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Abstract—Multi-instance learning (MIL) is a useful tool for tackling labeling ambiguity in learning because it allows a bag of instances to share
one label. Bag mapping transforms a bag into a single instance in a new space via instance selection and has drawn significant attention
recently. To date, most existing work is based on the original space, using all instances for bag mapping, and the selected instances are not
directly tied to an MIL objective. As a result, guaranteeing the distinguishing capacity of the selected instances in the new bag mapping space
is difficult. In this paper, we propose a discriminative mapping approach for multi-instance learning (MILDM) that aims to identify the best
instances to directly distinguish bags in the new mapping space. Accordingly, each instance bag can be mapped using the selected instances
to a new feature space, and hence any generic learning algorithm, such as an instance-based learning algorithm, can be used to derive
learning models for multi-instance classification. Experiments and comparisons on eight different types of real-world learning tasks (including
14 data sets) demonstrate that MILDM outperforms the state-of-the-art bag mapping multi-instance learning approaches. Results also confirm
that MILDM achieves balanced performance between runtime efficiency and classification effectiveness.

Index Terms—Multi-instance learning, Instance selection, Bag mapping, Classification.

1 INTRODUCTION

In generic supervised learning, each training sample is an instance
associated with a class label (e.g., positive or negative), as shown in
Figure 1. By contrast, in multi-instance learning (MIL), each training
object is a bag that contains a number of instances. A label is assigned
to the bag, but not to the individual instances, under the constraint
that all the instances in a negative bag are negative and at least one
instance in a positive bag should be positive. This is known as the
MIL assumption and is illustrated in Figure 2.

Multi-instance learning was initially investigated by Dietterich et
al. [1] to capture the unstable characteristics and complex behaviors
that occur during drug activity prediction. Because molecular activity
can vary significantly or show different behaviors in response to
changing environments, the feature values of a specific molecule
can change when observed in different experiments. An efficient
way to accommodate such changing behaviors is to represent the
molecule as a bag of instances with each instance representing
one observed behavior of the molecule. If a molecule demonstrates
positive/interested behavior in a particular experiment, the bag is
labeled as positive but, if no positive behavior is demonstrated in any
experiment, the bag is labeled as negative. MIL’s performance in this
unique setting suggested its effectiveness for accommodating labeling
ambiguity in other real-world applications. For example, in content-
based image classification, each region of the image can be regarded
as an instance. An image can, therefore, be represented as a bag
containing a number of instances. If one region of the image contains
an object of interest (e.g., an animal), the image/bag is labeled as
positive [2], and MIL can be used to identify bags containing objects
of interest [3], [4]. Such an approach has also been used for text
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Fig. 1. Traditional supervised learning: the labels (i.e. + or —) are available
for each instance (i.e. ball). The object for classification is an instance.
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Fig. 2. Multi-instance learning: each bag (i.e. circle) consists of several
instances (i.e. balls) and labels (i.e. + or —) are only available for bags.
The object for classification is an instance bag.

categorization [5], sign language recognition [6], saliency detection
[7], graph mining [8]-[10], web recommendation [11], and so on.

Existing MIL solutions [12]-[15] can be roughly divided into
two categories: (a) updating a generic learning algorithm to tackle
label ambiguity problems, or (b) developing a learning paradigm
specifically for multiple instance learning. However, the performance
of the above methods deteriorates when there are a large number
of instances in a bag [3]. Using content-based image classification,
again, as an example, the total number of the instances in a bag could
be extremely large if the image containes many regions. However,
in reality, different regions/instances in a bag may make different
contributions to image classification and the more informative the
instances, the more information can be provided to learning tasks.
In this scenario, selecting the most informative instances in each bag
becomes a challenging problem for MIL [16].

One common approach is to convert multi-instance learning (bag
learning) into a more traditional form of supervised learning (single-
instance learning). For example, one might propagate the bag label
to the instances inside the bag so that a propositional classifier can
be learned for bag classification [17], [18]. However, transmitting
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Fig. 3. Non-bag mapping approaches: each bag is represented by an
instance or uses the mean value of all instances inside the bag in the
original feature space.

the label of a positive bag would assign all the negative instances
inside with incorrect class labels. Alternatively, one instance could
be used to represent each bag based on its statistic properties, known
as bag representation. In [19] three different types of summarization
approaches to bag representation were proposed — arithmetic mean,
geometric mean, and minimax. Wu et al. [20] proposed a different
method based on the distribution of the negative bags and, in doing
so, transformed all bags into a set of instances in the same feature
space, as shown in Figure 3. Although this type of single-instance
representation algorithm works reasonably well, it does discard most
of the instance information in each bag.

Bag mapping with instance selection is another proposed ap-
proach, which represents each bag in a new feature space, as shown
in Figure 4. Chen et al. [3] proposed an embedding instance selec-
tion method that maps each bag into a new feature space created
from a hidden instance set, i.e., an intermediate instance pool (IIP)
constructed from a training bag of instances. Following this IIP-
based bag mapping strategy, Fu et al. [16] proposed another bag
mapping method that selects a subset of instances for bag-level
feature computation using the distribution of negative instances. The
main difference between these two methods is the construction of
the IIP. The former approach chooses all the training instances as
the IIP, while the latter approach selects a subset of the instance
that is most likely to be positive from each positive bag according
to the distribution of the negative instances. Either way, a good
instance selection method may lead to better performance. According
to the above observation, Hong et al. [2] proposed selecting all the
instances from positive bags and the clustered instances in negative
bags as the IIP. The bag mapping methods that rely on instance
selection are able to prune the instance space; however, it may be
difficult to distinguish between the instances in the new bag mapping
space. Therefore, designing efficient selection and instance pruning
techniques for discriminative bag mapping is important.

In this paper, we propose a direct discriminative mapping ap-
proach for multi-instance learning (MILDM) that aims to identify
the instances that will make the bags maximally distinguishable in
the new mapping space, as shown in Figure 5. Experiments and
comparisons on eight different types of real-world learning tasks (in-
cluding drug activity prediction, content-based image classification,
train bound challenge, mutagenicity prediction, scientific publication
retrieval, online product evaluation, newsgroup categorization, and
web index recommendation) confirm the effectiveness of the pro-
posed design. The contributions of this paper are threefold.

e An instance evaluation criterion based on a given bag set is
proposed as the instance pruning criterion.

e A discriminative bag mapping framework is proposed for
multi-instance learning.

o Eight various learning tasks (including 14 data sets) are used
to validate the generality of the MILDM.

The rest of the paper is organized as follows: in Section 2,
we review related work on instance selection-based MIL. Section 3
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Fig. 4. Traditional bag mapping based on instance selection: each bag is

represented by an instance in the new feature space via an intermediate
instance pool (lIP).
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Fig. 5. Discriminative bag mapping: the informative instances are selected
as a discriminative instance pool to ensure that the bags in the new mapping
space can be easily distinguished.

outlines the proposed MILDM framework, followed by experiments
in Section 4. Section 5 discusses the properties of the proposed
MILDM, and we conclude the paper in Section 6.

2 RELATED WORK

Multiple-instance learning is a variation of supervised learning [1].
Many real-world applications can be considered as MIL problems,
and a variety of MIL approaches [12]-[15], [21] exist to solve
different MIL applications. Such algorithms can be categorized into
two major groups: upgraded single-instance learners and specifically
designed MIL algorithms. The former learners are an adaption of
existing single-instance learning algorithms to support multi-instance
learning. Lazy learning citation-KNN and Bayesian-KNN [22] extend
the k-nearest neighbor algorithm (KNN) to multi-instance settings.
Other approaches include: tree-based multi-instance learning [23],
multi-instance rule-based learning mi-DS algorithm [24], multi-
instance kernel machine MISMO [25], multi-instance logistic learn-
ing MILR [26], multi-instance ensemble learning MIBoost [27], and
multi-instance bag dissimilarity-based learning [28].

Specifically designed MIL algorithms use bag constraints to
reorganize the instances inside each bag into specific formats for
learning. Axis parallel hyper-rectangles, proposed by Dietterich et
al. [1], is an early approach of this type. Diverse density (DD) [29]
searches for a point in the feature space by maximizing the diverse
density function that measures the co-occurrence of similar instances
in different positive bags. MIEMDD [30] is an improved multi-
instance DD approach that can convert a multi-instance framework
into a traditional single instance problem by employing the EM
strategy. MIOptimalBall [31] builds an optimal ball to ensure that
at least one instance in the positive bags is inside the ball and all
the negative instances are outside the ball. Zhang et al. [32] proposed
a novel research multi-instance learning framework from multiple
information sources. Xiao et al. [33] proposed a similarity-based
classification framework for multiple instance learning.

[14] discussed vocabulary-based methods, where a list of vocabu-
lary stores information about all the classes of instances present in the
training set, and this information is used to first classify the instances
in a new bag, then perform the embedding of this bag. Vocabulary-
based approaches comprise four major groups: 1) histogram-based
methods use a function that maps each bag into a histogram where



each bin counts how many instances fall into a specific class of the
vocabulary [13], [34]-[36]; 2) distance-based methods map each bag
into a vector space by providing the lowest distance from a special
class to any instance in the bag [37]-[40]. MILES [3] and MILIS
[16] both belong to this category; 3) attribute-based methods include
a mapping function that returns a vector which is a concatenation
of the sub-vectors that summarize the attributes of the instances that
match a special class [41]; and 4) vocabularies of bags-based methods
form a vocabulary from the classes of bags not the instances [42].

In reality, one potential problem that reduces the performance of
the above approaches is that learning usually has to contend with a
large number of instances for even moderate-sized data sets [3]. In
these cases, selecting the most informative instances to represent each
bag becomes a challenging problem [16]. A novel approach solving
this issue is to use the selected instances from the bags to convert the
MIL problem into a standard single-instance learning task [3], [16],
[19], [20]. We call these methods “instance selection-based MIL”, and
they can be divided into two categories: non-bag mapping approaches
and bag mapping approaches.

2.1 Instance Selection-based Non-bag Mapping

The basic idea of non-bag mapping methods is to choose one or
multiple instances from each bag to represent the whole bag. An
intuitive method is to directly propagate the bag label to all the
instances inside the bag (i.e., using all instances to represent the
bag) [18]. Three other commonly used non-bag mapping models
include arithmetic mean, geometric mean and max-min [19]. The
first two models are based on the assumption that each individual
instance within a bag contributes independently and equally to the
bag label. The arithmetic mean model simply calculates the arithmetic
mean of the instances for each bag, while the geometric mean model
calculates the geometric mean of the instances. This type of simple
non-bag mapping strategy was used in [43]. The max-min model
records both the minimum and maximum values of each dimension
for every bag [44]. A further method, based on the distribution of the
negative bags, has also been proposed as a non-bag mapping MIL
method [20]. After choosing the representative instances from each
bag, the MIL problem is converted into a generic supervised learning
problem so that a conventional classifier can be applied to the new
instances for learning. In reality, because most of the information
about the instances in a bag are discarded, non-bag mapping methods
tend to face the challenge of information loss and a deterioration in
classification performance.

2.2

The fundamental idea of bag mapping approaches is to choose a
set of instance prototypes, i.e., an IIP, to map each bag into a new
feature space. Two representative methods are MILES [3] and MILIS
[16]. MILES does not define an explicit mechanism for instance
prototype selection because the IIP is composed of all the instances
in the training bags. Once the IIP is formed, MILES maps each
bag into a feature space defined by the IIP using a bag-instance
similarity measure. However, MILES might potentially map multi-
instance learning into a high-dimensionality problem, because the
dimensions of the mapping feature space depend on the size of IIP,
i.e., the number of instances in training bags. To address this issue,
MILIS selects only one instance from each positive bag to prune the
instance space. The instance that is most likely to be positive in each
positive bag is selected for the IIP, and this is determined by the
likelihood of whether an instance is positive using the distributions
of all the instances in negative bags. Once constructed, the IIP is
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used to map each bag into a new bag-level feature space so that a
traditional classifier can be directly employed for further learning. A
further type of IIP construction that consists of all the instances within
all positive bags along with the clustering centers of instances in
negative bags was proposed by Hong et al. [2]. However, because IIP
instance selection is not directly tied to the underlying MIL learning
problem, it is difficult to guarantee that the selected instances will be
distinguishable from each other in the new bag mapping space.

3 MIL wiTH DISCRIMINATIVE BAG MAPPING
3.1 Preliminaries and Overall Framework

A bag B; contains a number of instances, in which x; ; denotes the
jth instance in the ith bag. The class label of the bag B; is denoted
by y; = Y, with Y = {—1,+1}. The collection of all bag sets is
denoted by B.

In the training procedure, all bags B; are transformed into Bf ,
a single instance in a new feature sgace, using the discriminative in-
stance pool (DIP), denoted as P. B; = [s(B;, z0),- -, s(By,z2)],
where s(B;, xf) denotes the similarity between bag B; and the kth
instance xf as determined by the instance candidate m‘,f e P. A
transitional supervised learning classifier, i.e., instance-based learning
algorithm IB1, is then trained on the instances in the new feature
space. In the testing phase, we first map each test bag into a new
instance based on the DIP obtained in the training process. Then, the
trained learning classifier is used to predict the final class label. The
most important part of this process is finding the optimal DIP for bag

mapping.

3.2 DIP Optimization

Given B with n bags, and an instance set X of size p collected
from all bags in B, our objective is to find a subset P C X using
an instance selection matrix Zp (a diagonal matrix, diag(Zp) =
d(P)), where d(P) is an indicator vector, if z; € P, d(P); = 1, or
otherwise 0.

Accordingly, we define 7 (P) as an instance evaluation function
to measure P as follows:

P. = arg max J(P) st |Pl=m (1)

where | - | denotes the cardinality of the instance set, and m is the
number of instances to be selected from X (i.e., the size of the DIP).
The objective function in Eq. (1) states that the instances selected
for MIL P, should be maximally discriminative in the new mapping
space.

3.3 Discriminative Instance Pool Evaluation Criteria

To obtain the DIP with the maximum discriminative power, we im-
pose a rule that the optimal DIP should have the following properties:
(a) bag mapping must-link. Because each bag B; is associated with
a class label (positive or negative), the selected DIP should ensure
that the bags Bf’ with the same label are similar to each other in
the mapping space; and (b) bag mapping cannot-link. Bags with
different class labels in the mapping space should represent the
disparity between them. Accordingly, the DIP evaluation criteria can
be measured as

J(P) = %Zw Kp (Bi7Bj)Qi,j 2

where Kp(B;, Bj) denotes the distance between two bags B; and
Bj in the new mapping space ¢ based on the DIP P. Along with
matrix () embedding the class label information, 7 (P) can represent



level of discriminativeness in the mapping space. More specifically,
Kp(B;, Bj) can be formulated as

K»(Bi, By) = ||Zp B — Tp B ||? 3)

where Bf ¢, denoted in a similar way to Bf , uses all the instances as
the mapping instance pool. By defining the label embedding matrix
_1/|A|7yiyj =1

Q as
Qi,j :{
! 1/1Bl,yiy; = —1

where A = {(4,7)|y;y; = 1} denotes the bag mapping must-link
pairwise bag constraint sets and B = {(4,7)|y;y; = —1} denotes
the bag mapping cannot-link pairwise sets. We can rewrite 7 (P) in
Eq. (1) as follows:
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where t¢r(-) denotes the matrix trace operator, Xy =
[BY*,--- ,B%=] = [¢1,---,p,]T € {R}P*", with n denotmg

the size of bag. D, as a diagonal matrix, is generated from (),
where D; ; = 3 Q;j. L is a Laplacian matrix generalized from @),
denoted as L = [L; ;]"*™ = D — Q. By using function f(a:ﬁ, L)t
denote ¢, Lepy, the original optimization problem in Eq. (1) can be
translated to maximize the sum of f (mf, L) with respect to optimal
instance mapping set P as

s
max Zmﬁep fzg, L)

To find the optimal instance set P that maximizes the criterion defined
in Eq. (1), we can calculate the score of each instance (i.e., d)ngbk
in X, then collect the top-m instances as the final DIP.

Algorithm 1 sets out the proposed DIP exploration approach. It
starts with an empty instance set P = () and a minimum score
7 = 0 (line 1). The label embedding matrix () is calculated first,
along with its corresponding Laplacian matrix L (lines 2-3). Then,
each instance x, € X is enumerated, and its discriminative score
f(xg, L) is calculated based on matrix L, which embeds the label
information. If f(xy, L) is greater than the minimum discriminative
score in P as 7, or the size of P is less than m (i.e., P is not full),
xy, is selected as one of the items for P (lines 6-7). Otherwise, if
P overflows, the instance argming, ep f(xy, L) with the smallest
discriminative score is removed from P to maintain its size (lines 8-
9). Subsequently, the minimum discriminative score 7 in P is updated
(line 10). The loop continues until the final optimal discriminative
instance pool P is derived.

sit. |Pl=m. (6)

3.4 Bag Mapping via Discriminative Instance Pool

Once the DIP has been constructed using selected instances, each bag
needs to be mapped to a single instance in the new space. Given a DIP
‘P with m instances, B; can be mapped to a single instance be =

Algorithm 1 DIP: Discriminative Instance Pool
Input:

Training bag data set B;

The instance set X’ collected from B;

The number of selected mapping instance m;

Output:
P ={p1, - ,pm}: A set of mapping instances;
1. P=0,7=0;.
2: Q < Apply all bag labels in B to obtain the label embedding matrix

via Eq. (4).

3: L < Apply @ to obtain the corresponding Laplacian matrix.
4: for each instance xy in the X do

5: f(zk, L) < Apply Eq. (6) to measure the score.

6: if|P| <mor f(zk,L) > 7, then

7: P+ PUzk;

8: if |P| > m, then

9: P < P/argming, ep f(zx, L);
10: 7 =ming, cp f(zk, L);

11: end for

12: return P;

[s(Bys,z%), -, s(By,2%)], with s(B;, x‘é) denoting the similarity
between the bag B; and the kth instance x), as
s(Bi,zl) = m?}g exp( —‘ Xij — m£”2/02) (7
J

where x; ; is the jth instance in the ith bag B;, and o is a predefined
scaling factor. After each B; € B is mapped to Bf’ based on the
optimal DIP, any kind of single-instance learner (e.g., KNN) can be
applied without constraint.

We design two types of discriminative bag mapping approaches.

3.4.1 Global Discriminative Bag Mapping

This type of bag mapping methods calculate the score of each
instance in all bags and select the top-m instances as the DIP.

o« aMILGDM uses all the training bags to generate the global
DIP.
e« PpMILGDM only uses the positive bags.

3.4.2 Local Discriminative Bag Mapping

Local discriminative bag mapping approaches evaluate every instance
inside the bag and select one instance with the highest discriminative
score.

e aMILLDM selects the most discriminative instance from
each bag to obtain the local DIP.

e PpMILLDM chooses the instance with the highest discrimi-
native score from each positive bag.

In short, the global MILDM, aMILGDM or pMILGDM, measures
the discriminative power of the instances across the bags, while the
local MILDM, aMILLDM or pMILLDM, compares the discrimi-
native scores inside each individual bag. For global MILDM, the
instances in the DIP may come from the same bag, so only a few
bags might contribute to the learning procedure. By contrast, when
using the local MILDM, the instances in the DIP are sourced from
different bags. For simplicity, we also use pMILDM to denote the
bag mapping approach that only evaluates positive bags (pMILLDM
or pMILGDM), and aMILDM to denote the approach that evaluates
all bags (aMILLDM or aMILGDM).



4 EXPERIMENTS

4.1 Experimental Settings

The DIP, once constructed, can be used to map a bag to an instance by
propagating the bag’s label to the newly mapped instance. In this way,
any supervised learning approach could be applied to support MIL
classification. In our experiments, we use the instance-based learning
algorithm IB1. In keeping with [7], [28], [45], [46], we have used
the F-measure and area under ROC curve (AUC) as the evaluation
metrics to validate the effectiveness of the proposed MILDM. The
F-measure = 2 x P x R/(P + R) combines recall R and precision
P. AUC performance is calculated as E = [Py — to(to + 1)]/tot1,
where tg and t; are the number of negative and positive instances,
respectively. Py = Y ry, with r; denoting the rank of the ith negative
instance in the ranked list. All reported results are obtained through
ten times 10-fold cross validation. The scaling parameter o2 is set to
8+10°, in keeping with previous works [3], [18]. The m values for the
instance selection-based bag mapping approaches are derived as: the
number of positive bags for pMILGDM, pMILLDM, and pMILIS;
the number of all bags for aMILGDM, aMILLDM, and aMILIS; the
number of all instances for MILES; and the number of all instances
in positive bags plus the number of negative clusters for MILFM (in
[2], this cluster number is set as the number of positive bags). All
experiments are carried out on a Linux cluster node with an Intel(R)
Xeon(R) @3.33GHZ CPU and 3GB fixed memory.

4.2 Baseline Methods

We use the following instance selection-based MIL baseline ap-
proaches from both non-bag mapping and bag mapping perspectives
for comparison.

4.2.1 Non-bag Mapping Instance Selection Approaches

In these approaches, a bag is directly represented by an instance or
multiple instances inside the bag in the original feature space.

1.  MILMR uses the mean of all instances inside each bag as the
bag representation [19], [47].

2. MILWA propagates the bag label to all the instances inside
the bag as the bag representation [17], [18].

3.  MILIR uses the distribution of the negative bags to select one
instance to represent the bag [20].

4.2.2 Bag Mapping Instance Selection Approaches

In bag mapping approaches, each bag is mapped into a single instance
in the new feature space using an IIP constructed from the training
bags.

4. MILES maps each bag into a feature space using all the
training instances for the IIP via a bag-instance similarity
measure [3].

5. pMILIS applies kernel density estimation (KDE) to select
one instance from each positive training bag for the IIP, which
is then used for further bag mapping [16].

6. aMILIS selects one instance from all the training bags for
the IIP (i.e., the most positive instance or the least negative
instance is selected from each positive bag and negative bag,
respectively), and the instance selection strategy is the same
as MILIS [16].

7.  MILFM uses the all the instances in the positive bags and the
clustered instances in the negative bags for the IIP [2].

TABLE 1
Details of the benchmark data sets.

Data set Pos.bags Neg.bags Atts Insts Avg/bag Min/bag Max/bag
Musk1 47 45 166 476 5 2 40
Musk?2 39 63 166 6598 64 1 1044
Elephant 100 100 230 1391 6 2 13
Tiger 100 100 230 1220 6 1 13
EastWest 10 10 24 213 10 4 16
WestEast 10 10 24 213 10 4 16
Atom 125 63 10 1618 8 5 15
Bond 125 63 16 3995 21 8 40
AICV 100 100 4497 1151 5 1 10
Food 200 200 1517 2097 5 1 10
News.rm 50 50 200 4730 47 22 73
News.tpm 50 50 200 3376 33 15 55
Web7 54 59 6450 3423 30 4 200
Web8 55 58 5999 3423 30 4 200

4.3 Experimental Data Sets

Eight types of learning tasks across 14 data sets are used to validate
MILDM. Table 1 shows the statistics for each data set. The original
data sets for drug activity perdition, content-based image classifica-
tion, newsgroup categorization, and web index recommendation tasks
can be found at http://www.miproblems.org. The data sets for the train
bound challenge, and the mutagenicity prediction task are available
online at http://www.cs.waikato.ac.nz/~eibe/multi_instance/. The sci-
entific publication retrieval and online product evaluation MIL data
are available at https://sites.google.com/site/utsjiawucug/data-sets/.
In the following, we briefly explain the domain knowledge of each
data set.

4.3.1 Drug Activity Prediction Data

The objective of drug activity prediction is to predict the potency
of the drug molecules on certain disease states. The data sets
consist of descriptions of molecules. Each molecule is represented
as a bag. Low-energy shapes, or conformations of the molecule,
are the instances in the bag, as shown in Figure 6. Because the
bonds in molecules can rotate, each molecule can exhibit many
different shapes. The Musk data sets (Muskl and Musk2) [1] are the
benchmark drug activity prediction data used for MIL. In Musk2, all
the low-energy conformations of the molecules are used to generate
the conformations. By contrast, the highly similar conformations are
discarded in Muskl. In both data sets, a feature vector is explored
for each conformation to illustrate its surface properties. During the
learning procedure, a molecule is classified as a musk only if at least
one conformation inside has a musky smell. Musk1 has 92 bags with
a total of 476 instances. Of the bags, 47 are positive and 45 are
negative. Musk2 contains 6598 instances grouped into 102 bags, of
which 39 are positive and 63 are negative. The instances in both data
sets are described using a 166-dimensional feature vector.

Molecular Bag

Fig. 6. Bag representation for the drug activity prediction task.



A Multi-Instance Bag

Fig. 8. Bag representation for the scientific publication retrieval task.

4.3.2 Content-based Image Classification Data

The content-based image classification MIL task determine whether
an image contains an object of interest, e.g., an elephant or a tiger.
This task is commonly used for MIL performance evaluation [28],
[48], [49]. Our data are collected from the Corel data set [50]. All
images in the set have been pre-processed and segmented by the
Blobworld system [51]. Therefore, each image contains a set of small
regions, which are described in terms of their color, texture, and shape
characteristics (i.e., features). Each bag represents one image, and if
one or more regions (instances) inside a bag contain the object of
interest, the bag is labeled as positive, as shown in Figure 7. In our
experiments, each data set (Elephant or Tiger) consists of 100 positive
and 100 negative bags, with a total of 1391 and 1220 instances,
respectively. Each instance is represented by a 230-dimension feature
vector.

4.3.3 Train Bound Challenge Data

The train bound challenge attempts to predict whether a train is
eastbound or westbound. A train (bag) contains a variable number of
cars (instances) of different shapes carrying different loads (features).
Because a train’s direction is either positive or negative under the
MIL assumption, two train bound MIL data sets [18], [19], [52] are
used for evaluation. The EastWest data uses 10 eastbound trains as
the positive bags, while the WestEast data uses 10 westbound trains
as positive bags. In other words, these two data sets have the same
learning problem, but the class labels are reversed.

4.3.4 Mutagenicity Prediction Data

The mutagenesis data sets [53] describe a relational issue and have
been widely used to explore inductive logic programming (ILP) tasks
[54]. Mutagenicity predictions for a compound molecule are essen-
tially predictions of carcinogenesis and, as such, the ability to identify
these molecules is critical. Multiple instance learning frameworks
have been successfully used to tackle this problem. In particular, by
using the Proper toolbox [55], relational data can be represented as
multiple instances in a bag by flattening the corresponding structure
into an individual table. A bag represents one compound molecule
in the mutagenesis MIL data sets, Atom and Bond, which contain
all 1618 atoms and all 3995 atom-bond tuples as their instances,
respectively. Each data set contains 125 positive and 63 negative bags.

4.3.5 Scientific Publication Retrieval Data

The DBLP data set consists of bibliographic data from the field of
computer science ! Each record in DBLP, used in this experiment,
is a paper published in the fields of either artificial intelligence (Al:
IJCAI, AAAI, NIPS, UAI, COLT, ACL, KR, ICML, ECML, and
IJCNN) or computer vision (CV: ICCV, CVPR, ECCV, ICPR, ICIP,
ACM Multimedia, and ICME). The data set forms an MIL learning
task with 100 positive (AI) and 100 negative bags [9]. A “bag-of-
words” representation based on TFIDF [56] is used to convert the
abstract of a paper into an instance with 4497 features. Hence, each
paper is a bag and each instance inside the bag denotes either the
paper’s abstract or the abstract of a reference cited in the paper. A
conceptual view of constructing a multi-instance bag is shown in
Figure 8. The objective is to predict whether a paper belongs to the
field of Al or CV field using the abstract of each paper and the
abstracts of its references. It is worth noting that the nature of Al and
CV overlap in many aspects, such as machine learning, optimization,
and visual information retrieval, which creates a challenging multi-
instance learning task.

4.3.6 Online Product Evaluation Data

The online product evaluation task involves food reviews using the
Fine Foods data from the Stanford Network Data Set Collection
2, The data consists of numerous food related reviews from Ama-
zon.com. Each review contains a product ID, a reviewer ID, a product
score on a scale of 1 to 5, and detailed comments by the reviewer
[57]. And each food product may have received multiple reviews. A
product is considered interesting to other customers if one or more of
its core characteristics, such as durability or affordability, has received
an average review score > 4 (very good). A score of < 4 across all
reviews implies the product is not favored by customers. Our goal
is to use the information in the review reports for online product
evaluation. We choose 400 food products (2097 reviews/instances
with 1517 features), each of which has received between 1 and 10
reviews, to form 200 positive bags (an average score > 4) and 200
negative bags (every score < 4). An example of online product bag
representation is shown in Figure 9.

4.3.7 Newsgroup Categorization Data

The data set we choose uses the corpuses of two newsgroups as
a base (rec.motorcycles and talk.politics.mideast) *. Such types of
data sets have been commonly used to evaluate the role of multiple
instance learning frameworks [5], [28], [58]. In each news category,
3% of the posts are randomly selected from a target newsgroup
category (e.g., rec.motorcycles) to generate the positive bags, along
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Fig. 9. Bag representation for the online product evaluation task.

Reviewn -

O Instance

1. http://dblp.uni- trier.de/xml/
2. http://snap.stanford.edu/data/
3. http://people.csail.mit.edu/jrennie/20Newsgroups/
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Fig. 10. Bag representation for the web index recommendation task.

TABLE 2
Compared results in terms of F-measure and AUC with their standard
deviations for the drug activity prediction task.

F-measure AUC
Musk1 Musk2 ||  Muskl Musk2
pMILGDM 0.857+0.111 0.75340.105 || 0.85940.106 0.800+0.108
aMILGDM 0.926+0.090 0.79540.099 || 0.9244-0.092 0.834+0.108
pMILLDM 0.935+0.096 0.85340.085 || 0.93540.101 0.879+0.110
aMILLDM 0.947+0.065 0.85740.092 || 0.94540.070 0.890+0.110
MILMR 0.854+0.100 0.64440.103 || 0.83540.108 0.697+0.109
MILWA 0.829+0.102 0.69640.103 || 0.7894+0.109 0.74440.101
MILIR 0.748+0.102 0.67540.104 || 0.70340.105 0.732+0.103
MILES 0.863+0.100 0.7564-0.102 || 0.84640.103 0.801+0.103
pMILIS 0.805+0.106 0.80040.109 || 0.81740.103 0.835+0.106
aMILIS 0.826+0.103 0.76940.103 || 0.82640.104 0.813+0.102
MILFM 0.828+0.095 0.77340.090 || 0.83940.098 0.8160.102

with posts drawn uniformly from other newsgroup categories. The
articles are post-processed with stemming, stop-word removal, and
information-gain ranked feature selection [59]. Then, the top 200
TFIDF [56] words are selected as features to represent each post
(instance). Ultimately, each data set contains 100 bags with 50 being
positive. The rec.motorcycles (shorten for News.rm) bag consists of
4730 instances, and the talk.politics.mideast ((shorten for News.tpm)
bag contains 3376 instances.

4.3.8 Web Index Recommendation Data

The web index recommendation task aims to recommend interesting
web index pages to a particular user based on his or her preferences.
Web pages from the Internet often have rich information, which is
represented as a title or a brief summary with the details provided
in linked pages. In practice, users may only indicate their interest
in a page and not the specific content they prefer. For example, the
technical web index page in Figure 10 contains multiple concepts
(e.g., cell phones, scholarships, traveling, and Google), but not all
information on the page is likely to be of interest to the user. Such an
observation naturally raises a multi-instance learning problem, where
each web index page can be regarded as a bag with the linked pages
inside as the instances. If one or more linked pages are of interest to
the user, the page is considered positive, otherwise negative. The most
frequent terms are explored as features to represent the instance/page.

4.4 Experimental Results

Tables 2-8 report the classification results in terms of F'-measure
and area under ROC curve (AUC) with their standard deviations for
the drug activity prediction task on Musk1 and Musk2, the content-
based image classification task on Elephant and Tiger, the train
bound challenge task on EastWest and WestEast, the mutagenicity
prediction task on Atom and Bond, the scientific publication retrieval
task on AICV, the online product evaluation task on Food, the
newsgroup categorization on News.rm and News.tpm, and the web
index recommendation task on Web7 and WebS8.

TABLE 3
Compared results in terms of F-measure and AUC with their standard
deviations for the content-based image classification task.

F-measure AUC
Elephant Tiger || Elephant Tiger
pMILGDM 0.857+0.066 0.770+0.089 || 0.865+0.074 0.77010.067
aMILGDM  0.845+0.057 0.751+£0.092 || 0.85540.063 0.74540.072
pMILLDM  0.828+0.070 0.730+0.074 || 0.8404+0.082 0.76010.080
aMILLDM  0.843+0.038 0.763+0.102 || 0.84540.037 0.7504-0.097
MILMR 0.774+0.104 0.714+£0.102 || 0.7554+0.091 0.70040.103
MILWA 0.709+0.106  0.703+0.109 || 0.59040.073 0.5954-0.089
MILIR 0.741+0.101  0.609+0.096 || 0.7104+0.098 0.615+0.088
MILES 0.769+0.089  0.720+0.089 || 0.77540.089 0.7204-0.090
pMILIS 0.796+0.102  0.589+0.099 || 0.810+0.099 0.665+0.092
aMILIS 0.788+0.101  0.737+£0.092 || 0.78540.098 0.7504-0.102
MILFM 0.757+0.104 0.703+0.084 || 0.7854+0.109 0.73040.094
TABLE 4

Compared results in terms of F-measure and AUC with their standard
deviations for the train bound challenge task.

F-score AUC
EastWest WestEast || EastWest WestEast
pMILGDM 0.85740.109 0.842+0.109 || 0.85040.106 0.850+40.106
aMILGDM 0.95240.106 0.947+0.073 || 0.9504+0.026 0.950+0.106
pMILLDM 0.80040.103 0.588+0.107 || 0.8004+0.079 0.650+40.108
aMILLDM 0.78240.100 0.667+0.147 || 0.7504+0.117 0.700£0.107
MILMR 0.66740.101 0.632+£0.115 || 0.65040.101 0.65040.132
MILWA 0.6214+0.100 0.400+0.171 || 0.4504+0.139 0.250+0.072
MILIR 0.50040.102 0.353+£0.126 || 0.50040.131 0.45040.144
MILES 0.60040.102 0.600+0.130 || 0.6004+0.115 0.600+0.115
pMILIS 0.69640.106 0.632+0.126 || 0.65040.128 0.650+0.149
aMILIS 0.5264+0.104 0.571£0.134 || 0.5504+0.133 0.550+0.145
MILFM 0.50040.103 0.625+0.188 || 0.60040.122 0.700+40.085
4.4.1 Comparisons with Non-bag Mapping Instance Selection

MIL Approaches

Among all the non-bag mapping instance selection methods, MILWA
shows the worst performance in most cases. This is because MILWA
assumes that all the instances in a bag share the bag’s label. However,
for a positive bag, at least one instance inside is positive, i.e., not
all its instances must be positive. As a result, simply propagating
the bag label to all the instances inside deteriorates classification
performance. MILMR achieves a performance gain, mainly because
of the mean strategy implemented on the bags. Nevertheless, for the
drug activity prediction (e.g., Musk2 data) in Table 2, mutagenicity
prediction (e.g., Bond data) in Table 5, newsgroup categorization
(e.g., News.t.p.m data) in Table 7, and web index recommendation
(e.g., WebS8 data) in Table 8§, the MILMR cannot achieve comparable
classification performance to MILIR. This is partly because MILIR
makes use of negative bag distribution. Overall, the experiments show
that, of the instance selection methods, non-bag mapping methods do
not perform as well as the bag mapping methods.

4.4.2 Comparisons with Bag Mapping Instance Selection MIL
Approaches

Within the bag mapping instance selection methods, MILES often
outperforms MILFM, especially on the scientific publication retrieval
task. As shown in Table 6, MILES achieves a 66.7% F'-measure and
a 65.5% AUC — much higher than MILFM’s F'-measure (53.2%) and
AUC (53.3%) — with similar observations for the other learning tasks,
like mutagenicity prediction (e.g., Atom) in Table 5 and web index
recommendation in Table 8. Such superiority of MILES is mainly
attributed to full use of the instances for bag mapping. However,
MILES cannot achieve better classification performance than MILFM
in some cases, for instance, on the train bound challenge WestEast



TABLE 5
Compared results in terms of F-measure and AUC with their standard
deviations for the mutagenicity prediction task.

TABLE 7
Compared results in terms of F-measure and AUC with their standard
deviations for the newsgroup categorization task.

F-measure AUC F-measure AUC
Atom Bond I Atom Bond News.rm News.tpm || News.rm News.tpm
pMILGDM 0.89140.114 0.856+0.102 || 0.861£0.086 0.785+0.104 pMILGDM 0.75040.103 0.706+£0.101 || 0.780£0.107 0.750+0.108
aMILGDM 0.881£0.109 0.84740.102 || 0.841+£0.082 0.75740.104 aMILGDM 0.767+£0.115 0.73340.101 || 0.800+£0.101 0.7604-0.108
pMILLDM 0.88140.086 0.859+0.111 || 0.812+0.060 0.773+0.103 pMILLDM 0.76440.096 0.758+0.101 || 0.790£0.105 0.790+0.106
aMILLDM 0.894+0.081 0.86140.111 || 0.829+0.063 0.78940.103 aMILLDM 0.651£0.113 0.71340.097 || 0.700+£0.105 0.75040.107
MILMR 0.8254+0.111 0.797+0.103 || 0.733+£0.115 0.72040.103 MILMR 0.42740.095 0.457+0.074 || 0.570+0.107 0.62040.102
MILWA 0.811+0.117 0.812£0.085 || 0.59140.222 0.599+0.137 MILWA 0.4474+0.098 0.490£0.091 || 0.50540.102 0.505+0.101
MILIR 0.82040.108 0.821+0.093 || 0.749+0.112 0.74540.101 MILIR 0.53840.088 0.571+£0.083 || 0.640+£0.099 0.670+0.103
MILES 0.8794+0.119 0.847£0.095 || 0.80140.103 0.757+0.102 MILES 0.650+0.116 0.63540.101 || 0.71040.103 0.690+0.108
pMILIS 0.82940.116 0.824+0.101 || 0.761£0.117 0.74740.103 pMILIS 0.6434+0.117 0.628+0.127 || 0.700+£0.106 0.680+0.106
aMILIS 0.8274+0.114 0.821£0.100 || 0.76540.114 0.742+0.105 aMILIS 0.6431+0.114 0.64240.098 || 0.70040.107 0.690+0.108
MILFM 0.8484+0.114 0.853+0.096 || 0.773+£0.112 0.70940.100 MILFM 0.6514+0.101 0.659+0.106 || 0.700+£0.101 0.71040.103
TABLE 6 TABLE 8

Compared results for the scientific publication retrieval (AICV) and online
product evaluation (Food) tasks.

F-measure AUC
AICV Food [|  AICV Food
pMILGDM 0.764+0.107 0.565+0.101 || 0.720£0.097 0.61340.087
aMILGDM 0.767+0.105 0.582+0.099 || 0.715£0.078 0.64840.066
pMILLDM 0.806+0.027 0.45540.037 || 0.820£0.053 0.62340.049
aMILLDM 0.864+0.107 0.535+0.076 || 0.840+0.090 0.62340.079
MILMR 0.436+£0.022 0.450=£0.069 || 0.565+£0.046 0.58040.075
MILWA 0.412+0.109 0.420=£0.108 || 0.423£0.093 0.56540.058
MILIR 0.445+0.099 0.450=0.087 || 0.555+£0.079 0.58040.081
MILES 0.667+0.103 0.497+0.052 || 0.655+£0.100 0.56040.035
pMILIS 0.699+0.106 0.37740.079 || 0.725£0.102 0.56740.060
aMILIS 0.760+0.097 0.492+40.064 || 0.765+£0.090 0.55540.079
MILFM 0.532+0.024 0.37540.047 || 0.535£0.034 0.56740.066

data in Table 4. This suggests that not all instances contribute to the
final classification performance. Although MILFM uses the clusters
in negative bags to overcome this issue, it still uses all the instances in
the positive bags without further improvement. Accordingly, MILIS
(pMILIS or aMILIS), which uses an instance pruning strategy based
on kernel density estimation, performs better than the other two
bag mapping approaches, i.e., MILES with non-instance pruning and
MILFM with partial instance pruning.

4.4.3 Comparisons with Discriminative Bag Mapping MIL Ap-
proaches

Compared to MIL methods with instance selection, the four ap-
proaches based on discriminative bag mapping demonstrate better
performance on all data sets. For example, the proposed local discrim-
inative bag mapping aMILLDM, which is based on all bags, achieves
the highest classification performance for drug activity prediction
(e.g., Muskl) in Table 2, mutagenicity prediction (e.g., Bond) in
Table 5, and web index recommendation (e.g., Web7) in Table 8. The
proposed global discriminative bag mapping aMILGDM based on all
bags and pMILGDM based on only positive bags achieve the highest
classification performance for content-based image classification in
Table 3 and the train bound challenge in Table 4. aMILGDM and
aMILLDM’s performance is comparable. In summary, aMILDM
(aMILGDM or aMILLDM), which constructs the DIP using all
bags, outperforms pMILDM (pMILGDM or pMILLDM) using only
positive bags, because more information is used to construct the DIP.

4.4.4 Bag Mapping Performance Comparisons w.r.t Different
size of IIP or DIP

In terms of the transitional bag mapping MIL methods, MILIS with
different sizes of IIP (aMILIS with positive bags or pMILIS with all

Compared results in terms of F-measure and AUC with their standard
deviations for the web index recommendation task.

F-measure AUC
Web7 Web8 I Web7 Web8
pMILGDM 0.66740.109 0.660+£0.106 || 0.704+0.105 0.680+0.101
aMILGDM  0.660+£0.106 0.634+0.108 || 0.695+0.105 0.67040.105
pMILLDM  0.68940.069 0.703+0.095 || 0.75240.103 0.756+0.107
aMILLDM 0.723£0.106 0.707+0.108 || 0.764+0.102 0.74140.102
MILMR 0.6614+0.102 0.647+0.102 || 0.595+0.107 0.56440.091
MILWA 0.662+0.102 0.65440.104 || 0.53440.067 0.508+0.081
MILIR 0.64940.097 0.468+0.101 || 0.570+0.087 0.629+0.082
MILES 0.595+0.101 0.571£0.103 || 0.6024+0.108 0.600+0.105
pMILIS 0.518+0.086 0.512+0.105 || 0.62740.066 0.639+0.100
aMILIS 0.667+0.102 0.661£0.102 || 0.6654+0.103 0.656+0.109
MILFM 0.5054+0.094 0.416+0.081 || 0.597+0.103 0.596+0.102

bags) achieves a range of classification performance results with both
the global or local discriminative bag mapping MIL methods. Figures
11-17 report the bag mapping classification performance with respect
to different sizes of IIP or DIP. The number of instances used in bag
mapping is varied from one to the number of bags provided for each
data on the eight different types of learning tasks. As the number of
instances increases, the classification performance improves. That is
because the new instances provide further information that is useful
to the bag mapping. When the instances in the IIP or DIP are not
adequate, the rising trend in performance is insignificant. The train
bound challenge data with only 20 bags is a good example of this.
MILES and MILFM achieve comparable F'-measure and AUC scores
but are inferior to MILIS, which uses only one instance from each
bag for bag mapping (i.e., instance pruning). For instance, when the
size of the IIP is greater than 20, MILIS continuously outperforms
MILES and MILFM. However, all the three types of bag mapping
approaches, including the state-of-the-art MILFM, cannot match the
performance of the proposed discriminative bag mapping method in
either of its local (MILLDM) or global (MILGDM) variants.

Figure 18 reports the maximum and average classification perfor-
mance for the local and global DIP-based discriminative bag mapping
MILDM compared to traditional IIP bag mapping approaches. Fig-
ures 18(a).1 and 18(a).2 show the max and average F'-measure for a
range of IIP/DIP sizes. Figures 18(b).1 and 18(b).2 show the same in
terms of AUC. According to the results, our proposed MILLDM and
MILGDM show more improvement over the other three baselines,
and a comparable result between the two. On average, MILDM is 5%
- 25% more accurate for classification performance in terms of F'-
measure than the traditional IIP bag mapping methods (e.g., around
20% improvements on the train bound challenge task and the online
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Fig. 12. Bag mapping performance comparisons with different sizes of IIP or DIP for content-based image classification: (a) Elephant and (b) Tiger.
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Fig. 13. Bag mapping performance comparisons with different sizes of IIP or DIP for train bound challenge: (a) EastWest and (b)WestEast.
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Fig. 14. Bag mapping performance comparisons with different sizes of IIP or DIP for mutagenicity prediction: (a)
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Fig. 15. Bag mapping performance comparisons with different sizes of IIP or DIP for newsgroup categorization: (a) News.rm and (b) News.tpm.
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Fig. 17. Bag mapping performance comparisons with different sizes of IIP or DIP for web index recommendation: (a) Web7 and (b) Web8.

TABLE 9
Pairwise t-test results for MILDM (global MILGDM or local MILLDM) vs. general bag mapping MIL methods on eight types of learning tasks across 14
data sets. A1 and A2 denote the proposed DIP-based global and local discriminative bag mapping MILGDM and MILLDM, respectively. B, C and D

denote IIP-based MILES, MILIS, and MILFM, respectively.

(a) t-test on F'-measure

(b) t-test on AUC

DataSets Al-A2 || Al-B Al-C  Al-D || A2B  A2-C  A2D DataSets Al-A2 || Al-B Al-C  Al-D || A2B  A2-C  A2D
Muskl 6.43e-09 || 4.89e-07 2.75e-17 8.11e-07 || 1.56e-20 5.35e-27 4.33e-21  Muskl 1.66e-07 || 2.27e-09 7.61e-15 1.44e-06 || 8.41e-23 6.46e-27 3.71e-19
Musk2 6.91e-25 || 2.76e-07 1.80e-01 1.12e-05 || 8.28e-35 2.86e-19 1.36e-08  Musk2 3.93e-25 || 6.44e-08 1.60e-01 6.42e-06 || 9.19e-35 3.07e-19 3.98e-09
Elephant  1.07e-17 || 3.13e-44 2.54e-48 3.18e-53 || 1.25¢-39 6.25¢-41 3.59¢-38  Elephant  8.58e-17 || 1.35e-48 7.75e-54 5.51e-49 || 1.04e-42 2.39e-45 5.13e-36
Tiger 8.18e-08 || 1.10e-35 4.87e-31 5.93e-41 || 4.78¢-30 1.33e-35 1.16e-32  Tiger 8.74e-02 || 4.40e-31 1.67e-24 8.27e-38 || 1.90e-42 1.56e-35 1.62e-37
EastWest  4.18e-05 || 3.09¢e-09 1.25e-07 4.95e-10 || 5.14e-07 1.19e-05 2.80e-08 EastWest  1.49e-06 || 6.55e-11 1.89¢-09 1.88e-12 || 1.81e-07 2.67e-06 8.92e-09
WestEast  9.63e-08 || 1.59e-11 1.25e-10 1.12e-12 || 3.60e-06 1.05¢-08 6.46e-08 ~ WestEast 1.83e-06 || 5.84e-10 2.60e-10 1.59e-12 || 1.81e-07 1.05e-08 1.96e-08
Atom 1.55e-02 || 4.88e-25 4.99e-66 1.24e-13 || 4.24e-23 4.1le-61 1.5le-13  Atom 1.70e-05 || 5.12e-36  9.87e-62 2.41e-22 || 1.34e-34 3.62e-61 7.35e-19
Bond 3.65e-05 || 1.58e-26 3.66e-11 1.29e-15 || 1.07e-31 2.64e-18 4.27¢-30  Bond 2.04e-05 || 1.49e-24 6.82e-12 2.75e-14 || 8.94e-30 4.44e-20 1.11e-29
AICV 1.35¢-24 || 1.1le-11 3.64e-20 1.51e-26 || 2.79e-27 8.59e-40 5.52¢-43  AICV 1.87e-30 || 1.38e-01 9.08¢-09 2.0le-10 || 6.56e-24 5.13e-38  4.26e-39
Food 1.13e-01 || 8.87e-29 3.24e-22 9.64e-31 || 4.44e-28 9.38e-22 2.06e-28  Food 8.07e-03 || 8.38e-28 4.98e-27 7.45e-27 || 3.24e-26 1.73e-33 1.55e-33
News.rm  2.33e-10 || 4.69e-28 3.87e-29 4.11e-29 || 5.34e-22 1.29e-31 1.06e-21 News.rm  6.51e-09 || 1.75e-26 4.22e-26 4.41e-30 || 3.13e-24 5.58e-28 1.45e-25
News.tpm  3.67¢-03 || 8.73e-27 1.34e-17 5.92e-28 || 1.25e-17 3.45e¢-25 5.57¢-20  News.tpm 3.48¢-03 || 8.79e-30 7.35e-16 8.39e-27 || 1.37e-21 1.26e-26 1.19e-22
Web7 3.02e-04 || 4.68e-27 4.69e-23 3.70e-29 || 5.52e-32 2.75e-30 1.50e-31  Web7 5.73e-17 || 7.82e-27 2.20e-25 3.05e-26 || 8.4le-34 7.42e-37 5.42e-40
Web8 9.83e-09 || 1.21e-31 3.94e-18 3.25e-29 || 1.02e-40 2.97e-22 9.61e-35  Web8 1.53e-17 || 5.06e-29 3.12e-16 6.98e-27 || 5.59e-38 2.06e-23 1.11e-31
TABLE 10
Time Complexity: bag mapping instance selection approaches.
pMILDM aMILDM MILES pMILIS aMILIS MILFM
O(p™n? +nTpd) O(pn? + npd) O(p2d) O(p~ptd+ ntpd) O(p~pd + npd) O(p~nTt+pTd+nTd)

product evaluation task, and 10% improvements on the newsgroup
categorization task and the web index recommendation task as shown
in Figure 18(a)). Similar observations can be found in terms of AUC
classification performance in Figure 18(b). This demonstrates that,
by using the DIP evaluation criteria, MILDM is able to find the most
effective instances to map the instance bags for classification.

4.4.5 Statistical Significance Comparisons

In reality, however, MILDM may not always achieve good perfor-
mance. For example, the global MILGDM does not perform as well
as MILFM when the size of the IIP/DIP drops to between 20 and
24 (Figures 11(b).1 and 11(b).2). To confirm that this observation
has no effect on the superiority of the discriminative bag mapping

confidence («

approaches, we conduct ¢-test results on the MILDM in Table 9,
and summarize a two-tailed t-test between the MILDM and the
traditional bag mapping approaches, MILES, MILIS, and MILFM.
All the pairwise t-test values are calculated with a 95% level of
0.05). Each value in Table 9 is the p-value for
a pairwise t-test between two learning algorithms. According to
statistical theory, the proposed MILDM has achieved a statistically

significant improvement compared to the other bag mapping methods

if the p-value is less than 0.05.

From the second column in each subtable (e.g., Table 9(a)), the
difference between MILLDM and MILGDM is statistically signif-
icant with most of the p-values at less than 0.05. The exceptions
are their performance on the online product evaluation task in terms
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Fig. 18. Maximum and average classification performance (F-measure and AUC) for the local and global DIP-based discriminative bag mapping methods
(MILLDM and MILGDM) vs. traditional [IP bag mapping approaches, MILES, MILIS, and MILFM, for eight different types of multiple instance learning tasks
across 14 MIL data sets.

TABLE 11
Average CPU running time for the compared algorithms in the training phase on eight MIL learning tasks (measured in milliseconds).
Musk2 Elephant EastWest Bond AICV Food News.rm Web7

# of Ins: 6598 # of Ins: 1391 # of Ins :213 # of Ins :3995 # of Ins :1151 # of Ins :2097 # of Ins :4730 # of Ins :15000

# of Att: 166 # of Att: 230 # of Att: 24 # of Att:16 # of Att: 4497 # of Att: 1517 # of Att: 200 # of Att: 26
pMILGDM 3241 1015 72 1171 8424 11080 6540 99467
aMILGDM 19930 1726 82 1544 16348 20058 12382 201491
pMILLDM 3302 1016 71 1142 8433 11236 6474 99459
aMILLDM 19815 1712 76 1502 16513 20089 12393 200234
MILMR 314 534 92 175 43621 13291 359 71175
MILWA 77605 5563 142 3049 30887 115922 45185 2183526
MILIR 13988 714 87 414 8775 9547 5117 93861
MILES 17169 1838 148 2752 12411 17405 10488 186948
pMILIS 2441 613 95 501 4442 5140 2775 48910
aMILIS 14185 936 114 633 8522 9465 5322 98410
MILFM 35070 4964 185 2611 69889 49227 16308 492891
MISVM 121326 19070 278 24613 110461 215016 21225 7271408
MILR 80693 15686 108 1542 5513 125503 2530 2629114
MIEMDD 1182981 667648 1324 12730 134413 3439775 217528 1511795
MIBoost 21641 4509 101 1272 239730 68150 11470 1890149

TABLE 12
Average CPU running time for the compared algorithms in the testing phase on eight MIL learning tasks (measured in milliseconds).
Musk2 Elephant EastWest Bond AICV Food News.rm Web7

# of Ins: 6598 # of Ins: 1391 # of Ins :213 # of Ins :3995 # of Ins :1151 # of Ins :2097 # of Ins :4730 # of Ins :15000

# of Att: 166 # of Att: 230 # of Att: 24 # of Att:16 # of Att: 4497 # of Att: 1517 # of Att: 200 # of Att: 26
pMILGDM
pMILLDM 205 282 60 242 1305 1461 216 2002
PMILIS
aMILGDM
aMILLDM 358 394 80 295 1730 2868 321 3713
aMILIS
MILMR 113 232 42 173 1846 2349 125 7985
MILWA 3605 482 75 486 1961 4287 812 31547
MILIR 1554 252 87 200 1135 1936 653 10507
MILES 2037 377 47 460 1539 2809 1250 20850
MILFM 852 189 29 345 792 1568 657 10925
MISVM 508 112 14 117 298 628 280 17525
MILR 96 115 18 108 84 31 15 143
MIEMDD 86 79 72 75 141 117 84 300

MIBoost 129 148 15 128 2314 511 262 17463




TABLE 13
Performance comparison (AUC) when using different supervised learning
algorithms as the base classifiers in MILDM.

Elephant Bond AICV
MILDM+IB1 0.865+0.074 0.78940.103 0.84040.090
MILDM+NB 0.783+0.071 0.713£0.059 0.782+0.101
MILDM+SMO 0.820£0.094 0.75440.082 0.806+0.032
MILDM+J48 0.814+0.115 0.764+£0.135 0.775+0.108

of F-measure, and the content-based image classification task (e.g.,
Tiger) in terms of AUC performance where their performance is
comparable. Compared to the traditional bag mapping approaches,
MILDM outperforms MILES, MILIS, and the state-of-the-art MILFS
in all cases.

4.4.6 Time Complexity Analysis

The main components of the MILDM’s time complexity include
constructing the DIP and bag mapping. Constructing the DIP for
aMILDM costs O(png), where p represents the number of instances
in all bags. The bag mapping procedure costs O(npd), where d
denotes the dimensions of the data. By contrast, pMILDM has a
complexity of O(pTn? + nTpd), with pT denoting the number of
instances in the positive bags and n* denoting the size of positive
bags. Table 10 summarizes the time complexities of the other bag
mapping approaches with instance selection. MILES uses all the
instances as the IIP for bag mapping with O(p?d) computational
complexity. pMILIS requires a kernel density estimation based on the
distribution of the negative instances to select one instance from the
positive bag for the IIP with O(p~p*d) complexity, where p~ de-
notes the number of instances in the negative bags. Together with the
bag mapping complexity O(n™pd), pMILIS’s total time complexity
is O(p~pTd + n*pd). Similarly, aMILIS costs O(p~pd + npd).
MILFM uses the instances in positive bags and the clusters of
negative instances, which costs O(p~n™t + pTd + n*d), where the
t denotes the number of iterations during the clustering, O(p~n™t)
represents the clustering process, and O(p™d + nTd) represents the
bag mapping.

4.4.7 Efficiency Comparisons

Table 11 reports the average CPU runtime performance of the training
phase on the eight different multi-instance learning tasks. Each data
set, e.g., Food, represents a specific MIL learning task, e.g., online
product evaluation. When the number of instances or attributes is
small, as in the EastWest data with 24 attributes or the Bond data
with 16 attributes, the runtime between the proposed pMILDM with
only positive bags and aMILDM with all bags is similar. However, as
the number of instances or attributes increases, pMILDM achieves a
much better runtime performance than aMILDM. This is understand-
able given pMILDM uses fewer bags to construct the DIP.

The runtime performance of non-bag mapping approaches slight-
ly outperforms the bag mapping approaches. This is largely because
the bag mapping processing requires extra learning time. However,
the proposed MILDM takes less runtime than the non-bag mapping
with a large amount of data. For example, pMILDM’s runtime on
scientific publication retrieval AICV data is around 8000 millisec-
onds, whereas MILMR and MILWA takes four time as long (about
32000 milliseconds). Among all bag mapping methods, the state-of-
the-art MILFM has the worse runtime performance, mainly attributed
to the time-consuming clustering procedures on the negative bags.
Compared to the traditional bag mapping approach MILIS, pMILDM
achieves comparable runtime performance. Furthermore, pMILDM
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significantly outperforms MILES for runtime efficiency, because
MILES uses all the instances in the bags to build an IIP for mapping.
By contrast, pMILDM only selects one instance from each positive
bag to build the DIP. In summary, the discriminative bag mapping
MILDM achieves a good balance between runtime efficiency and
classification effectiveness.

Table 12 reports the average CPU runtime performance for the
testing phase. After the DIP or IIP is constructed in the training phase,
the instance selection bag mapping methods directly use the DIP or
IIP for test data bag mapping. In this case, the instance selection-
based methods with the same sized DIP or IIP (e.g., pMILGDM,
pMILLDM and pMILIS) have the same testing time. In other words,
among the bag mapping instance selection-based algorithms, the
corresponding testing time depends on m (the size of DIP or IIP).
The larger the m, the more testing time the algorithm needs. For
instance, MILES has the worse runtime performance among the bag
mapping methods because it uses all the instances for mapping.

5 DISCUSSION
5.1 MILDM with Different Base Classifiers

To demonstrate that MILDM is effective for different learning al-
gorithms, four representative classifiers are used for validation: k-
nearest neighbors (IB1), naive Bayes (NB), decision trees (J48), and
support vector machines (SMO). Table 13 reports the maximum AUC
achieved by these four versions of MILDM. The results show that
MILDM using IB1 achieves the highest performance, the alternative
base classifiers achieve more or less comparable classification per-
formance on all three data sets. However, none of the alternatives
produces consistently better performance on the three data sets than
the MILDM with IB1.

5.2 Comparisons to MIL without Instance Selection

Our experiments show that MILDM achieves the best performance
of all the instance selection MIL methods. In this subsection, we
report the performance of MILDM compared to four multi-instance
learning algorithms — MISVM [48], MILR [26], MIEMDD [30],
and MIBoost [27] (Table 14). MISVM is an implementation of
support vector machines for MIL, MILR is a logistics-based learning
method, MIEMDD is an improved diverse density approach, and
MIBoost is an algorithm inspired by AdaBoost. Although MISVM,
MILR, MIEMDD, and MIBoost achieve good performance, they still
cannot reach the best performance of the proposed discriminative bag
mapping MILDM.

5.3 Scalability of MILDM

We compare the proposed methods with the non-bag mapping in-
stance selection approaches (MILMR, MILWA and MILIR) and
the bag mapping instance selection approaches (MILES, pMILIS,
aMILIS and MILFM) on the large-scale “Speaker” data set which
includes 430 bags with 583,600 instances. The numbers of instances
per bag are 1357. More details are available in [60]. With this data,
70% of the data is used for training with the remainder for testing.
Table 15 shows the F-measure and AUC classification performance
results. We can see that the proposed MILDM approach still exhibits
clear advantages in terms of these two evaluation metrics.

6 CONCLUSION

This paper investigates an instance selection-based multiple-instance
bag mapping task, where each bag is mapped to a new feature
space using a small number of selected instances from multi-instance



TABLE 14
Compared results of MILDM (global MILGDM or local MILLDM) vs. general MIL methods on eight types of learning tasks across 14 data sets. MILDM
shows the best performance achieved by the global MILGDM or local MILLDM.
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(a) F-measure (b) AUC

DataSets ~ MILDM || MISVM MILR MIEMDD MiBoost DataSets ~ MILDM || MISVM MILR MIEMDD MiBoost
Musk1 0.94740.065 || 0.71640.192 0.74240.215 0.85540.143 0.839+£0.132 Musk1 0.94540.070 || 0.75940.135 0.7514£0.230 0.905£0.092 0.838+0.109
Musk2 0.85740.092 || 0.78540.117 0.8034+0.047 0.81740.102 0.789+£0.115 Musk2 0.89040.110 || 0.73040.142 0.86240.080 0.846+0.071 0.859+0.100
Elephant  0.8574:0.066 || 0.79440.086 0.74940.151 0.728+£0.090 0.743+£0.142 Elephant  0.8654-0.074 || 0.78040.086 0.83140.111 0.810£0.089 0.772+0.122
Tiger 0.770-20.089 || 0.724:£0.163  0.745+0.057 0.70940.134 0.71620.104  Tiger 0.770-£0.067 || 0.740£0.123  0.75040.062 0.72740.041 0.72140.114
EastWest  0.952+0.106 || 0.714+£0.122 0.667+0.477 0.79440.085 0.72640.038 EastWest  0.95040.026 || 0.760£0.211 0.710£0.222 0.769+0.098 0.78540.047
WestEast  0.94740.073 || 0.78640.211 0.54540.483 0.765+£0.066 0.743+£0.012 WestEast  0.9504-0.106 || 0.75440.258 0.400+£0.116 0.749+0.048 0.751£0.012
Atom 0.894-£0.081 || 0.799-£0.180 0.79740.187 0.80840.051 0.75340.133  Atom 0.8612£0.086 || 0.772-£0.145 0.7760.121 0.75940.062 0.858-0.095
Bond 0.86110.111 || 0.78240.127 0.82040.183 0.804+0.073 0.736£0.147 Bond 0.78940.103 || 0.7514+0.089 0.8184+0.073 0.727£0.033 0.750£0.085
AICV 0.86440.107 || 0.80840.069 0.81940.143 0.76740.068 0.73040.062  AICV 0.840-£0.090 || 0.785:£0.123  0.806:0.079 0.794-0.098 0.80940.100
Food 0.58240.099 || 0.54540.063 0.54440.108 0.56240.101 0.561£0.075 Food 0.64810.066 || 0.61540.073 0.60340.126 0.612+0.088 0.607£0.110
Newsrm  0.767=0.115 || 0.765£0.131 0.714£0.106 0.729+0.038 0.74440.066  Newsrm  0.800=£0.101 || 0.770£0.125 0.709-£0.087 0.7302£0.071 0.71040.009
News.tpm 0.75840.101 || 0.72640.141 0.7134+0.212 0.701£0.084 0.745£0.072 News.tpm  0.79040.106 || 0.710£0.110 0.732+£0.154 0.752+0.086 0.72610.063
Web7 0.7234+0.106 || 0.70140.172 0.67540.227 0.68640.028 0.619+0.134 Web7 0.76410.102 || 0.69240.173 0.69940.169 0.660+0.026 0.733+0.149
Web8 0.70740.108 || 0.69740.136 0.63240.156 0.67740.076 0.629+0.132 Web8 0.75640.107 || 0.68640.097 0.61940.125 0.610£0.107 0.726£0.103

TABLE 15
Compared results on large-scale Speaker data in terms of F-measure and AUC.

pMILGDM aMILGDM pMILLDM aMILLDM MILMR MILWA MILIR MILES pMILIS aMILIS MILFM

F-measure 0.961 0.985 0.894 0.932 0.750 0.724 0.800 0.900 0.864 0.889 0.822

AUC 0.952 0.972 0.883 0.917 0.778 0.738 0.747 0.909 0.812 0.858 0.830

ags. The mapped instances can be used direc eneric learnin .-H. Zhou, K. Jiang, an . Li, “Multi-instance learning based we
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