Yu, “Semi-supervised feature selection for graph
classification,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2010, pp. 793-802.

J. Tang and H. Liu, “An unsupervised feature selection frame-
work for social media data,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 12, pp. 2914-2927, Dec. 2014.

H. Fei and ]J. Huan, “Boosting with structure information in the
functional space: An application to graph classification,” in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,
pp. 643-652.

J. Wu, X. Zhu, C. Zhang, and P. Yu, “Bag constrained structure
pattern mining for multi-graph classification,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 10, pp. 2382-2396, Oct. 2014.

S. Pan and X. Zhu, “Graph classification with imbalanced class
distributions and noise,” in Proc. Int. Joint Conf. Artif. Intell., 2013,
pp- 1586-1592.

P. Tiwari, J. Kurhanewicz, and A. Madabhushi, “Multi-kernel
graph embedding for detection, gleason grading of prostate can-
cer via mri/mrs,” Med. Image Anal., vol. 17, no. 2, pp. 219-235,
2013.

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis,
“Frequent substructure-based approaches for classifying chemical
compounds,” IEEE Trans. Knowl. Data Eng., vol. 17, no. §,
pp- 1036-1050, Aug. 2005.

P. Domingos, “MetaCost: A general method for making classifiers
cost-sensitive,” in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 1999, pp. 155-164.

K. Veropoulos, C. Campbell, and N. Cristianini, “Controlling the
sensitivity of support vector machines,” in Proc. Int. Joint Conf.
Artif. Intell., 1999, pp. 55-60.

C. Elkan, “The foundations of cost-sensitive learning,” in Proc. Int.
Joint Conf. Artif. Intell., vol. 17, no. 1, 2001, pp. 973-978.

S. Zhang, Z. Qin, C. X. Ling, and S. Sheng, “Missing is useful”:
Missing values in cost-sensitive decision trees,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 12, pp. 1689-1693, Dec. 2005.

F. R. Bach, D. Heckerman, and E. Horvitz, “Considering cost
asymmetry in learning classifiers,” . Mach. Learn. Res., vol. 7,
pp. 1713-1741, 2006.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

2945

B. Zadrozny, J. Langford, and N. Abe, “Cost-sensitive learning by
cost-proportionate example weighting,” in Proc. 3rd IEEE Int.
Conf. Data Mining, 2003, p. 435.

H. Masnadi-Shirazi and N. Vasconcelos, “Cost-sensitive
boosting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2,
pp- 294-309, Feb. 2011.

A. C. Lozano and N. Abe, “Multi-class cost-sensitive boosting
with p-norm loss functions,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2008, pp. 506-514.

H. Masnadi-Shirazi and N. Vasconcelos, “Risk minimization,
probability elicitation, and cost-sensitive SVMs,” in Proc. Int. Conf.
Mach. Learn., 2010, pp. 759-766.

N. Abe, B. Zadrozny, and ]. Langford, “An iterative method for
multi-class cost-sensitive learning,” in Proc. 10th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2004, pp. 3-11.

X. Zhu and X. Wu, “Class noise handling for effective cost-
sensitive learning by cost-guided iterative classification filtering,”
IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1435-1440, Oct.
2006.

X. Zhu and X. Wu, “Cost-constrained data acquisition for
intelligent data preparation,” IEEE Trans. Knowl. Data Eng.,
vol. 17, no. 11, pp. 15421556, Nov. 2005.

S. Lomax and S. Vadera, “A survey of cost-sensitive decision tree
induction algorithms,” ACM Comput. Surv., vol. 45, no. 2,
pp- 16:1-16:35, 2013.

G. Karakoulas and J. Shawe-Taylor, “Optimizing classifiers for
imbalanced training sets,” in Proc. Adv. Neural Inform. Process.
Syst. 11,1999, p. 253-259.

X. Yan and J. Han, “gspan: Graph-based substructure pattern
mining,” in Proc. IEEE Int. Conf. Data Mining, 2002, p. 721.

X. Wu, X. Zhu, G. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97-107, Jan. 2014.
S. Ranu and A. Singh, “Graphsig: A scalable approach to mining
significant subgraphs in large graph databases,” in Proc. IEEE Int.
Conf. Data Eng., 2009, pp. 844-855.

J. Wu, Z. Hong, S. Pan, X. Zhu, C. Zhang, and Z. Cai, “Multi-graph
learning with positive and unlabeled bags,” in Proc. SIAM Int.
Conf. Data Min., 2014, pp. 1-12.

H. Fei and ]J. Huan, “Structure feature selection for graph classi-
fication,” in Proc. 17th ACM Conf. Inform. Knowl. Manage., 2008,
pp- 991-1000.

N. Jin, C. Young, and W. Wang, “Graph classification based on
pattern co-occurrence,” in Proc. 18th ACM Conf. Inform. Knowl.
Manage., 2009, pp. 573-582.

M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smola,
L. Song, P. Yu, X. Yan, and K. Borgwardt, “Near-optimal super-
vised feature selection among frequent subgraphs,” in Proc. SIAM
Int. Conf. Data Mining, 2009, pp. 1076-1087.

T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boost-
ing to graph classification,” in Proc. 18th Annu. Conf. Neural Inform.
Process. Syst., 2004, pp. 729-736.

J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph classi-
fication,” IEEE Trans. Cybernetics, vol. 45, no. 3, pp. 430443,
Mar. 2015.

S. Pan, J. Wu, X. Zhu, and C. Zhang, “Graph ensemble boosting
for imbalanced noisy graph stream classification,” IEEE Trans.
Cybernetics, vol. 45, no. 5, pp. 940-954, May 2015.

W. Fan, S. ]. Stolfo, J. Zhang, and P. K. Chan, “Adacost: Misclassi-
fication cost-sensitive boosting,” in Proc. 16th Int. Conf. Mach.
Learn., 1999, pp. 97-105.

H. Masnadi-Shirazi, N. Vasconcelos, and A. Iranmehr, “Cost-
sensitive support vector machines,” arXiv:1212.0975, 2012.

R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Roy. Statist. Soc.. Series B (Methodological), vol. 58, pp. 267-288,
1996.

S. Nash and A. Sofer, Linear and Nonlinear Programming. New
york, NY, USA: McGraw-Hill, 1996.

T. Joachims, “Training linear SVMs in linear time,” in Proc. 12th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 217-226.

N. Megiddo, “On the complexity of linear programming,” in Proc.
5th World Congress Adv. Econ. Theory, 1987, pp. 225-268.



2946

Shirui Pan received the master’s degree in com-
puter science from Northwest A&F University,
Yangling, Shaanxi, China, in 2011. Since Sep-
tember 2011, he has been working towards the
PhD degree in the Centre for Quantum Computa-
tion and Intelligent Systems (QCIS), Faculty of
Engineering and Information Technology, Univer-
sity of Technology, Sydney (UTS). His research
focuses on data mining and machine learning.

Jia Wu received the bachelor's degree in com-
puter science from the China University of Geo-
sciences (CUG), Wuhan, China, in 2009. Since
September 2009, he has been working towards
the PhD degree under the Master-Doctor com-
bined program in computer science from CUG.
Besides, he is also working towards the PhD
degree in QCIS Centre, Faculty of Engineering
and Information Technology, University of Tech-
nology, Sydney (UTS), Australia. His research
focuses on data mining and machine learning.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO. 11,

NOVEMBER 2015

Xingquan Zhu received the PhD degree in com-
puter science from Fudan University, Shanghai,
China. He is an associate professor in the
Department of Computer & Electrical Engineering
and Computer Science, Florida Atlantic Univer-
sity. Prior to that, he was with the Centre for
Quantum Computation & Intelligent Systems,
University of Technology, Sydney, Australia. His
research interests mainly include data analytics,
data mining, machine learning, and bioinformat-
ics. Since 2000, he has published more than 180
refereed journal and conference papers in these areas, including two
Best Paper Awards and one Best Student Paper Award. Dr. Zhu was the
recipient of an ARC Future Fellowship in 2010. He is an associate editor
of the IEEE Transactions on Knowledge and Data Engineering (2014-
date), and is serving on the editorial board of Journal of Big Data (2014-
date), the International Journal of Social Network Analysis and Mining
(2010-date) and Network Modeling Analysis in Health Informatics and
Bioinformatics Journal (2014-date). He was the program committee co-
chair for the 14th IEEE International Conference on Bioinformatics and
BioEngineering (BIBE-2014), IEEE International Conference on Granu-
lar Computing (GRC-2013), 23rd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI-2011), and the 9th International
Conference on Machine Learning and Applications (ICMLA-2010). He
also served as a conference co-chair for ICMLA-2012. He also serves
(or served) as program vice chairs, finance chairs, publicity co-chairs,
program committee members for many international conferences,
including ACM-KDD, IEEE-ICDM, and ACM-CIKM. He is a senior mem-
ber of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


