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Abstract—Graph classification is an important tool for analyzing data with structure dependency, where subgraphs are often used as

features for learning. In reality, the dimension of the subgraphs crucially depends on the threshold setting of the frequency support

parameter, and the number may become extremely large. As a result, subgraphs may be incrementally discovered to form a feature

stream and require the underlying graph classifier to effectively discover representative subgraph features from the subgraph feature

stream. In this paper, we propose a primal-dual incremental subgraph feature selection algorithm (ISF) based on a max-margin graph

classifier. The ISF algorithm constructs a sequence of solutions that are both primal and dual feasible. Each primal-dual pair shrinks the

dual gap and renders a better solution for the optimal subgraph feature set. To avoid bias of ISF algorithm on short-pattern subgraph

features, we present a new incremental subgraph join feature selection algorithm (ISJF) by forcing graph classifiers to join short-pattern

subgraphs and generate long-pattern subgraph features. We evaluate the performance of the proposed models on both synthetic

networks and real-world social network data sets. Experimental results demonstrate the effectiveness of the proposed methods.

Index Terms—Graph classification, incremental subgraphs, feature selection

Ç

1 INTRODUCTION

GRAPH classification is an important tool for social net-
work and biological data analysis, where the objective

is to learn and classify objective represented in graph struc-
ture. For example, chemical compounds can be represented
in graph formats, predicting chemical compound activities
in bioassay tests is a known graph classification problem.
The main challenge in classifying graph data, compared to
classifying data with feature-vector representation, is that
graphs do not have readily available features, so existing
classification models are inapplicable. Accordingly, many
research exists to mine frequent subgraphs [3], [4] as fea-
tures and convert a graph into a feature vector by examin-
ing the occurrence of selected subgraphs.

In reality, the number of subgraphs crucially depends on
the setting of the frequent pattern mining threshold. With a
very small threshold value, the dimension of the subgraphs
may be extremely large. For example, in cascade outbreak pre-
diction in social networks [36], each cascade data record can
be regarded as an acyclic graph that describes the path of

information propagation in a social network. In Fig. 1, two
directed networks (with green and yellow nodes, respec-
tively) show two cascades. Although both cascades start
from a seed node, the cascade with green nodes propagates
to a large number of nodes (i.e., graph labeled as outbreak),
whereas the cascade with yellow nodes remains steady or
may die off (i.e., graph labeled as non-outbreak). Graph
classification can then be used for cascade outbreak predic-
tion to identify outbreak cascades from non-outbreak cas-
cades. The general idea is to extract subgraphs as features
by using frequent subgraph pattern mining.

When mining subgraph as features, the number of fre-
quent subgraphs is sensitive to the setting of the support
parameter. As shown in Fig. 2, the dimension of the sub-
graph features increases exponentially as the frequent pat-
tern threshold parameter Supp decreases. For example,
when the parameter is 50, the number of discovered sub-
graph features is more than 8 � 105!

The reality of high dimensional or potentially infinite
subgraph features motivates the need to select a small
number of representative subgraph features. In machine
learning, high dimensional features are a common chal-
lenge and a large number of feature selection models [9],
[28], [29] have been proposed to reduce data dimensional-
ity. However, these models are incapable of handling infi-
nite subgraph features.

Subgraph feature selection [2], [5] has been proposed in
the literature to combine substructure mining and feature
learning in graph data. For example, frequent substructure
mining methods, such as AGM [3] and gSpan [4], are used
to enumerate frequently appearing subgraph patterns, with
each subgraph corresponding to a feature, so existing
machine learning methods (e.g., SVM) can be applied to the
converted feature space. These works, however, can only
handle low dimension subgraph features extracted from
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small graphs. For instance, a recent work [5] used only 4,337
subgraph features in the experiment. As a result, existing
methods are inapplicable to big graph data such as social
network cascade data where the number of connected sub-
graphs can be extremely large.

Online incremental feature selection [6] was recently pro-
posed to select features from high dimensional feature
streams. For example, a recent work [9] involved tolerance
of information for selecting incremental features and pre-
sented a method for selecting strongly relevant and non-
redundant features on the fly. However, this method is also
inapplicable to incremental subgraph features where the
challenges of subgraph pattern mining and incremental fea-
ture selection are tangled. In addition, the method in [9]
assumes that the prior knowledge on the structure of the
feature space is known a priori, so heuristic rules can be
applied. This strong assumption does not hold in general
graph and social network settings, neither.

1.1 Challenges

Motivated by the above observations, our research mainly
aim to solve the following challenges:

How to build a classifier from graphswith an high dimen-
sional number of subgraph features, and how to design an
efficient algorithm to rapidly solve the graph classification.
The high dimensional number of features makes existing
classifiers either inapplicable or ineffective. Numerous fea-
ture selection models have been proposed to select sparse
features by filter, wrapper, or embedding approaches. How-
ever, these feature selection methods are inefficient in high
dimensional subgraph feature space. For example, when
using l1 regularization, 1 TB memory is needed to store the

feature coefficients of 1012 features.
How to join short-pattern subgraphs and design a feature

selection model that prefers to select long-pattern subgraph
features. We observe that the feature space is dominated by
short-pattern subgraphs due to the downward closure property
of the frequent subgraph mining algorithms [37], [44], i.e.,
short-pattern subgraph features are always more frequent

than long-pattern interesting subgraphs. To discover long-
pattern subgraphs buried under a huge number of short-
pattern subgraphs, we need to systematically design a new
feature selection method. Generally, a small value of the fre-
quency support threshold is employed such that all candi-
date subgraphs can be preserved in the feature space.
However, this method will unavoidably generate an expo-
nential number of short-pattern subgraphs which flood
interesting long-pattern subgraph features. While there are
many possible ways to join short-pattern subgraphs, the
join rules between subgraph fragments need to be estab-
lished for efficient computation. New constraints are
required to force traditional max-margin based graph classi-
fiers to select long-pattern subgraph features.

How to evaluate the performance of the proposedmethod.
Both real-world and synthetic data sets are required to com-
pare the proposedmethodwith existingmethods.

1.2 Our Work and Contributions

In this paper, we aim to address discriminative subgraph
features selection from high dimensional subgraph feature
space for max-margin graph classification (Section 4.1). Our
research extends the max-margin graph classifier to handle
high dimensional incremental subgraph features using a
primal-dual subgraph feature selection which continuously
selects subgraph features that are both primal and dual fea-
sible (Section 4.2). Because the primal-dual subgraph fea-
ture selection algorithm converges quickly and tends to
select short-pattern subgraphs, we further propose a long-
pattern driven subgraph feature selection model for select-
ing interesting long-pattern subgraphs (Section 4.3). In
experiments, we test the methods on both synthetic and
real-world data sets. The results show that the proposed
algorithms can both solve the incremental subgraph feature
problem and select discriminative long-pattern subgraph
features.

The major contribution of the paper is threefold:

� We study the problem of graph classification with
incremental subgraph features. We first propose a
general max-margin graph classifier, based on which
we propose a primal-dual incremental subgraph feature
selection algorithm. The incremental algorithm

Fig. 1. An example of an information diffusion network. The information
propagation cascade can be regarded as a graph. The cascade on the
left (the green nodes with bold edges) quickly grows and propagates to
an increasing number of nodes (i.e., outbreak), whereas the cascade on
the right (the yellow nodes with bold edges) remains steady and is there-
fore a non-outbreak cascade. Cascade outbreak prediction aims to build
a graph classification model to accurately distinguish outbreak cascades
from non-outbreak cascades.

Fig. 2. The number of frequent subgraphs w.r.t. the support threshold
value in frequent pattern mining. The cascade data, containing about
2.76 million cascades and 3.3 million nodes, are obtained from the
SNAP data set (http://snap.stanford.edu/infopath/data.html/). When the
parameter Supp is 50, the number of discovered subgraph features is
more than 8 � 105!
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constructs a sequence of solutions that are both pri-
mal and dual feasible. Each primal-dual pair shrinks
the primal-dual gap and renders a better solution
towards the optimal.

� We propose a new Incremental Subgraph Join Fea-
ture selection algorithm (ISJF for short). ISJF adds a
new constraint on the max-margin graph classifier
and forces the classifier to select long-pattern sub-
graphs by joining short-pattern subgraph features.

� The performance of the algorithms is validated on
four synthetic networks and two real-world net-
works (DBLP graph data and social network cascade
data set with 2.76 million information cascades). The
results show that the proposed incremental algo-
rithm enjoys the merit of early prediction which is
more than 400 seconds faster than existing models
for cascading outbreak prediction.

The rest of the paper is organized as follows. Section 2
surveys related work. Section 3 introduces the preliminaries
including important definitions. Section 4 discusses the new
classification model and extends the classification model
into long-pattern feature mining. Section 5 conducts experi-
ments and Section 6 concludes the paper.

2 RELATED WORK

The increasing availability of networked data is creating
great potential for knowledge discovery from graph data.
Generally, real-world network graphs tend to be big and
complex. One difficulty of big graph data is the transfer of
graph data into proper formats for learning methods to train
classifiers for graph classification.

Existing graph classification methods mainly fall into two
categories: 1) Distance-based methods, which design a pair-
wise similarity measure between two graphs, such as graph
kernel [10], graph embedding [22], and transformation [23].
The main shortcomings of these type of methods are that it
is computationally expensive to calculate graph distance
and prediction rules are hard to interpret, because graph
features are numerous and implicit. 2) Subgraph feature-
based methods, which identify significant subgraphs as sig-
natures for one particular class. Fei and Huan [24] pro-
posed to extract subgraph structural information for
classification. Thoma et al. [25] formulated subgraph selec-
tion as a combinatorial optimization problem, used heuristic
rules, and combined a frequent subgraph mining algorithm,
gSpan [4], to find subgraph features. Kong and Yu [26]
presented a semi-supervised subgraph feature selection
method which uses unlabeled graphs to boost subgraph fea-
ture selection for classification. Several boosting methods [5],
[27] use individual subgraph features as weak classifiers to
build an ensemble for graph classification. None of the
existing subgraph-based methods consider high dimension-
ality in subgraph features as streams.

To handle high dimensional features, many research
efforts have been made to address the incremental feature
challenge. The work in [28] proposed a grafting algorithm
based on a stage-wise gradient descent approach for incre-
mental feature selection. However, grafting is ineffective in
dealing with incremental features with unknown feature
size because choosing a suitable regularization parameter

inevitably requires information about the global feature set.
The work in [29] studied stream-wise feature selection and
proposed two algorithms based on steam-wise regression,
information-investing and Alpha-investing. However, this
method only considers adding new features and never eval-
uates the redundancy of selected features after new features
are added. The authors in [6] presented a framework based
on feature relevance. Thework [8] used a new, adaptive com-
plexity penalty, the Information Investing Criterion (IIC), to
dynamically adjust the threshold on the entropy reduction
required for adding a new feature. The work in [9] involved
the tolerance of information for selecting incremental fea-
tures. These methods require prior knowledge about the
structure of the feature space in order to heuristically control
the choice of candidate feature selection. In real-world appli-
cations, obtaining such prior knowledge is difficult.

The primal-dual approach provides a powerful tool for
designing approximate online and incremental algorithms.
Typical primal-dual methods include primal-dual online
linear programming [17], primal-dual online set cover [11],
and primal-dual online SVMs [16]. By following the weak
duality theorem [19], online learning algorithms quickly
converge to approximate solutions by continuously updat-
ing both primal and dual feasible solutions which generate
tight competitive bounds with respect to off-line algorithms.

Cascade outbreak prediction has been studied extensively.
Most existing research efforts can be categorized into two
classes: how to detect an outbreak cascade with minimum
detection time or minimum affected population [31], and
how to predict outbreaks in an early stage according to the
cascading behaviors of a given network and dynamic cas-
cades over the network [36]. The former assumers that a
portion of nodes in a given cascade can be accessed and
used to select some of them as sensors for outbreak detec-
tion, whereas the latter aims to predict whether an arbitrary
given cascade may outbreak or not. However, both of them
use the nodes in a network as features for classification and
predication, ignoring the fact that cascades consist of
sequential paths, while monitoring nodes in a network is
costly because a user may post messages intensively.

High Dimensional Data Learning. High dimensionality is
important and challenging because the immense growth of
feature dimensionality in data analytics has exposed the inad-
equacies of many existing methodologies [43]. Directly learn-
ing a classifier from high dimensional subgraphs is infeasible.
So far, many feature selectionmethods have been proposed to
transform high dimensional data into a lower space represen-
tation while preserving the intrinsic data structure. The exist-
ing feature selection methods are often categorized as filter,
wrapper, and embedding approaches [38]. Among the above
sparsity induced methods, l1 regularization has been popu-
larly used in the literature [42]. However, l1 regularization is
inadequate in this work because it is inefficient when the data
dimension is ultra-high. For example, 1 TBmemory is needed

to store the weight vector w when the data dimension is 1012.
Moreover, feature selection bias inevitably exists in the l1
norm, and different levels of sparsity can be achieved by
changing the regularization parameterC.

Data stream mining is one of the important data mining
tasks. Existing data stream mining algorithms [1], [12], [39],
[40], [41] focus on the challenges of high dimensional stream
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records, concept-drift, concept-evolution, and feature-
evolution. However, none of these stream algorithms touch
the problem of incremental subgraph features.

In contrast to incremental feature selection and subgraph
mining methods, we have combined streaming feature
selection and subgraph extraction to tackle high dimen-
sional subgraph features for graph classification.

3 PRELIMINARIES

A graph G ¼ ðV;EÞ consists of a set of nodes V ¼ f1; . . . ; pg
and a set of edges E � V � V . A directed acyclic graph
(DAG) is a graph G whose edges are directed and do not
contain directed cycles. We use lower-case bold-faced letters
to represent vectors and upper-case bold-faced letters to
represent matrices. For example, symbol e represents a unit
vector with all entries equal to 1.

Definition 1 (Subgraph). Consider a directed acyclic graph
G ¼ ðV;EÞ, gi ¼ ðV 0; E0Þ is a subgraph of G, i.e., gi � G, iff
(1) V 0 � V , (2) E0 � E. If gi is a subgraph of G, then G is a
supergraph of gi.

Definition 2 (Subgraphs Join (SgJ). Consider two directed
acyclic subgraphs gi and gj. The vertex sets are V ðgiÞ ¼
fVa; . . . ; Vbg and V ðgjÞ ¼ fVa

0; . . . ; Vb
0g. If Vb ¼ Va

0 or

V 0b ¼ Va, then gi�gj ¼ fVa; . . . ; Vb; Vg
0; . . . ; Vb

0g is defined as

SgJ, where � is a concatenation operation.

Because subgraph mining often outputs many short-pat-
tern subgraphs, Definition 2 joins these subgraphs to gener-
ate long-pattern subgraphs. The difficulty is that the result
may be uncertain due to graph isomorphism [7]. In this
paper, we only consider joining correlated subgraph fea-
tures, as shown in Fig. 4. This is because correlated sub-
graph features have a high probability of generating
interesting long-pattern subgraphs. As shown in Fig. 4, the
join result is determined based on Definition 2.

In binary classification, the task is to learn a classification
boundary from a training graph set fðGk; ykÞg, 1 � k � n,
where each Gk is a training graph with class label
yk 2 f�1;þ1g.
Definition 3 (Subgraph Features). Let S ¼ fg1; . . . ; gmg be

a set of subgraphs in a training graph and jSj ¼ m. Each graph
Gk is encoded as an m-dimensional vector xk with
xukð1 � u � mÞ denoted by

xuk ¼ Iðgu � GkÞ; 8gu 2 S;

where Ið	Þ equals 1, if the condition is satisfied; otherwise, it is 0.
We use a simple example in Fig. 3 to explain the genera-

tion of the subgraph feature space. Consider a graph
A! B 	 	 	 ! E which contains subgraphs B! C and
C ! D! E, the corresponding elements in the subgraph
feature space are set to 1.

Given a set of training graphs, the subgraph feature
space increases exponentially w.r.t. graph size. Therefore, it
is impractical to use all subgraphs as features. We use fre-
quent subgraphs to prune trivial subgraph patterns.

A handful of algorithms have been proposed to mine fre-
quent subgraphs F s from a set of graphs, such as the Depth-
First-Search (DFS) algorithm gSpan [4]. The key idea of
gSpan is that each subgraph has a unique DFS Code, which
is defined by a lexicographic order during the search process.
Two subgraphs are isomorphic iff they have the same mini-
mum DFS Code. By employing a depth first search strategy
on theDFSCode tree (where each node is a subgraph), gSpan
can enumerate all frequent subgraphs efficiently.

4 GRAPH CLASSIFICATION

We present a primal-dual incremental subgraph feature selection
algorithm based on a max-margin graph classifier. First, we
assume that the subgraph feature space is finite, based on
which we present a max-margin graph classifier. Then, we
extend the classifier to handle high dimensional incremental
features using primal-dual subgraph feature selection.

We introduce a feature scaling vector d 2 ½0; 1
m with
jjdjj1 ¼

Pm
i¼1 dj � B to encourage sparsity. This way, at

most B subgraphs are selected. Given a graph Gi, we

impose
ffiffiffi
d
p ¼ ½ ffiffiffiffiffi

d1
p

; . . . ;
ffiffiffiffiffiffi
dm
p 
T on its features [13], [14] to a

re-scaled example x̂i ¼ xi�
ffiffiffi
d
p

, where xi �
ffiffiffi
d
p

represents

the element-wise product between vectors xi and
ffiffiffi
d
p

. Let
D ¼ fd 2 Rm j jjdjj1 � B; dj 2 ½0; 1
; j ¼ 1; . . . ;mg be the
domain of d, the max-margin graph classifier can be formu-
lated as follows:

min
d2D

min
w;�;b

1

2
jjwjj2 þ C

Xn
i¼1

�i

subject to yiðwT ðxi �
ffiffiffi
d
p
Þ þ bÞ � 1� �i

�i � 0; i ¼ 1; . . . ;m;

(1)

where w 2 Rm and b determine the classification boundary,
�i is the empirical error of xi, and C is a trade-off parameter.
The problem is non-convex w.r.t. w and d.

When d is fixed, Eq. (1) degenerates to a standard SVM
model. By introducing the Lagrangian multiplier ai � 0 to

each constraint yiðwT ðxi �
ffiffiffi
d
p Þ þ bÞ � 1� �i, and setting the

derivatives of the Lagrange function to be 0 with respect to
parametersw; � and b, we obtain

w ¼
Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ;

Xn
i¼1

aiyi ¼ 0; 0 � ai � C:

Plugging the above results back into Eq. (1), we obtain
the dual form of the original problem as follows:

min
d2D

max
aa2A

� 1

2

Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ

�����
�����
2

þ eTaa; (2)

Fig. 4. Joining correlated subgraph fragments.

Fig. 3. Subgraph features. The graph (left) is converted into a binary fea-
ture vector (right) by examining the existence of subgraph features. The
feature vector can be processed by traditional classifiers such as SVMs.
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where A ¼ faajPn
i¼1 aiyi ¼ 0;aa � 0g. Based on the minimax

saddle-point theorem [15], we can interchange the order of
mind2D and maxaa2A, and solve the following minimax prob-
lem instead,

min
aa2A

max
d2D

1

2

Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ

�����
�����
2

� eTaa: (3)

Apparently, the primal problem in Eq. (1) can be equiva-
lently formulated as its dual in Eq. (3). Eq. (3) has only two
variables d and aa, and it is linear with respect to d and con-
vex with respect to aa, which can be solved by the block coor-
dinate descent algorithm that alternates between the
optimization of d and aa.

Given a fixed d, the optimization problem in Eq. (3) is
reduced as follows,

(Optimization 1: fix d and solve aa)

min
aa

1

2

Xn
i¼1

aiyix̂i

�����
�����
2

� eTaa

s.t.
Xn
i¼1

aiyi ¼ 0; ai � 0; i ¼ 1; . . . ; n;

(4)

where x̂i is re-scaled by the given d, i.e., x̂i ¼ xi�
ffiffiffi
d
p

. Due to
the sparsity of the scaler d, the above problem can be solved
by using standard quadratic programming with a small set
of features x̂i (A formal solution is given in Appendix B).

When the variable aa is determined, we select the number
of features B as in Eq. (5).

(Optimization 2: fix aa and solve d)

max
d

Xn
j¼1

ajyjðxj �
ffiffiffi
d
p
Þ

�����
�����
2

s.t.
Xm
j¼1

dj � B; 0 � dj � 1; j ¼ 1; . . . ;m:

(5)

To solve Eq. (5), we define a score function to denote the
weight of each feature, i.e.,

cðaaÞ ¼
Xn
i¼1

aiyixi 2 Rm: (6)

Based on the above definition, we have

Xn
j¼1

ajyjðxj �
ffiffiffi
d
p
Þ

�����
�����
2

¼
Xm
j¼1
½cjðaaÞ
2dj:

The optimization problem in Eq. (5) can then be converted to
a linear programming problemwith respect to d as follows:

max
d

Xm
j¼1
½cjðaÞ
2dj

s.t.
Xm
j¼1

dj � B; 0 � dj � 1; j ¼ 1; . . . ;m:

(7)

Eq. (7) can be solved analytically. First, we construct a
feasible solution by finding the top B largest scores ½cjðaÞ
2.
Then, we set the number of B scaler dj to 1 and the

remaining ðm�BÞ dj to 0. Clearly, such a feasible solution
is also the optimal solution. The algorithm is given in
Algorithm 1.

Algorithm 1 is equivalent to the cutting-plane algorithm
for solving the semi-infinite programming problem. In each
iteration, the cutting-plane algorithm removes nonactive
constraints that correspond to redundant features in the pri-
mal problem. The algorithm iteratively finds active con-
straints that heavily violate the KKT condition. In the
following, we prove the convergence of Algorithm 1.

Algorithm 1. The Max-Margin Graph Classifier

Input: GraphG, parameters C, B
Output: Graph classifier f
aa0  1=C 	 1, U  ;, t 0;
repeat

Calculate dt based on aat using Eq. (5)
// Optimization 2;

U  U [ dt;
Calculate aatþ1 based on U using Eq. (4)
// Optimization 1;

t tþ 1 ;
until Convergence;
Output f  SVMðU;CÞ;

Theorem 1. Let faat;dtg be a sequence of solutions generated by
Algorithm 1. If Algorithm 1 stops at iteration ftþ 1g, then
faat;dtg is the global optimal solution of Eq. (3).

Proof. The objective function of Eq. (3) is convex w.r.t. aa and
linear w.r.t. d. Thus, Eq. (3) has a global optimum. The
algorithm, by iteratively solving Eqs. (6) and (7), will con-
verge to the global optimum. tu
The stop criterion is based on the bound of d. Specifi-

cally, Algorithm 1 stops when d becomes stable. In each iter-
ation, the algorithm scans the entire feature space and
chooses B features. In the worst case, the algorithm iterates
m=B times and selects all m features, i.e., the algorithm

takes Oðm2Þ time at worst. The square time complexity is,
unfortunately, unaffordable for ultra-high dimensional
data, which is often the case in our problem setting.

4.1 Incremental Subgraph Features

Eq. (1) provides a basic classifier for solving high-dimen-
sional but finite subgraph feature space. To process high
dimensional subgraph feature streams, we introduce a pri-
mal-dual incremental subgraph feature selection algorithm.

Our method is based on the online linear programming
of the feature selection function given in Eq. (7). We assume
that the constraint matrix is revealed column by column
along with the objective function, i.e., the features are proc-
essed column by column in a one-scan manner.

In incremental feature selection scenarios, a feature set is
split and loaded into memory in a mini-batch manner. At
each time window t ¼ dm�e, the incremental algorithm
learns both primal and dual feasible solutions. The primal
problem is formulated as in Eq. (8) which allows ð1� �Þ
approximation to the offline solution given by Eq. (9) [20].
Eq. (10) is clearly a small linear program problem defined
on the dm�e features.

132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 1, JANUARY 2017



(Primal)

max
d

Xt

j¼1
½cjðaÞ
2dj

s.t.
Xt

j¼1
dj � ð1� �Þ t

m
B

0 � dj � 1; j ¼ 1; . . . ; t

(8)

For Eq. (8), we use p 2 Rm to denote the dual variable.
The dual problem of Eq. (8) is as follows:

(Dual)

min
p

Xm
i¼1

bipið1� �Þ t
m
þ

Xmþt
i¼mþ1

pi

s.t.
Xm
i¼1

pi þ piþj � ½cjðaÞ
2; j ¼ 1; . . . ; t

pi � 0; 1 � i � m:

(9)

The dual problem converts a high dimensional problem
in Eq. (8) into a big constraint problem with respect to dual
vector p. For any given p, we define the function xtðpÞ denot-
ing dual feasibility as follows:

xtðpÞ ¼ 0 if bi � pT

1 if bi > pT :

�
(10)

The incremental algorithm constructs a sequence of solu-
tions that are both primal and dual feasible. Each primal-
dual pair shrinks the dual gap and renders a better solution
towards the optimal.

In the online problem, at time t, the coefficient cjðaÞ is
updated, and the algorithm makes a decision xt. Given the

previous decisions x1; . . . ; xt�1, and cjðaÞ2 till time t, the tth

decision is to select an xt such that
Pt

j¼1 xj � B, 0 � xj � 1.

The goal of the online algorithm is to choose xt such that the

objective function
Pm

t¼1 cjðaÞ2xj is maximized.
To evaluate the performance of an online algorithm, one

approach is based on its performance on the worst-case
input, e.g., completely robust to make input uncertainty
[17]. This approach leads to gloomy bounds for the online
problem: no online algorithm can achieve better than
Oð1=mÞ approximation of the optimal offline solution [18].
In our problem settings, subgraph features arrive in a ran-
dom order, and the total number of features m is known a
priori. We consider the average behavior of the online algo-
rithm over random permutations, and can use m to decide
the length of history used to learn the dual bounds in the
algorithm. In this case, the total number ofm is a known pri-
ori [20], we can relate the approximate knowledge of m
within at most 1
 u multiplicative error without affecting
the final results.

The primal-dual incremental subgraph feature selection
algorithm is given in Algorithm 2. The primal solution xtðpÞ
constructed using sample dual solutions in Eq. (21) is a fea-
sible solution to the linear program Eq. (8) with high proba-
bility. In fact, the iterative primal solutions constructed
using sample dual solutions converge and approach to opti-
mal, e.g., with probability 1� �,

P
t2N xtðpÞ � ð1� 3�ÞOPT

given B � 6mlogðn=�Þ
�3

, where OPT denotes the optimal objec-

tive value for the offline problem [20].
Incremental feature selection is motivated by the limita-

tions of Algorithm 1. First, the algorithm needs to fully scan
all the features in each iteration, which requires Oðm2Þ com-
plexity in the worst case and is therefore unsuitable for big
networks. Second, the number of selected features tB
increases as the number of iterations t continue, which may
become high dimensional. Therefore, we propose a new pri-
mal-dual incremental feature selection method.

Algorithm 2 is based on the observation that the optimal
solution for the offline linear program is almost entirely
determined by the optimal dual solution corresponding to
the inequality constraints. The algorithm is 1�OðuÞ-com-
petitive and the results can be stated as follows:

Algorithm 2. Primal-Dual Incremental Subgraph Feature
Selection for Graph Classification

Input: Graph G, parameters C, B, mini-batch sizeK
Output: classifier c
a0  1=C 	 1, S  ;, t 0;
repeat

S  a mini-batch of K features;
Calculate top-k candidate features based on at using
Eq. (21) // mini-batch scores;

for each feature xt in top-k do
if xtðpÞ � bi �

Pt�1
j¼1 djxj then

xt ¼ xtðpÞ
else

xt ¼ 0
Calculate atþ1 based on dt using Eq. (4)
// Optimization 1;

t tþ 1;
until no feature left;
Output c SVMðS;CÞ;

Because optimization 1 can be solved by using convex
quadratic programming, there is polynomial time interior
point algorithm in Matlab. The primal-dual incremental fea-
ture selection selects a mini-batch and only calculates the
scores on the mini-batch. The algorithm firstly selects m fea-
tures, and then calculates B features which has highest
score, and it scans the feature set only once. Therefore, the
time complexity of the algorithm is O(m*BlogB). Since B is a
small value, the time complexity can be a linear time com-
plexity O(m).

4.2 Long-Pattern Subgraph Features

In fact, the number and size of subgraph features crucially
depend on the threshold parameters of frequent subgraph
mining algorithms. Any improper setting of the parameters
will generate many trivial short-pattern subgraph fragments
which dominate the feature space, distort graph classifiers,
and flood interesting long-pattern subgraphs.

The primal-dual incremental feature selection converges
rapidly; however, the algorithm often gets trapped in gener-
ating a large number of short-pattern subgraph features
which may flood interesting long-pattern subgraph fea-
tures. Fig. 5 shows an example in which a long-pattern sub-
graph feature f3 is buried under two subgraph features f1
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and f2. A classifier is likely to choose the two subgraph fea-
tures instead of the more informative long-pattern subgraph
feature which reflects a latent social group. In this section,
we design a long-pattern driven algorithm that prefers
long-pattern subgraphs as features, with only one scanning
of the feature set.

Intuitively, the size of a subgraph compromises the classi-
fication accuracy. In graph classification, based on the mini-
mum description length theory, the relationship between the
size of a subgraph and the size of the original graph is com-
promisedwhen subgraphs are used as features.

Formally, we add extra constraints to allow the algorithm
to choose long patterns. The new constraint can be stated as:
if two short patterns pa and pb are in the active feature set, i.e.,
dpa ¼ 1 and dpb ¼ 1, then their derived pattern pa � pb will be

also selected, i.e., d pa�pb ¼ 1.

Based on the new constraints, we obtain a new classifica-
tion model as follows:

min
d2D

min
w;�;b

1

2
jjwjj2 þ C

2

Xn
i¼1

�i

subject to yiðwT ðxi �
ffiffiffi
d
p
þ bÞ � 1� �i

� � 0; i ¼ 1; . . . ;m:

d pa�pb ¼ 1; 8 dpa ¼ 1 ^ dpb ¼ 1:

(11)

The new constraints enforce that if two features can be
concatenated into a long cascade, then the corresponding
new cascade will be set to 1. The algorithm thus tends to
select long patterns

max
d

Xm
j¼1
½cjðaÞ
2dj

s.t.
Xm
j¼1

dj � B; 0 � dj � 1;

d pa�pb ¼ 1; 8 dpa ¼ 1 ^ dpb ¼ 1:

(12)

Eq. (12) can be solved analytically. First, we construct a
feasible solution by finding the largest scores ½cjðaÞ
2. Then,
we set the scaler dj to 1 and the remaining to 0.

Algorithm 3. Long-Pattern Classifier

Input: Graph G, parameters C, B, mini-batch sizeK
Output: classifier c
a0  1=C 	 1, S  ;, t 0;
repeat

S  a mini-batch of K features;
Calculate candidate top-k features based on at using
Eq. (21) // mini-batch scores;

Calculate atþ1 based on dt using Eq. (4)
// Optimization 1;

t tþ 1;
until no feature left;
Output c SVMðS;CÞ;

Table 1 shows three different types of result when a long-
pattern subgraph pab is generated from two short-pattern
subgraph fragments pa and pb. For example, consider the four
training graphs g1; . . . ; g4, where g1 and g2 belong to the same
group, while g3 and g4 fall into another group. Assume we
have obtained two subgraph fragments P ðaÞ ¼ A! B and
P ðbÞ ¼ B! C. We can generate a long-pattern subgraph
A! B! C based on Definition 3. The classifier may have
three different types of result, Equal, Improve and Reduce.
Therefore, we have the following intuitive conclusion.

Theorem 2. Consider two subgraph fragments pa ¼ 1 and
pb ¼ 1, if pab ¼ pa � pb, then the generated long-pattern sub-
graphs pab can be used to replace the original two patterns pa
and pb.

Proof. Evidently, if pab ¼ pa � pb, then pab ¼ 1 is the solution
of Eq. (13). tu
Based on the above analysis, we design the long-pattern

driven incremental feature selection algorithm given in
Algorithm 2. The algorithm processes data in mini-batches.
The algorithm examines the concatenation of short-pattern

Fig. 5. An illustration of a long-pattern subgraph feature buried under two
short-pattern subgraph features in the information cascade data. Con-
sider four graphs g1; . . . ; g4. g1 and g2 from class “+1” while g3 and g4
from “�1”. Assume we have two short-pattern subgraphs f1 : U1 ! U2

and f2 : U2 ! U3, and a long-pattern subgraph f3 : U1 ! U2 ! U3 by
joining f1 and f2. If one feature is allowed to select for classification,
then f1 or f2 is likely to be selected, instead of the more interesting f3.

TABLE 1
Analysis of the New Constraint

Equal Improve Reduce

X pa Pb pab pa Pb pab pa Pb pab

x1 1 1 1 1 1 1 1 0 0
x2 1 1 1 1 1 1 1 0 0
x3 0 0 0 1 0 0 0 1 0
x4 0 0 0 0 1 1 0 1 0

TABLE 2
List of the Synthetic and Real-World Data Sets

Data Set Nodes Edges / Cascades Other parameters

Albert-Barabasi 5,000 19,990 n ¼ 4
Forest Fire 5,000 21,124 f ¼ 0:35; b ¼ 0:32
Small World 5,000 19,996 a ¼ 4; p ¼ 0:1
Erdos-Renyi 5,000 6,000 ½0:5; 0:5; 0:5; 0:5

DBLP 2,000 162,466 n
MemeTracker 3.3 mil. 27,559,952 n
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subgraphs and generates long-pattern subgraphs that com-
ply with Theorem 3. The complexity of the algorithm is still
oðmÞ in the worst case.

5 EXPERIMENTS

We test the proposed algorithms on two real-world net-
works and four synthetic network data sets. The purpose of
the experiments is to: 1) conduct a parameter study for the
purpose of choosing optimal parameter settings for our
experiments; 2) compare the proposed algorithms with
benchmark methods to validate the performance of our
method; and 3) test our method on real-world social net-
work applications. The source codes and data sets are avail-
able online.1 The frequent subgraph mining is implemented
in Java, the feature generation is implemented in Python,
and the optimization algorithms are implemented in Mat-
lab. All experiments are tested on a Linux Ubuntu server
with 16*2.9 GHz CPU and 64 G memory.

Data.We use two real-world networks and four synthetic
data sets for testing. The data sets are summarized in Table 2.

Real-World Data. MemeTracker data set [21] is down-
loaded from the SNAP cascade data website, and is the topic-
based MemeTracker containing 27.6 million news articles
and blog posts from 3.3 million online sources with time-
stamps over a one-year period, fromMarch 2011 to February
2012. The data format is as follows, <meme id>; <website
id>; < timestamp> ; . . . ; <website id>; < timestamp>: The
time-stamp indicates the information arrival time of a node
from its parent nodes. We generate information propagation
graphs as shown in Fig. 1. We treat each website as a graph
node, there is an edge between two nodes if a website for-
ward articles or blogs from another website. Thus, the propa-
gation network forms a graph at a speicific observation time
stamp (e.g., 361,000(s)). All the graphs at different time
stamps in a cascade have the same label with the cascade
(outbreak or non-outbreak). Predicting each graph label
forms a graph classification task.

Synthetic Data. We use four well-known models to gener-
ate synthetic networks for testing and comparison, namely,
the Erdos Renyi [34], Albert Barabasi [33], Forest Fire [32] and
Small World [35]models.

Erdos Renyi [34] generates random graphs with arbi-
trary degree distributions. Each edge is included in the
graph with a probability p independent of other edges.
All graphs with N nodes and L edges have equal proba-

bility of pLð1� pÞ N
2ð Þ�L. The parameter p is a weighting

function. In particular, p ¼ 0:5 corresponds to the case in

which all 2
N
2ð Þ graphs on N vertices are chosen with

equal probability.
Albert-Barabasi (Scale-free network) [33] generates ran-

dom scale-free networks using a preferential attachment
mechanism. The network begins with an initial connected
network containing b0 nodes. New nodes are added to the
network one at a time. Each new node is connected to
b � b0 existing nodes with a probability proportional to the
number of links that existing nodes already have. For this
model, we need to set parameter n, which denotes the num-
ber of edges created by each new node.

Small-world (Watts-Strogatz model) [35] is defined as a
network in which the typical distance z between two ran-
domly chosen nodes grows proportionally to the logarithm
of the number of nodes N in the network, that is z / logN .
We use parameter a to denote that each node is connected
to a nearest neighbors in topology, and p denotes the rewir-
ing probability.

Forest Fire model (Scale-free network) [32] is defined as a
cellular automaton on a grid with gd cells. g is the side-
length of the grid and d is its dimension. In this model, we
need to set the parameters of the forward burning probabil-
ity f , and the backward burning probability b.

To better simulate real-world network diffusion, we gen-
erate synthetic networks under a power-law degree distri-
bution exponent a ¼ 1:5, which corresponds to the power-
law degree exponent of the MemeTracker network.

Synthetic cascades are generated using the following
methods. First, we randomly select a root node rwith a non-
zero out-degree. The node r is then added to the initially
empty list of the infected nodes I and all outgoing edges
(r; s) are added to the initially empty FIFO queue of the
infected-susceptible node pairs S. We choose an edge from
the candidate set each time and calculate the time delay for

Fig. 6. Parameter study on min-batch size B at each iteration and value k in top k.

Fig. 7. # of subgraph features w.r.t. support threshold.

1. https://github.com/BlindReview/streaming for the source codes
and the synthetic data sets. http://snap.stanford.edu/infopath/ for the
cascade data set.
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the edge until the time delay exceeds a given time window
(we use [0, 1,000] as the time window). The data are gener-
ated by repeating the above steps for each source node.

In the synthetic networks, nodes are continuously
included in the network, we separate each cascade by differ-
ent time stamp (e.g., 100, 200), and each network at a specific
time stamp (e.g., time is 100) can be treated as a graph. All
the graphs in a cascade have the same label with the cascade
(outbreak or non-outbreak). We aim to classify outbreak cas-
cades from non-outbreak ones by using graph classification.

Benchmark Methods. We compare the proposed ISF and
the Incremental Subgraph Join Feature selection algorithm
with the following three methods: 1) Meta Subgraph Fea-
ture selection (MSF) which randomly selects meta sub-
graphs (nodes) as features for graph classification [36]. In
MSF, each node of a graph is taken as a feature; 2) Off-line
Subgraph Feature selection (OSF) which loads all features
into memory at one time and selects top k columns (with
top k scores) at each iteration until the condition
katþ1 � atk < � is met, where � ¼ 0:001 in our experiments;
3) Random Subgraph Feature selection (RSF) which ran-
domly selects B features for graph classification.

Measures. We compare the algorithms with respect to
running time, prediction accuracy (tp / (tp + fp + fn + tn)),
precision(tp / (tp + fp)), recall (tp / (tp + fn)), and the F1 Score
(2 * (precision * recall / (precision + recall))) to evaluate classifi-
cation performance, where tp is true positive, fp is false posi-
tive, fn is false negative, and tn is true negative.

5.1 Parameter Study

We first test the parameters in Eq. (8) w.r.t. the number of
features B, and the parameter k of the top k features in OSF
and ISF.

Fig. 6 shows the performance of the two algorithms
under different parameter settings on the real-world data.

The mini-batch size B: B > 0 represents the portion of
selected features w.r.t. the number of features at each itera-
tion. If B is too large, the algorithm suffers from large

computation and memory cost. In the worst case, B equals
to the number of all features which degenerate to the off-
line method. Fig. 6 shows that the best prediction accuracy
is achieved when B is 30 percent of all features.

The Parameter Top k. We use the optimal value of B =
30 percent to study parameter k, which indicates the number
of features being selected for the next mini-batch of feature
selection. Fig. 6 shows that bothOSF and ISF have the highest
accuracy when k equals to 40 percent of mini-batchB.

5.2 Experimental Results

The Dimension of Subgraph Features and Running Time.
Fig. 7 shows the dimension of subgraph features w.r.t.
the support threshold Supp. Figs. 8 and 9 show the
memory consumption and running time comparisons for
ISF and OSF w.r.t. the support threshold under different
propagation time stamps. The different propagation time
stamps and support thresholds indicate the different
dimensions of the subgraph features. The number of fea-
tures approximates to 2� 105 when the support thresh-
old is 30 and the propagation time reaches 364,000.
Figs. 8 and 9 show that our ISF algorithm can handle
high dimensional features faster than OSF. This is
because ISF uses a primal-dual subgraph feature selec-
tion which continuously selects subgraph features to
quickly solve the graph classifier. In contrast, OSF loads

Fig. 8. Memory cost w.r.t. the support threshold Supp under different propagation time stamps.

Fig. 9. Running time w.r.t. the support threshold Supp under different propagation time stamps.

Fig. 10. Percentage of patterns w.r.t. the support threshold and pattern
length.
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all features into memory at one time which costs heavy
in both memory and time.

Prediction Accuracy. The five algorithms are compared
under different support thresholds (30, 50, 70 and 90) in
the subgraph mining. The settings for the time stamps are
3.61, 3.62, 3.63 and 3:64 � 105 seconds. We report the

performance of ISF, ISJF and three benchmarks on the real-
world data set in Figs. 11, 12, 13, and 14 and on the syn-
thetic data sets listed in Table 3. Fig. 10i shows the propor-
tion of short-pattern subgraph features (length < 3) and
long-pattern subgraph features (length � 3) when the sup-
port is equal to 30. Fig. 10ii shows the comparison of the

Fig. 11. Precision comparison under different Supp.

Fig. 12. Recall comparison under different Supp.

Fig. 13. F1 score comparison under different Supp.

Fig. 14. Accuracy and variance comparisons w.r.t. time stamp on the real-world data set.
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long-pattern subgraphs. From these results, we make the
following observations.

1) The classification precision and F1 score increase
with propagation time. This is because more
nodes and paths in the cascade graphs are avail-
able for classification as time increases. Because
the incremental cascade classifier selects top k fea-
tures at each iteration and uses the dual problem
to solve the high dimensional problem, our
method is more advantageous than the bench-
mark methods.

2) The precision, F1 score, and accuracy show that OSF
outperforms other methods. This is because OSF
always selects the top k columns from all the fea-
tures while ISF selects the top k of t �B 4 N fea-
tures, where t is the number of iterations, B is the
number of selected columns, and N is the number of
all the used features.

3) In terms of prediction variance, OSF and ISF have
lower variance error, which means they are more sta-
ble than the benchmark methods.

4) From the four synthetic data sets in Table 3, when
the time is around 300-500, ISJF is usually better than
ISF, because there are more short-pattern subgraphs
and useful long-pattern subgraphs when the time is
around 300-500. In addition, the long patterns are
useful for small world data than scale free networks,
as any vertices in the small world be connected by at
most six vertices [30].

5.3 Case Study on Cascading Outbreak Early
Prediction

We test the incremental subgraph features method on real-
world social networks to predict outbreak cascades. Cas-
cade data represents a new type of graph data that reflect
information flows. Because there are no cascade descriptors
(features) directly available to reflect the direction of infor-
mation flows, we resort to subcascades as features. Existing
works on cascade outbreak prediction are based on node
features and MSF can be used as the solution. Fig. 1

(Section 1) samples several information cascades in a social
network. Each cascade can be denoted as a graph, and sub-
cascades correspond to subgraphs. For example, the cascade
n1 ! n2 ! n3 ! n4 is a propagation graph which contains a
simple subgraph of n1 ! n2 ! n3. If a cascade becomes an
outbreak, we label it as the positive class +1; otherwise, �1.
The subgraph features and class labels are used to build
classifiers.

The problem of cascade outbreak prediction is defined
as: Given a network graph G, consider a cascade x ¼ fxID; hV;
T ig where V is a network of nodes, T is a time-stamp, and a
threshold parameter g 2 ð0; 1Þ, if jV j � dgjGje, then x is labeled
as outbreak, i.e., y ¼ þ1; otherwise, y ¼ �1.

Fig. 15 shows the log-log distribution of the cascade size
and its node number. As shown in Fig. 15, the size of the
MemeTracker cascade data set follows the power-law with
long-tails, which indicates that only a small proportion of
these cascade become outbreak cascades.

We select cascades having more than 300 nodes as out-
breaks (877 positive examples), and cascades having less
than 100 nodes as non-outbreaks (27,515,721 negative

TABLE 3
F1 Score under the Parameter Support = 30 on the Four Synthetic Data Sets

Data Sets Time OSF RSF MSF ISF ISJF

Albert-Barabasi 100 0.711 

 0.146 0.611 
 0.070 0.564 
 0.019 0.682 

 0.077 0.651 
 0.126
300 0.762 
 0.077 0.700 
 0.094 0.743 
 0.026 0.762 
 0.027 0.791 
 0.102
500 0.885 
 0.037 0.739 
 0.094 0.664 
 0.109 0.785 
 0.094 0.863 
 0.082
700 0.903 
 0.006 0.667 
 0.059 0.782 
 0.011 0.912 
 0.028 0.910 
 0.006

Erdos Renyi 100 0.750 
 0.125 0.667 
 0.178 0.712 
 0.169 0.750 

 0.067 0.750 
 0.125
300 0.824 
 0.122 0.703 
 0.067 0.624 
 0.058 0.817 
 0.058 0.824 

 0.058
500 0.807 
 0.122 0.798 
 0.044 0.766 
 0.044 0.815 

 0.100 0.889 

 0.044
700 0.889 
 0.104 0.796 
 0.114 0.813 
 0.044 0.889 
 0.103 0.824 
 0.181

Forest Fire 100 0.891 
 0.007 0.793 
 0.027 0.796 
 0.131 0.910 

 0.067 0.891 
 0.017
300 0.880 

 0.004 0.799 
 0.035 0.761 
 0.021 0.846 
 0.001 0.873 
 0.027
500 0.897 

 0.002 0.826 
 0.044 0.801 
 0.061 0.885 
 0.030 0.849 
 0.021
700 0.879 
 0.105 0.916 
 0.08 0.862 
 0.065 0.889 
 0.117 0.870 
 0.121

Small-world 100 0.526 
 0.005 0.404 
 0.003 0.470 
 0.004 0.579 

 0.008 0.406 
 0.013
300 0.563 
 0.007 0.484 
 0.009 0.519 
 0.006 0.585 
 0.016 0.592 

 0.009
500 0.746 
 0.012 0.498 
 0.005 0.479 
 0.007 0.595 
 0.007 0.746 

 0.003
700 0.699 
 0.021 0.552 
 0.107 0.519 
 0.003 0.760 
 0.143 0.763 
 0.006

Fig. 15. The probability distribution of cascades. The dotted line is the lin-
ear fitting result to the red curve, showing that the distribution fits the
power-law. The two dotted vertical lines indicate the threshold which dis-
criminates outbreaks from non-outbreak cascades. The sizes in [100,
300] are the gap cascades which are not used in our experiments.
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examples). We randomly select outbreak and non-outbreak
examples to construct balanced training sets.

Fig. 16 shows that ISF outperforms MSF, which validates
the superiority of the proposed subcascade-based outbreak
prediction method. This is mainly because node features
ignore the path (graph) information. For example, cascade
a! b and b! a will be predicted as the same class label
because they share the same node features.

6 CONCLUSION

In this paper, we study graph classification with incremen-
tal subgraph features. Based on the observation that sub-
graph features follow the downward closure property and
long-pattern subgraph features are often buried underneath
short-pattern subgraph features, we propose a primal-dual
incremental subgraph feature selection algorithm (ISF) for min-
ing incremental subgraph features, and a subgraph join fea-
ture selection algorithm (ISJF) to exact long-pattern
subgraphs. Experiments on real-world cascade outbreak
prediction in social networks demonstrate the effectiveness
of the proposed models.

APPENDIX

A. The Derivation from Eq. (1) to Eq. (3)

When d is fixed, the inner minimization in Eq. (1) degener-
ates to a standard SVMmodel w.r.t.w and ��

min
w;�;b

1

2
jjwjj2 þ C

Xn
i¼1

�i

subject to yiðwT ðxi �
ffiffiffi
d
p
Þ þ bÞ � 1� �i

�i � 0; i ¼ 1; . . . ;m:

(13)

By introducing the Lagrangian multiplier ai � 0 to each

constraint yiðwT ðxi �
ffiffiffi
d
p Þ þ bÞ � 1� �i, we obtain

Lðw; b; �;aÞ ¼ 1

2
jjwjj2 þ C

Xn
i¼1

�i

�
Xn
i¼1

aiðyiðwT ðxi �
ffiffiffi
d
p
Þ þ bÞ � 1þ �iÞ; ai � 0:

(14)

Then by setting the derivatives of the Lagrange function to
be 0 with respect to parametersw; � and b, we obtain

@Lðw;b;�;aÞ
@w ¼ w�Pn

i¼1 aiyiðxi �
ffiffiffi
d
p Þ ¼ 0

@Lðw;b;�;aÞ
@b ¼ �Pn

i¼1 aiyi ¼ 0

@Lðw;b;�;aÞ
@�i

¼ C � ai ¼ 0:

8>><
>>: (15)

That is,

w ¼
Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ;

Xn
i¼1

aiyi ¼ 0; 0 � ai � C:

Plugging the above results back into Eq. (14), we obtain
the dual form of the original problem as follows:

max
aa2A

� 1

2

Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ

�����
�����
2

þ eTaa: (16)

As the objective function � 1
2 k

Pn
i¼1 aiyiðxi �

ffiffiffi
d
p Þk2þ eTaa

in Eq. (16) is linear in d and convex in aa, and both A and D
are compact domains, Eq. (1) can be equivalently reformu-
lated as follows:

min
aa2A

max
d2D

1

2

Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ

�����
�����
2

� eTaa: (17)

As both A and D are convex compact sets, the following
equivalence holds by interchanging the order ofmind2D and
maxaa2A in Eq. (2) based on the minimax saddle-point theo-
rem [15],

min
d2D

max
aa2A

� 1

2

�����
Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ
�����
2

þ eTaa

¼ max
aa2A

min
d2D

� 1

2

�����
Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ
�����
2

þ eTaa

()min
aa2A

max
d2D

1

2

�����
Xn
i¼1

aiyiðxi �
ffiffiffi
d
p
Þ
�����
2

� eTaa:

B. Optimization 1 Can Be Solved by Quadratic
Programming with Small Set of Features

Let fðaa;dÞ ¼ 1
2 k

Pn
i¼1 aiyiðxi �

ffiffiffi
d
p Þk2 � eTaa. By introducing

an additional variable u 2 R, the problem can be reformu-
lated as follows:

min
aa2A;uu2R

uu s.t. uu � fðaa;dÞ; 8 d 2 D (18)

which is a convex quadratic programming problem. Each
nonzero d 2 D defines a quadratic constraint with respect to

aa. There are as many as ðPB
i¼0

m
i

� �Þ quadratic constrains in

Eq. (4).
Because the scaling vector d is fixed, and we use kdk � B

to encourage sparsity so that at most B subgraph features
are selected. Since B is a small value, it can be solved with
small set of features.

Fig. 16. Early prediction of information cascade outbreaks. We compare
the subcascade-based method (red line) with the node-based method
(blue line). The figure shows that the subcascade-based method pro-
vides better prediction accuracy than the node-based method.

WANG ETAL.: INCREMENTAL SUBGRAPH FEATURE SELECTION FOR GRAPH CLASSIFICATION 139



C. Derivation from Eq. (10) to Eq. (11)

By introducing the Lagrangian multiplier pi; qj; rj � 0 to
each constraint in Eq. (8), we have

LðdÞ ¼
Xt

j¼1
½cjðaÞ
2dj þ

Xm
i¼1

pi ð1� �Þ t
m

bi �
Xt

j¼1
dj

" #

þ
Xt

j¼1
qjdj þ

Xt

j¼1
rjð1� djÞ:

(19)

Then by setting the derivatives of the Lagrange function
to be 0 with respect to parameters d, we obtain

rdLðdÞ ¼ ½cjðaÞ
2 �
Xm
i¼1

pi þ qj � rj ¼ 0: (20)

That is, ½cjðaÞ
2 ¼
Pm

i¼1 pi � qj þ rj:

As rj � 0, we have
Pm

i¼1 pi þ rj � ½cjðaÞ
2. By plugging
the above result to Eq. (20), we have the dual problem as fol-
lows:

min
p;r

Xm
i¼1

bipið1� �Þ t
m
þ
Xt

j¼1
rj

s.t.
Xm
i¼1

pi þ rj � ½cjðaÞ
2; j ¼ 1; . . . ; t

pi; rj � 0; 1 � i � m:

(21)

For simplicity, we use only one Lagrange multiplier and
map the space of rj to the same space of pi, the dual problem
can be rewritten as follows:

min
p

Xm
i¼1

bipið1� �Þ t
m
þ

Xmþt
i¼mþ1

pi

s.t.
Xm
i¼1

pi þ piþj � ½cjðaÞ
2; j ¼ 1; . . . ; t

pi � 0; 1 � i � m:

(22)

D. Experiments on the DBLP Data Set

Due to page limitations, we report experimental results on
real-world data set (DBLP) in the Appendix.

DBLP. DBLP author classification refers to the task of
predicting author’s research areas based on co-authorship

network where two authors are connected if they publish at
least one paper together. We retrieve around 2,000 authors
from DBLP and 95,411 coauthors. The training sets are
drawn from different domain, i.e., the conferences in each
research areas. We mainly crawl the authors from the areas
in Software Engineering and Data Mining. We fetch the co-
authorship network graphs of each author from 2001 to
2015, and formulate the co-authorship graphs at different
year. Specifically, we have three phases’ graphs, i.e., 2001 to
2005, 2006 to 2010, and 2011 to 2015. Subgraph features are
commonly used in author classification that is based on co-

Fig. 19. Accuracy comparison under differentSupp on the DBLP data set.

Fig. 18. Memory cost and running time w.r.t. the support threshold at dif-
ferent year on the DBLP data set.

Fig. 17. # of subgraph features w.r.t. support threshold on the DBLP
data set.
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authorships. However, predicting an authors research areas
using only a single coauthor or conference is infeasible due
to the interdisciplinary nature of research.

The number of subgraph features with respect to sup-
port threshold, the memory cost with respect to the
support threshold, the running time with respect to the
support threshold, and the accuracy comparison in each
year bracket are reported in Figs. 17, 18, and 19,

From the results on the DBLP data set, we make observa-
tions similar to the MemeTracker data set. The classification
accuracy increases with each year bracket. This is because
more nodes and paths in the co-authorship graph are avail-
able for classification as time goes by. The proposed
approach also shows significant improvement with respect
to the running time and memory cost, especially when the
subgraphs’ dimensions are high.
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