
K-Ary Tree Hashing for
Fast Graph Classification

Wei Wu , Bin Li , Ling Chen, Xingquan Zhu, Senior Member, IEEE, and

Chengqi Zhang , Senior Member, IEEE

Abstract—Existing graph classification usually relies on an exhaustive enumeration of substructure patterns, where the number

of substructures expands exponentially w.r.t. with the size of the graph set. Recently, the Weisfeiler-Lehman (WL) graph kernel

has achieved the best performance in terms of both accuracy and efficiency among state-of-the-art methods. However, it is still

time-consuming, especially for large-scale graph classification tasks. In this paper, we present aK-Ary Tree based Hashing (KATH)

algorithm, which is able to obtain competitive accuracy with a very fast runtime. The main idea of KATH is to construct a traversal table

to quickly approximate the subtree patterns in WL usingK-ary trees. Based on the traversal table, KATH employs a recursive indexing

process that performs only r times of matrix indexing to generate all ðr� 1Þ-depthK-ary trees, where the leaf node labels of a tree

can uniquely specify the pattern. After that, the MinHash scheme is used to fingerprint the acquired subtree patterns for a graph.

Our experimental results on both real world and synthetic data sets show that KATH runs significantly faster than state-of-the-art

methods while achieving competitive or better accuracy.

Index Terms—Graph classification, labeled graphs, MinHash, tree hashing, randomized hashing

Ç

1 INTRODUCTION

THE surge of real-world graph data, such as chemical
compounds, networks and social communities, has led

to the rise of graph mining research [1], [2], [3], [4], [5], [6],
[7], [8], [9]. Graph classification is an important graph min-
ing task that aims to train a classifier from training data to
predict class labels of testing data, where both training and
testing examples are graphs.

Due to the arbitrary structure of a graph, it is not easy to
compute graph similarities because graphs are not in the
same intrinsic space. The essential challenge for graph clas-
sification is to extract features from graphs and represent
them as a vector in a common feature space to facilitate
classifier training within a generic machine learning frame-
work, such as support vector machines (SVM) [10] and
logistic regressions.

In the past, there have been numerous works devoted to
extracting substructures, e.g., walks [11], [12], paths [13],
and subtrees [14], [15]. Graph comparison can be conducted

in a common feature space spanned by the exhaustively
enumerated substructures from the entire graph set. How-
ever, the substructure set expands exponentially with the
increase of the size of the graph set. Both the computational
and spatial capabilities of lab computers will become insuf-
ficient for handling large-scale graph classification tasks
engaging 105 or more graphs. So far, most studies on graph
kernels and graph fingerprinting have been conducted on
small benchmark graph sets with 102 � 103 graphs. Even on
such small graph sets, many classical graph kernel methods,
such as the fast geometric random walk kernel [16], the
p-random walk kernel [11], [12], and the shortest path
kernel [13], may take hours or even days to construct a ker-
nel matrix [17].

Recently, the Weisfeiler-Lehman (WL) graph kernel [17]
achieves the best performance in terms of both accuracy
and efficiency among the state-of-the-art graph kernel meth-
ods. It recursively relabels the subtree pattern composed of
itself and its neighboring nodes over iterations as graph fea-
tures, the number of which is only in linear in the number
of edges. However, the WL graph kernel needs to maintain
a global subtree pattern list in memory as a common feature
space for representing all the graphs. As the size of the
graph set increases and new subtree patterns appear, the
efficiency of subtree insertion and search operations is
dramatically slowed.

One solution to sketching high-dimensional (or even infi-
nite-dimensional) data is to use hashing techniques [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], or similarly, random projections [35], [36] to
map them into a fixed number of dimensions as an estimator
of the original high-dimensional feature vectors. Never-
theless, most existing sketching algorithms are designed for

� W. Wu, L. Chen, and C. Zhang are with the Centre for Artificial Intelli-
gence, FEIT, University of Technology Sydney, Ultimo, NSW 2007,
Australia. E-mail: william.third.wu@gmail.com, {ling.chen, chengqi.
zhang}@uts.edu.au.

� B. Li is with the School of Computer Science, Fudan University, Shanghai
200433, China. E-mail: libin@fudan.edu.cn.

� X. Zhu is with the Department of Computer and Electrical Engineering
and Computer Science, Florida Atlantic University, Boca Raton, FL
33431, and the School of Computer Science, Fudan University, Shanghai
200433, China. E-mail: xzhu3@fau.edu.

Manuscript received 24 Apr. 2017; revised 16 Nov. 2017; accepted 27 Nov.
2017. Date of publication 11 Dec. 2017; date of current version 30 Mar. 2018.
(Corresponding author: Wei Wu.)
Recommended for acceptance by H. Xiong.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2782278

936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-0975-4613
https://orcid.org/0000-0002-9633-0033
https://orcid.org/0000-0002-9633-0033
https://orcid.org/0000-0002-9633-0033
https://orcid.org/0000-0002-9633-0033
https://orcid.org/0000-0002-9633-0033
https://orcid.org/0000-0001-5715-7154
https://orcid.org/0000-0001-5715-7154
https://orcid.org/0000-0001-5715-7154
https://orcid.org/0000-0001-5715-7154
https://orcid.org/0000-0001-5715-7154
mailto:
mailto:
mailto:
mailto:
mailto:

vectors. Few studies on sketching graphs have been reported.
To the best of our knowledge, only three works so far, [37],
[38], [39], have exploited hashing techniques to accelerate
graph feature extraction. In particular, [37] hashes the edge
set of graphs, [38] hashes the set of node labels, and [39]
hashes the set of cliques. Among the three methods, [37]
and [39] cannot be applied to sketching labeled graphs as they
are designed for sketching network flows. TheNested Subtree
Hash (NSH) kernel, proposed in [38], employs a random
hashing scheme to improve the efficiency of the WL graph
kernel [17] in both time and space. However, it suffers from
some performance loss compared to [17]. Thus, we aim to
develop a technique which is able to achieve the same state-
of-the-art classification performance as the WL graph ker-
nel [17] with dramatically improved efficiency in both time
and space.

To this end, we first observe an interesting connection
between the WL relabeling process and K-ary trees, which
motivates us to design an efficient data structure named tra-
versal table to facilitate fast approximation of the subtree pat-
terns in WL. Given a traversal table constructed from the
node labels and edges of a graph, a subtree of depth r is effi-
ciently acquired through r times of recursive matrix index-
ing. Moreover, a subtree pattern can be uniquely specified
by ordered leaf nodes. We generate all subtree patterns,
rooted at individual nodes of a graph, of a specified depth
and adopt the MinHash scheme to fingerprint subtree
patterns. By virtue of recursive indexing, we obtain almost
the same subtree patterns as those found in the WL kernel,
avoiding the expensive insertion and search operations.

We conduct extensive empirical tests of the proposed
K-Ary Tree based Hashing (KATH) algorithm and the
compare methods [17], [38] for fast graph classification.
We evaluate its effectiveness and efficiency on 17 real-world
graph benchmarks including four large-scale real data sets
(104) and a large-scale synthetic data set (104). Compared to
the two state-of-the-art approaches, WL kernel [17] with the
best classification performance and NSH [38] with the high-
est efficiency in both time and space, KATH not only
achieves a similar classification performance to [17] but also per-
forms much faster and used less space than [38]. More specifi-
cally, KATH

� achieves competitive accuracy with WL kernel, but
with a dramatically reduced CPU time (around 1=3
compared to WL on the real data set qHTS).

� outperforms NSH in accuracy and with significantly
reduced CPU time (over 1=2 of NSH on the real data
set qHTS).

� can be scaled up to even larger graph sets due to its
slowly and steadily increasing computational cost.

In summary, the proposed KATH algorithm is the most
efficient graph feature extraction method for graph classifi-
cation without observable performance loss, when com-
pared to state-of-the-art methods.

The remainder of the paper is organized as follows:
Section 2 introduces the necessary preliminary knowledge.
We introduce the KATH algorithm for fast graph feature
extraction in Section 3. The experimental results are pre-
sented in Section 4 and relatedwork is discussed in Section 5.
Finally, we conclude the paper in Section 6.

2 PRELIMINARIES

In this section, we first describe notations and the graph
classification problem considered in the paper. Then, we
briefly introduce two existing graph feature extraction
methods, WL and NSH, which represent the state-of-the-art
approaches to fast graph classification. Finally, we give a
quick review of the MinHash scheme that will be used in
our method.

2.1 Problem Description

Given a set of labeled graphs denoted by G ¼ fgigNi¼1, where
N denotes the number of graph objects. A graph gi is repre-
sented as a triplet ðV; E; ‘Þ, where V denotes the node set, E
denotes the undirected edge set, and ‘ : V ! L is a function
that assigns labels from a label set L to the nodes1 in gi.
The node label represents a certain attribute of the node.
Each graph gi in G is associated with a class label yi, which
represents a certain property of the graph determined by the
structure of the graph and its node labels. Take chemical
compounds for example: a molecule is represented as a
graph, where its atoms form the node set and the bonds
between atoms form the edge set. Each node in the molecule
is assigned with a node label, that is, the name of atom (e.g.,
carbon and oxygen). The structure of the molecule and its
node labels determine the chemical property of themolecule.
Given the graphs in G, a feature extraction (fingerprinting)
process is performed to transform arbitrary graph structures

into a set of feature vectors (fingerprints) fxigNi¼1 2 X , where
each dimension of X usually corresponds to a substructure
of graphs (e.g., subtrees [15], [17], [38]). The goal of graph

classification is to learn a classifier from fxi; yigNi¼1 to classify
unseen graphs.

2.2 Weisfeiler-Lehman Graph Kernels

Weisfeiler-Lehman (WL) graph kernels [17] (or fast subtree
kernels [15]) are known as the fastest graph kernel family,
based on theWeisfeiler-Lehman (WL) isomorphism test [40].
WL kernels have a theoretical computational complexity
that only scales linearly in the number of edges of a graph,
jEj, and the number of theWL isomorphism test iterations,R
(considering subtree patterns of depth R� 1). A WL graph
kernel is written as follows:

kðgi; gjÞ ¼
XR
r¼1

kðgðrÞi ; g
ðrÞ
j Þ ¼

XR
r¼1
hxðrÞi ; x

ðrÞ
j i ¼ hxi; xji

where g
ð1Þ
i ¼ ðV; E; ‘ð1ÞÞ and ‘ð1Þ ¼ ‘. That is, g

ð1Þ
i is the same

as the input graph gi. g
ðrÞ
i ¼ ðV; E; ‘ðrÞÞ is the graph with a set

of relabeled nodes in the rth iteration. x ¼ ½xð1Þ; . . . ; xðRÞ�,
where xðrÞ is the generated fingerprint in the rth iteration,
recording the number of subtree patterns of depth ðr� 1Þ.

To illustrate the relabeling process of WL to obtain the
fingerprint x, we use the 4-node labeled graph in Fig. 1a as
an example. First, gð1Þ is the same as the given graph, so xð1Þ

in the first iteration records the number of subtree patterns
of depth 0. As shown in the table of Fig. 1a, there are three
subtrees of depth 0: a, b and c, with the occurrence numbers

1. Edge labels can also be considered in a similar way. For simplic-
ity, we only consider node labels in this paper.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 937

as 1, 2 and 1 respectively. Therefore, we have xð1Þ ¼ ð1; 2; 1Þ.
Fig. 1b illustrates the relabeling process in the second itera-
tion, which considers subtrees of depth 1. Thus, for each
subtree in the first iteration, we consider its neighboring
nodes. For instance, for the subtree rooted at node c in the
first iteration, the corresponding subtree of depth 1 contains
two leaf nodes a and b. We can encode the subtree as a
string, which is initiated with the label of the root, followed
by the ordered labels of the root’s one-step neighboring
nodes (e.g., c; ab). Each string representing a subtree pattern
will acquire a new label for compression: if the subtree
(or the string) has existed, it will directly get the label
assigned to the subtree; otherwise, it will obtain a new label.
As shown in Fig. 1b, since all subtree patterns of depth 1 are
different, each node is assigned with a new label to denote
the corresponding subtree. Similarly, a histogram xð2Þ

is used to count the numbers of the subtree patterns in gð2Þ.
In this case, xð2Þ ¼ ð1; 1; 1; 1Þ.

The intuition of WL graph kernels is thus used to com-
pare the “bags of subtrees” in a range of depths, that is,
given two graphs, WL kernel computes the similarity of the
graphs in terms of subtree patterns of different depths.

Although the theoretical computational complexity is only
OðNRjEj þN2RjVjÞ for computing aWLgraph kernel matrix,
the WL isomorphism tests need to maintain a global subtree
pattern list which spans the underlying graph feature space.
In the cases of large-scale graph classification scenarios, the
subtree pattern list will be dramatically expanded, and thus
the search and insertion operations and subtree pattern
storage for the list will be infeasible very soon because of both
time- and spatial-inefficiency problems.

2.3 Nested Subtree Hash Kernels

A hash kernel based on the WL isomorphism test, say
Nested Subtree Hash (NSH) kernels [38], for fast graph clas-
sification is proposed to address the time- and spatial-ineffi-
ciency of WL graph kernels. An NSH kernel is expressed in
the following form,

�kðgi; gjÞ ¼
XR
r¼1

�kðgðrÞi ; g
ðrÞ
j Þ ¼

XR
r¼1
hfðxðrÞi Þ;fðxðrÞj Þi

¼
XR
r¼1
h�xðrÞi ; �x

ðrÞ
j i ¼ h�xi; �xji

where x
ðrÞ
i and x

ðrÞ
j denote the complete feature vectors in the

rth iteration (e.g., the same as the WL graph kernel), and f is

a linear projection, composed of two random functions, the

hash hid and the bias-sign sgn, which maps fxðrÞi g to f�xðrÞi g.
In particular, hid is used to allocate a position for the subtree

in the feature vector f�xðrÞi g and sgn assigns signs to subtrees

for subtree counting. Thanks to f, the dimensionality of f�xðrÞi g
can be fixed without unlimited expansion; feature counting

can be indexed by hashingwithout insertion and search.
For example, consider the 4-node graph in Fig. 1a again.

The first two iterations of NSH to find f�xð1Þi g and f�xð2Þi g are
shown in Figs. 1c � 1d. In Fig. 1c, two functions of f, the
hash hid and the bias-sign sgn, are imposed on each subtree.
The purpose of sgn is to eliminate the bias of the estimator
derived from the mapping from the complete feature spaces
to the hashed low-dimensional feature spaces. For instance,

given the three subtrees of depth 0, a, b and c, in Fig. 1a, the
hid function in Fig. 1c respectively hashes them to the posi-
tions 2, 2 and 1 in the feature vector �xð1Þ. However, since
both subtrees a and b are hashed to 2, directly counting
the number of subtrees mapped to the second position will
produce significant errors. Since the sgn function assigns a
negative sign to the subtree b, the value of the second ele-
ment in �xð1Þ is then obtained as ð�2þ 1Þ ¼ �1. It has been
proved theoretically that the sgn function can unbiasedly
estimate theWL kernel from the perspective of statistics [38].
Afterwards, the original graph is relabelled with the hash
values. Fig. 1d shows the NSH kernel in the second iteration.
Similarly, each subtree pattern of depth 1 (e.g., 1, 22) is
relabelled via hid. New labels from hid are assigned to the
corresponding nodes, and a feature vector �xð2Þ is acquired.

As we can see from the illustrating example, by hashing
subtree patterns of different depths, NSH avoids maintain-
ing the list of subtrees and the expensive subtree insertion
and search in WL, so that NSH improves the efficiency both
in space and time. However, NSH suffers from some perfor-
mance loss by mapping the complete feature space to the
hashed low-dimensional feature space.

2.4 MinHash Scheme

We aim to design a graph feature extraction algorithm that
is more efficient while maintains the same performance as
the WL graph kernel. Before introducing our algorithm, we
briefly review the MinHash scheme [41] which is used in
our method. MinHash is an approximate method for mea-
suring the similarity of two sets, say Si and Sj. A set of D

hash functions (random permutations) fpdgDd¼1 are applied

to the elements in S� and we say minðpdðS�ÞÞ is a MinHash
of S�. A nice property of MinHash is that the probability of
Si and Sj to generate the same MinHash value is exactly the
Jaccard similarity of the two sets:

Pr
�
minðpdðSiÞÞ ¼ minðpdðSjÞÞ

� ¼ jSi \ SjjjSi [Sjj ¼ JðSi;SjÞ

To approximate the expected probability, multiple inde-
pendent random permutations are used to generate

Fig. 1. Illustration of the WL kernel and the NSH kernel with r ¼ 2.

938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

MinHashes. The similarity between two sets based on D
MinHashes is calculated by

ĴðSi;SjÞ ¼
PD

d¼1 1
�
minðpdðSiÞÞ ¼ minðpdðSjÞÞ

�
D

where 1ðstateÞ ¼ 1, if state is true, and 1ðstateÞ ¼ 0, other-
wise. AsD!1, ĴðSi;SjÞ ! JðSi;SjÞ.

In practice, it is unnecessary to do an explicit random per-
mutation on a large number. A permutation function as fol-
lows can be used to directly generate the permutated index

pdðiÞ ¼ modððadiþ bdÞ; cdÞ (1)

where i is the index of an item from the set jSj, 0 < ad; bd <
cd are two random integers and cd is a big prime number such
that cd � jSj. Our method would benefit from this expression
in caseswithmassive graph features.

3 K-ARY TREE HASHING

In this section, we propose a K-Ary Tree based Hashing
(KATH) algorithm to extract graph features in terms of leaf
node labels of a sequence of K-ary trees. The derived graph
features have an equivalence to the subtree patterns used in
the WL isomorphism test based algorithms [15], [17], [38].
Recall that in these algorithms, the relabeling process for
node v in the rth WL isomorphism test iteration only consid-
ers its direct neighboring node set N v to assign a new label
to the ordered label string ‘ðrÞðv; sortðN vÞÞ, which uniquely
encodes a subtree pattern. In each WL isomorphism test
iteration, the node label information is propagated at most
one step on the graph and a node can receive the label infor-
mation of those nodes r� 1 steps away in the rth iteration.

We observe an interesting connection between the relab-
eling process of the WL isomorphism test and K-ary trees:
The relabeling process is similar to the breadth-first
traversal of a virtual K-ary tree on a graph. Motivated by
this observation, we wish to employ a mechanism similar
to breadth-first traversal that can fast update node label
information using matrix operations. The only difficulty is
that the numbers of neighboring nodes of different nodes
in different graphs are inconsistent, and this will make the
traversal matrices of different graphs get inconsistent num-
ber of columns (i.e., inconsistent encoding rules which will
be detailed later) so that the resulting graph fingerprints
of different graphs will be incomparable. If we can find
solutions to avoid the problem of inconsistent number of
columns in traversal matrices, the graph feature (subtree
pattern) encoding can be dramatically accelerated through a
recursive indexing operation. To this end, we adopt two
alternative solutions: a naive solution that fixes the number
of neighboring nodes to be considered, and a MinHash
based scheme which projects any numbers into a fixed size
vector. We compare the performance of the two solutions
empirically in Section 4. In the following section, we elabo-
rate on our KATH algorithm which resembles WL isomor-
phism test based methods but is much more efficient.

3.1 The Algorithm

The KATH algorithm processes graphs one by one. The
input of the algorithm includes a graph g ¼ fV; E; ‘g and

some parameters: K denotes the size of the traversal table
and fDðrÞgRr¼1 are the MinHashes for R iterations (or depth
R� 1), whereD is the number ofMinHash functions, i.e., the
length of fingerprints. The parameters of the permutation

functions fpðrÞd g for MinHashes like Eq. (1) are randomly
generated online.2 All the aforementioned parameters are set
to the fixed values for all processed graphs.

We outline the KATH algorithm in Algorithm 1. The
algorithm mainly comprises three steps: (1) Traversal Table
Construction (Lines 1–7), which constructs an indexing struc-
ture based on the node labels and edges in g using two alter-
native approaches; (2) Recursive Leaf Extension (Lines 8–9 &
12–13), which recursively extends the new leaves of all full
K-ary trees based on the obtained indexing structure to
approximate subtrees; (3) Leaf Sequence Fingerprinting
(Lines 15–16), which uses the MinHash scheme to fingerprint
the leaf sequences (subtree patterns) of g. In the following, we
will introduce the KATH algorithm in details in three steps,
with a running example based on the toy graph in Fig. 2.

Algorithm 1.K-Ary Tree Based Hashing

Require: g ¼ ðV; E; ‘Þ,K, fDðrÞgRr¼1
Ensure: fxðrÞgRr¼1
1: V jVj
2: ‘ðV þ 1Þ 1
3: T ðV þ 1Þ � onesðV þ 1; 1þKÞ
4: for v ¼ 1 : V do
5: N v neighborðvÞ
6: TðvÞ ¼ Selection_Solutionð‘;N vÞ // Use Algorithm

2 or 3
7: end for
8: zð1Þ ½1 : V �>
9: Sð1Þ ‘ðzð1ÞÞ
10: for r ¼ 1 : R do
11: if r > 1 then
12: zðrÞ reshapeðTðzðr�1Þ; :Þ; ½1; ��Þ
13: SðrÞ reshapeð‘ðzðrÞÞ; ½V; ��Þ
14: end if

15: fðrÞ �
�hðSðrÞð1; :ÞÞ; . . . ; �hðSðrÞðV; :ÞÞ�>

16: xðrÞ �
minðpðrÞ1 ðfðrÞÞÞ; . . . ; minðpðrÞDðrÞ ðf

ðrÞÞÞ�>
17: end for

Algorithm 2.Naive Selection

Require: ‘,N v

Ensure: TðvÞ
1: temp sortð‘ðN vÞÞ
2: k minðK; jN vjÞ
3: TðvÞ �

v; indexðtempð1 : kÞÞ�

Algorithm 3.MinHash Selection

Require: ‘,N v

Ensure: TðvÞ
1: temp �

minðp1ð‘ðN vÞÞÞ; . . . ; minðpKð‘ðN vÞÞÞ
�

2: TðvÞ �
v; indexðtempÞ�

2. Note that, the input MinHash parameters are for the MinHash
that fingerprints leaf node labels ofK-ary trees, instead of the MinHash
that projects neighbors of a node into a fixed size vector.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 939

3.1.1 Traversal Table Construction

After receiving a graph g ¼ fV; E; ‘g, the algorithm first adds
a dummy node as the ðV þ 1Þth node of g (for example, node
5 in Fig. 2a), where V ¼ jVj (Line 1), and assigns 1 as its
label (Line 2). The dummy node is necessary because, if the
number of neighboring nodes of the root node v is smaller
than the size of the traversal table,K, we can use the dummy
node to fill the vacancy left in the traversal table, and a virtu-
ally full K-ary tree can still be completed. The reason why
we use1 as its label is that the dummy node can be placed
after all the real nodes in terms of sorted labels.

We allocate a compact ðV þ 1Þ � ð1þKÞ matrix (Line 3)
for storing the indices of each nodes and their children
nodes. We refer to this compact traversal matrix as the tra-
versal table, denoted by T. In T, the first V rows correspond
to the V nodes in g and the last row is for the dummy node;
the first column represents all nodes, and the lastK columns
record the neighbors of corresponding nodes in the graph.
Since we maintain only K columns of the traversal table,
while the number of neighbors of a node may be more than
K, we adopt two alternative solutions, Algorithms 2 and 3,
to address the problem.

Given the set of neighbors of node v asN v, Algorithm 2 is a
naive solution that only considers the first K neighbors.
Essentially, we first sort the nodes in N v in terms of their
labels in ascending alphabetical order. If two nodes have the
same label, they will be sorted by their node indices, and this
guarantees that all identical strings are mapped to the same
number (Line 1). We then determine the number of nodes k
for selection. k ¼ K if the number of neighboring nodes of v
is larger than K; k ¼ jN vj otherwise (Line 2). Last, v and the
indices of the first k nodes in the sorted array are stored in the
vth row of T (Line 3). If ðkþ 1Þ < ðK þ 1Þ, the vacancy
entries are filled with the index of the dummy node.
Certainly, the naive solution suffers from some information
loss if the number of neighbors of a node in a graph is usually
greater thanK. However, with graph data from some partic-
ular domains such as chemical compounds, where the num-
ber of neighbors of a node is usually no greater than 4, this
simple solution will achieve effective performance by setting
K as 4, demonstrated by our experimental results in Section 4.

Alternatively, we may adopt the MinHash scheme to
project any number of neighbors to a vector of size K. The
idea of the solution is outlined in Algorithm 3. We apply K
MinHashes to the set of labels of a node’s neighbors (Line
1). Then, v and the indices of nodes carrying corresponding
labels generated by K MinHashes are stored in the vth row
(Line 2). Note that, if the result of K MinHashes includes
repeated labels, the corresponding node indices in ascend-
ing order are stored, or if all matching nodes are exhausted,
the dummy node is used. This guarantees that no repetitive
real node indices emerge in the same row.

Examples of traversal table construction using the two
alternative solutions are illustrated in Fig. 2b and 2c. The
first column of two traversal tables store the indices of the
four nodes in the graph and one dummy node. The last
three columns store the indices of the nodes generated by
the two solutions from the corresponding neighbor sets,
respectively. Fig. 2b represents naive traversal table. Con-
sider node 1, N 1 ¼ f2; 3g and the labels of the node’s neigh-
bors are sorted as ð‘ð3Þ ¼ aÞ < ð‘ð2Þ ¼ cÞ. Hence, node 3 is
placed in the second entry while node 2 in the third entry.
The last vacancy entry is filled with the index of the dummy
node. Fig. 2c shows MinHash traversal table. Consider node
1 with N 1 ¼ f2; 3g with labels of f‘ð2Þ ¼ c; ‘ð3Þ ¼ ag. Sup-
pose fc; a; ag is generated by applying the K ¼ 3 MinHash
functions to the label set fc; ag. For the first MinHash value
c, since there exists only one neighbor of node 1 that carries
the label c, node 2 is placed in the second entry. Both the
second and the third MinHash values are a. However, there
is only one neighbor, node 3, which has the label a. Hence, 3
is stored in the third entry and the index of the dummy
node is stored in the fourth entry.

Obviously, both the parameter of the traversal table size
K and the method used to select neighbors will affect the
effectiveness of KATH. We will discuss the influence of the
neighbor selection methods and the value ofK in Section 4.

3.1.2 Recursive Leaf Extension

For ease of explanation, in this section and the next section,
we take the naive traversal table as an example. The traversal
table T constructed in the first step is used for a very fast sub-
tree pattern extraction process. In particular, the ðr� 1Þ-depth
full K-ary tree rooted at v can be represented as the leaf
node labels of a sequence of r iterations originated from v,
where the leaf node labels can be collected through a recur-
sive indexing operation on Twithout explicitly recording the
traversals.

Let zðrÞ store the indices of the leaf nodes of all r iterations
originated from the V root nodes. It is initialized with the V
root nodes on g as the root nodes of the full K-ary trees,

say zð1Þ ¼ ½1 : V �> (Line 8). Next, the algorithm goes into the
iterations of recursive indexing operation for r ¼ 2; . . . ; R
which recursively generate the leaf node labels of all
ðr� 1Þ-depth full K-ary trees originated from the V root
nodes. We use the example graph in Fig. 2 to illustrate this
operation:

zð1Þ ¼ ½1234�
zð2Þ ¼ �½1325�½2315�½3142�½4355��

zð3Þ ¼
h�½1325�½3142�½2315�½5555��� . . . �� . . . �� . . . �� . . . �

i

Fig. 2. Two examples of traversal table construction. The first column of
the traversal tables are the five root nodes which are followed by their
neighboring nodes sorted or min-hashed in terms of labels.

940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

The above equations illustrate a recursive indexing opera-
tion for generating all full 2-depth 3-ary trees on the exam-
ple graph. From the underlined node 1 in zð1Þ, one 1-depth
3-ary tree with the leaf nodes in the four underlined nodes
½1325� in zð2Þ are generated. These 3 ordered leaf nodes
uniquely specify the 1-depth subtree rooted at node 1.
Similarly, from the overlined node 3 in zð2Þ, one 1-depth 3-
ary trees with the leaf nodes in the four overlined nodes

½3142� in zð3Þ are generated. If we consider the two breadth-
first iterations together, we can obtain one 2-depth 3-ary
tree from each root node. For example, the 16 underlined
nodes in zð3Þ are the leaf nodes of one 2-depth 3-ary tree
originated from node 1. Again, these 12 ordered leaf nodes
uniquely specify the 2-depth subtree rooted at node 1. More
iterations of 3-ary trees can be obtained through this recur-
sive indexing operation. Since all leaf nodes will be used as
the indices to select rows from the traversal table T and
the selected rows are catenated into a single row vector
(Line 12), we refer to this iteration as recursive leaf extension.

Although zðrÞ can be used to specify the ðr� 1Þ-depth sub-
tree pattern rooted at v, the leaf node information from all
root nodes is connected together. We should retrieve the
corresponding labels of the nodes indexed by zðrÞ, say ‘ðzðrÞÞ,
evenly split ‘ðzðrÞÞ into V parts, and rearrange them into V
rows to form a V � ð1þKÞr label matrix SðrÞ (Line 13). Thus
far, the label array in the vth row of SðrÞ directly specifies the
ðr� 1Þ-depth subtree rooted at node v. The label matrix of
zð2Þ in the example graph is in the following form

Sð2Þ ¼ reshapeð‘ðzð2ÞÞ; ½4; ��Þ ¼
bac1
cab1
abbc

ba11

2
664

3
775

The advantages of the recursive indexing operation
include: all ðr� 1Þ-depth K-ary trees can be generated very
fast through several matrix indexing operations without
search or matrix addition; the leaf node labels of all
ðr� 1Þ-depth K-ary trees originated from node v uniquely
specify the ðr� 1Þ-depth subtree rooted at v.

3.1.3 Leaf Sequence Fingerprinting

So far, we have extracted all ðr� 1Þ-depth subtree patterns
from g, and stored the corresponding encoding information
in SðrÞ. To compute the similarity between the graphs based
on the extracted subtree patterns encoded as an array of
ð1þKÞr node labels, we can do the following two hashing
operations. First, we employ a random hashing function,
�h : str7!N, to hash the label array in each row of SðrÞ into an
integer as an identity to represent an ðr� 1Þ-depth subtree
pattern (Line 15), which helps to relabel the subtree patterns
rapidly. The obtained subtree pattern index vector fðrÞ com-
prises the ðr� 1Þ-depth subtree patterns of the V nodes on
g. Second, we can view fðrÞ as a multi-set3 of the identities of
V ðr� 1Þ-depth subtrees. A natural approach to comparing
the similarity of two subtree sets is to fingerprint them using
the MinHash scheme, instead of the simple random hash
functions in NSH because MinHash is able to store as much
information as possible between graphs, and it is suitable

for substructure comparison in graph classification. By vir-
tue of the random permutation function without explicit
permutations, we can directly obtain the permutated posi-
tions of the identities in fðrÞ, say p

ðrÞ
d ðfðrÞÞ, using Eq. (1) and

find the smallest one as a MinHash minðpðrÞd ðfðrÞÞÞ. In the rth
iteration, DðrÞ random permutations are performed on fðrÞ

and DðrÞ MinHashes can be obtained to form the fingerprint
of g in the rth iteration, denoted by xðrÞ (Line 16). In practice,
the two hashing operations (Lines 15 and 16) can be per-
formed quickly in matrix operations.

We still take the example in Fig. 2 for illustration. The
node label arrays in the vth row of the label matrix Sð2Þ

encode a subtree pattern. To identify the underlying subtree
pattern using an integer, we apply the random hash func-
tion �h to each row of Sð2Þ as follows

fð2Þ ¼
�hðbac1Þ
�hðcab1Þ
�hðabbcÞ

�hðba11Þ

2
664

3
775 ¼

7
3
5
2

2
664

3
775

where the first row of Sð2Þ, corresponding to the 1-depth
subtree pattern rooted at node 1, is hashed to 7 by
�hðbac1Þ ¼ 7, where 7 is the identity of the underlying sub-
tree pattern. Now, fð2Þ comprises a set of 4 subtree patterns
and Dð2Þ permutation functions can be applied to fð2Þ.
For example, the dth MinHash x

ð2Þ
	;d ¼ minðpð2Þd ðfð2ÞÞÞ.

Finally, we construct the kernel matrix K on G based on
the obtained fingerprints fxðrÞ1 ; . . . ; x

ðrÞ
N gRr¼1. The kernel

between gi and gj is

Ki;j ¼ kðgi; gjÞ ¼
XR
r¼1

XDðrÞ

d¼1

1ðxðrÞi;d ¼ x
ðrÞ
j;dÞ

DðrÞ
(2)

where 1ðstateÞ ¼ 1 if state is true and 1ðstateÞ ¼ 0 otherwise.

Eq. (2) calculates the ratio of the same MinHashes between

x
ðrÞ
i and x

ðrÞ
j , which is exactly the Tanimoto kernel [42].

3.2 Complexity Analysis

The theoretical computational complexity of the KATH
algorithm for fingerprinting a graph set is OðNRjVjÞ, com-
pared to OðNRjEjÞ for feature vector construction in WL
and NSH. In particular, OðNRjVjÞ is for fingerprinting N
graphs in R iterations (Lines 10–17 in Algorithm 1), where
each graph requires OðjVjÞ for hashing V label arrays and
computing their permutated positions. Another computa-
tional advantage of the KATH algorithm is that the length
of fingerprints (102) is smaller than the dimensionality of
feature vectors (105 � 107) in WL by several orders of mag-
nitudes, which makes kernel construction more efficient.

Although the theoretical complexities of the three algo-
rithms (WL, NSH, and KATH) are similar, the KATH algo-
rithm is much more computationally efficient than the two
other algorithms in practical implementation since it is able
to directly generate the encoding information of subtree pat-
terns through a recursive indexing process without search
andmatrix addition. In contrast, the NSH algorithm needs to
update each dimension of a feature vector and theWL graph
kernel needs additional cost for subtree pattern insertion
and search (not counted in its computational complexity).

3. It is a multi-set since the same subtree pattern may appear multi-
ple times.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 941

An advantage of the KATH kernel, in spatial complex-
ity, is that no additional cost is required to store subtree
patterns. This is similar to NSH, but the WL graph kernel
requires a complexity of OðNRjEjÞ in the worst case to
maintain a global subtree pattern list in the memory,
which keeps increasing as new graphs are fed in. More-
over, KATH can further reduce spatial complexity in
caching fingerprints that are significantly shorter than fea-
ture vectors used in two other algorithms before comput-
ing the kernel.

4 EXPERIMENTS

In this section, we report the performance of KATH and its
competitors on both real-world and synthetic data sets.

We use four groups of real-world data sets, two of which
are used in [17] and [38], respectively. One group comes
from PubChem.4 The fourth group consists of two data sets
from social networks: DBLP [43] and twitter [5], [8]. We also
generate a synthetic graph classification data set. Specifi-
cally, we adopt the following benchmarks (17 graph data
sets in total):

4.1 Data Sets

Real-World Mix [17]. The first group comprises 3 real-world
graph data sets5 used as the testbed in [17]: (1) MUTAG
consists of 188 mutagenic aromatic and heteroaromatic
nitro compounds, where the classification task is to predict
whether they have a mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium. (2) ENZYMES consists
of 600 enzymes represented in protein tertiary structures,
which are required to be classified into one of the 6 EC top-
level classes. (3) D&D consists of 1,178 protein structures,
where the classification task is to predict whether a protein
structure is an enzyme or non-enzyme.

Real-World NCI [38]. The second group comprises 9 NCI
data sets6 used as the testbed in [38]. Each data set has
28;000 � 42;000 chemical compounds, each of which is rep-
resented as a graph whose nodes are atoms and edges are
bonds. Each data set belongs to a bioassay test for predict-
ing anti-cancer activity against a certain kind of cancer,
where a graph (chemical compound) is labeled positive
(active) if it is active against the cancer. Since the positive
and negative examples of the original data are unbalanced
(about 5 percent positive samples), following [38], data pre-
processing is performed in advance by randomly selecting
a negative subset from each data set with the same size as
the positive one (e.g., 2,232 positive and 2,232 negative
samples in NCI1).

Real-World qHTS7. This is a relatively large data set for
graph classification. It comprises 362,359 chemical com-
pounds, each of which is represented as a graph. They are
tested in a bioassay test to predict the inflammasome activa-
tions. A graph is labeled positive (active) if it is active
against inflammasome. As in NCI, for the sake of balance,
data preprocessing is performed in advance by randomly
choosing 10,000 positive and 10,000 negative instances.

Real-World NCI-Yeast8. This is another relatively large
data set for graph classification. It comprises 86,130 chemi-
cal compounds, each of which is represented as a graph.
They are tested in a bioassay test to measure their ability to
inhibit the growth of yeast strains. A graph is labeled posi-
tive (active) if it can inhibit yeast growth. Again, data pre-
processing is performed in advance by randomly choosing
10,000 positive and 10,000 negative instances.

Real-World DBLP [43]. Each record in DBLP represents
one paper, containing paper ID, title, abstract, authors, year
of publication, venue, and references of the paper. Follow-
ing [43], each paper named as a core paper is represented as
a graph, whose nodes denote the paper ID or a keyword in
the title. If there exists citation between the core paper and
another, the paper ID and all keywords will be added to the
graph as nodes. Edges are produced as follows: 1) citation
between two paper IDs corresponds to one edge in the
graph; 2) two nodes, one representing paper ID and the
other representing a keyword in the paper title, corresponds
to one edge in the graph; 3) all nodes representing key-
words of a paper are fully connected with each other as
edges in the graph. Core papers in computer vision (CV)
are labeled as positive; while core papers in database/data
mining (DBDM) and artificial intelligence/machine learn-
ing (AIML) are labeled as negative. Consequently, there
are 9,530 positive instances and 9,926 negative instances.
We adopt this unbalanced data set in the experiments.

Real-World Twitter [5], [8]. Following [5], [8], each tweet is
represented as a graph with nodes being terms and/or
smiley symbols (e.g, :-D and :-P) while edges being the co-
occurrence relationship between two words or symbols in
each tweet. Furthermore, each tweet is labeled as a positive
feeling or a negative one. Consequently, we obtain 67,987
positive and 76,046 negative tweets. We randomly sample
an unbalanced data set (9,425 positive instances and 10,575
negative instances) with the same ratio of positive and nega-
tive instances as the original data set.

Synthetic 10K. The last is a synthetic graph data set.We use
a synthetic graph data generator9 to generate 10,000 labeled,
undirected and connected graphs, named Syn10K20L10E,
where “20L” indicates that the number of unique node labels
in the graph set is 20 while “10E” indicates that the average
number of edges in each graph is 10. To simulate graph clas-
sification tasks, we perform the following steps: 1) we find a
set of frequent subgraph patterns (support > 0:02) using
gSpan10 [44] from each graph set; 2) we represent each graph
as a feature vector, with a dimension being 1 if it has the cor-
responding subgraph, otherwise it being 0; 3) we perform 2-
Means clustering for each graph set and labeled the graphs
in one cluster positive and the other negative. As a result, we
obtain one relatively large graph classification task.

The statistics of the above graph data sets are summa-
rized in Table 1, in which jCj denotes the number of classes
in each data set, jGj denotes the number of graphs, jVj and
jEj denote the number of nodes and edges of graphs, respec-
tively, and jLj denotes the number of unique node labels in
a graph data set.

4. http://pubchem.ncbi.nlm.nih.gov/
5. http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/Data.zip
6. https://sites.google.com/site/libin82cn/nshk-data&codes.zip
7. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=743279

8. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=175
9. http://www.cais.ntu.edu.sg/�jamescheng/graphgen1.0.zip
10. http://www.cs.ucsb.edu/�xyan/software/gSpan.htm

942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

http://pubchem.ncbi.nlm.nih.gov/
https://sites.google.com/site/libin82cn/nshk-data
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=743279
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=175
http://www.cais.ntu.edu.sg/~jamescheng/graphgen1.0.zip
http://www.cais.ntu.edu.sg/~jamescheng/graphgen1.0.zip
http://www.cs.ucsb.edu/~xyan/software/gSpan.htm
http://www.cs.ucsb.edu/~xyan/software/gSpan.htm

4.2 Experimental Preliminaries

The classification performance of the compared methods is
evaluated using libsvm [45] with 10-fold cross validation.
We construct the kernel matrices generated by the com-
pared methods and plug them into C-SVM in libsvm for
classifier training. We repeat each experiment 5 times and
average the results (accuracy and CPU time). All the experi-
ments are conducted on a node of a Linux Cluster with
8� 3:1 GHz Intel Xeon CPU (64 bit) and 126 G RAM.

We only compare KATH with existing graph feature
extraction methods that are scalable to large graph classifi-
cation problems, say 104 graphs with tens of labeled nodes.
The comprehensive graph classification study in [17] shows
that the WL graph kernel proposed therein (also known as
fast subtree kernels [15]) easily outperform all the compared
classical graph kernels, including the fast geometric random
walk kernel [16], the p-random walk kernel (a special case

of [11], [12]), and the shortest path kernel [13], in both accu-
racy and efficiency. By contrast, most of the compared clas-
sical graph kernels require hours or even days to process
thousands of graphs. The NSH graph kernel is an estimator
of the WL graph kernel using random hashes to improve
efficiency in both time and space. NSH improves the
computational and spatial efficiency of the WL isomor-
phism, but loses some classification accuracy. Therefore, we
compare KATH with the two state-of-the-art graph kernels,
i.e., WL and NSH.

We evaluate two variations of KATH. KATH-naive
uses a naive method to construct the traversal table, and
KATH-MinHash uses the MinHash scheme to build the
traversal table.

Since all compared methods involve iterations which
have underlying connections to the WL isomorphism test,
we evaluate the algorithms by varying the number of itera-
tions from 1 to 5. In other words, we let Depth 2 f0; . . . ; 4g,
where Depth denotes the depth of subtrees. In the NSH
algorithm, the dimensionality setting follows ½30; 500; 5000;
10000; 10000; 10000� used in [38] for the hashed feature
spaces in 5 iterations. In the two variations of the KATH
algorithm, we set the default size of the traversal table to 4
according to our empirical tests. We investigate the number
of MinHashes (length of fingerprints) in f100; 200; 300g and
find that the two variations of KATH generally achieved the
best performance when the number of MinHashes is set to
300. Besides, the subtrees of depth 0, i.e., r ¼ 1, are individ-
ual nodes, which are considered to be non-discriminative
subtree patterns. Therefore, we only report performance
with the number of MinHashes as 300 and the depth from 1
to 4. The parameters of the hash functions for random per-
mutations are randomly generated.

4.3 Results on Real-World Mix

Fig. 3 shows experimental results on the first group of real-
world data, including MUTAG, ENZYMES and D&D. In
MUTAG and ENZYMES, the accuracy performance of

TABLE 1
Summary of the Five Groups of Graph Data Sets

Data Set jCj jGj avg. jVj avg. jEj jLj
MUTAG [17] 2 188 17.93 19.80 7
ENZYMES [17] 6 600 32.63 62.14 3
D&D [17] 2 1,178 284.32 715.66 82
NCI1 [38] 2 4,464 31.01 33.61 51
NCI33 [38] 2 3,612 31.14 33.73 48
NCI41 [38] 2 3,380 31.33 33.90 39
NCI47 [38] 2 4,362 31.06 33.65 52
NCI81 [38] 2 5,240 30.34 32.86 50
NCI83 [38] 2 4,874 30.39 32.90 40
NCI109 [38] 2 4,504 30.83 33.41 51
NCI123 [38] 2 6,776 29.66 32.12 57
NCI145 [38] 2 4,240 30.78 33.35 49
qHTS 2 20,000 26.24 28.34 18
NCI-Yeast 2 20,000 23.42 50.03 68
DBLP [43] 2 19,456 10.48 19.64 41,325
Twitter [5], [8] 2 20,000 4.03 5.00 1,307
Syn10K20L10E 2 10,000 8.74 11.77 20

Fig. 3. Classification Accuracy (upper row) and CPU Time (bottom row) comparison results on the three graph data sets in the group of Real-World
Mix. The x-axis denotes the depth of subtrees.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 943

KATH-naive is better than that of NSH and WL from the
depth of 2 to 4, while on D&D, KATH-naive performs worse
than WL but better than NSH. In terms of runtime, KATH-
naive significantly outperforms its competitors on all set-
tings of depth and all three data sets. Specifically, it per-
forms at least 2.5 times as fast as NSH and WL on MUTAG,
and at least 40 percent faster than NSH and WL on D&D.
KATH-MinHash generally outperforms NSH on the three
data sets, but is inferior to KATH-naive. It also runs more
slowly than KATH-naive, which indicates that the MinHash
technique is not suitable for storing neighborhood informa-
tion in the traversal table with small-scale graph data. Intui-
tively, this is because KATH-naive is able to save nearly all
information about small-scale data without compression,
while MinHash introduces losses from compression. Overall,
KATH-naive achieves competitive accuracy compared to the
state-of-the-art algorithm,WL, in amuch shorter runtime.

4.4 Results on Real-World NCI

Fig. 4 reports the experimental results on nine NCI data sets.
The two variations of KATH generally outperform their
competitors from the depth of 2 to 4 in terms of both accu-
racy and time. Specifically, KATH-naive performs at least
twice as fast as WL. Furthermore, we observe that KATH-
naive and KATH-MinHash achieve similar accuracy. Com-
pared to the results on the first group of real-world data
from Section 4.3, KATH-MinHash becomes more effective
when the scaling size of the data sets increases. This also
conforms to the above intuitive explanation.

4.5 Results on Real-World qHTS

We further compare the two variations of KATHwith its com-
petitors on a large data set, qHTS. The experimental results
are reported in Fig. 5. Considering the fact that the subtrees
with the depth of 1 and 2 are not discriminative in large-scale
data and the traversal tables cause information loss, the per-
formance of our algorithms is worse than WL. Thus we have
only reported the results where the depth is 3 and 4 in this
and the next subsections. KATH-MinHash achieves slightly
better accuracy than KATH-naive from the depth of 3 to 4. As
the scale of data increases, the number of substructure fea-
tures becomes larger. Therefore, using the MinHash scheme
in the traversal table would capture information more accu-
rately. Furthermore, we note that the runtime of KATH-
MinHash only increases slowly with respect to the increase of
the subtree depth. For example, when the depth of subtrees
increases, the gap between KATH-naive and KATH-Min-
Hash narrows.Although the two variations of KATHare infe-
rior to WL (around 5 percent) in terms of accuracy, they
perform much faster than WL. This is largely because KATH
approximates the subtree patterns in WL and some perfor-
mance is lost. Taking KATH-MinHash as an example, it runs
approximately 1.5 times faster than NSH, and around 3 times
faster than WL. Therefore, the results clearly show the suit-
ability of KATH in classifying large graph data sets.

4.6 Results on Real-World NCI-Yeast

Fig. 6 shows the experimental results on a second large data-
set, NCI-Yeast. The two variations of KATH significantly
outperform NSH when the depth is 3 and 4 in terms of both
accuracy and time. Compared to results in Section 4.5,

KATH-MinHash performs remarkably better than KATH-
naive in terms of accuracy, which indicates that KATH-Min-
Hash is more suitable for large graph data with more
labels. This is because the MinHash scheme used to con-
struct the traversal table is imposed on the node labels,
and a small number of labels give rise to large compression
loss. Although the two variations of KATH show slightly
worse performance than WL (about 3 percent), in terms of
accuracy, they run much faster. Taking KATH-MinHash as
an example, it performs around 1.5 times as fast as NSH,
and runs more than 2.5 times as fast as WL.

4.7 Results on Real-World DBLP

In addition to the graphs of chemical compounds, we have
also investigated the graphs obtained from social networks.
Fig. 7 shows the experimental results on DBLP. Our KATH
algorithms remarkably outperform NSH in terms of both
accuracy and time. Compared to the results in Section 4.6,
KATH-naive achieves almost the same performance as
KATH-MinHash. The reason of this phenomenon might be
that DBLP has a large number of labels while the size of the
traversal table is much smaller than the number of labels
(K ¼ 4
 jLj ¼ 41; 325). Consequently, no matter what con-
struction method of the traversal table is adopted, very little
information is retained. In this experiment, WL performs
slightly better (about 1 percent) than our KATH algorithms,
however both KATH algorithms are superior toWL in terms
of time. In particular, KATH-naive and KATH-MinHash
only take around 1/3 and 1/2 ofWL’s runtime, respectively.

4.8 Results on Real-World Twitter

We also report the experimental results on the second graph
data set of social network, Twitter, in Fig. 8. Our KATH
algorithms are significantly superior to NSH in terms of both
accuracy and time. The reason that KATH-naive performs
similarly with KATH-MinHash may be the same as that dis-
cussed in Section 4.7, that is, the size of the traversal table is
much smaller than the number of labels (K ¼ 4
 jLj ¼
1;307). Likewise, in this experiment WL outperforms our
KATH algorithms by around 4 percent in terms of accuracy;
however our KATH algorithms clearly outperform WL in
terms of time. In particular, the runtime of KATH-naive and
KATH-MinHash is reduced by a factor of around 2/3 and 1/
2 compared toWL, respectively.

4.9 Results on 10K Synthetic Graph Sets

In our previous experiments, we find that the two variations
of KATH generally perform best when the depth of subtrees
is 4, so we only investigate KATH-naive, KATH-MinHash,
and other algorithms by setting the subtree depth to 4 in the
experiments on the synthetic data set. Fig. 9 illustrates the
experimental results on the synthetic data set of size 10 K.
The two variations of KATH achieve much better accuracy
performance with KATH-naive clearly outperforming
NSH, KATH-MinHash significantly outperforming NSH
and slightly beating WL. According to the difference in per-
formance achieved by the two variations of KATH on the
synthetic data set, we can conclude that KATH-MinHash,
again, is more suitable for graph data with more labels.
Also, we note that the two variations of KATH run much
faster than their competitors: KATH-naive takes around 1=3

944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

Fig. 4. Classification Accuracy (odd rows) and CPU Time (even rows) comparison results on the nine graph data sets in NCI. The x-axis denotes the
depth of subtrees.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 945

of NSH runtime, and approximately 1=4 of WL runtime;
KATH-MinHash runs about 1=3 faster than NSH, and about
twice as fast asWL. The results again demonstrate the advan-
tage of KATHon relatively large data in terms of runtime.

4.10 Impact of Traversal Table Size on KATH

Furthermore, we carry out experiments on the nine NCI
datasets to analyze the influence of the traversal table size
K in KATH graph kernel. In our previous experiments, we

find that KATH achieves the best performance on NCI
when the depth is set to 4 and the number of MinHashes is
set to 300. Therefore, in this experiment, we set Depth to 4,
D to 300, and vary K from 2 to 4. Since the results on the
nine NCI datasets show similar trends, we report only the
experimental results on NCI1.

Fig. 10 presents experimental results on NCI by varying
the traversal table size. The accuracy performance of the
two variations of KATH clearly gets improved when K
varies from 2 to 3. Intuitively, when only two neighbors are
considered, the traversal table will lose a large portion of
graph information, which in turn results in performance
decline. The accuracy performance of the two variations
of KATH is nearly unchanged when K varies from 3 to 4.
This can be explained by the distribution of the number of
neighbors on the dataset. As shown in Table 2, there are
only 3.72 percent of nodes owning four neighbors - much
less than those having two and three neighbors. Therefore,
a traversal table with a size of 3 only loses a tiny portion of
the graph information compared with that of size 4.

5 RELATED WORK

Graph feature extraction (and fingerprinting) is closely
related to graph kernel design for measuring graph similar-
ity. A large number of graph kernels have been proposed
in the last decade, most of which are based on the similar
idea of extracting substructures from graphs to compare
their co-occurrences [46]. Typical substructures for graph

Fig. 5. Classification Accuracy (left) and CPU Time (right) comparison
results on qHTS. The x-axis denotes the depth of subtrees.

Fig. 6. Classification Accuracy (left) and CPU Time (right) comparison
results on NCI-Yeast. The x-axis denotes the depth of subtrees.

Fig. 7. Classification Accuracy (left) and CPU Time (right) comparison
results on DBLP. The x-axis denotes the depth of subtrees.

Fig. 8. Classification Accuracy (left) and CPU Time (right) comparison
results on Twitter. The x-axis denotes the depth of subtrees.

Fig. 9. Classification Accuracy and CPU Time comparison results on
Synthetic 10K20L10E (KN short for KATH-naive, and KM short for
KATH-MinHash).

Fig. 10. Classification Accuracy comparison results on Real-World NCI1.
The x-axis denotes the size of traversal table. The left figure represents
KATH-naive, and the right figure represents KATH-MinHash.

TABLE 2
Summary of Distribution of No. Neighbors for NCI

No. Neighbors No. Nodes Percentage

1 268,893 21.18%
2 550,193 43.33%
3 403,387 31.77%
4 47,254 3.72%

946 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

representation include walks [11], [16], paths [13], subtrees
(neighboring nodes) [14], [15], [47], and subgraphs (usually
based on a frequent subgraph mining technique, e.g., [44],
[48]). The walk-based approach [11] constructs a kernel
between graphs with node labels and edge labels within the
framework of the marginalized kernel, where the walk com-
parison can be reduced to a system of linear simultaneous
equations. A unified framework integrating random walk
and marginalized kernels was proposed by [16]. The kernels
for labeled graphs, can be computed efficiently by extend-
ing linear algebra. The path-based approach [13] constructs
a kernel between graphs based on the shortest paths.
Although the kernel can be computed in polynomial time, it
is still not applicable to large-scale graphs due to expensive
time cost. On the other hand, the kernel only takes the
attributes of the starting and ending nodes into consider-
ation, which means that this kernel loses some precious
information in the graphs. The WL graph kernel can easily
outperform the three kernels [17]. The subtree-based
approach [14] constructs a family of graph kernels by
detecting common subtree patterns as features to represent
graphs. This kernel presents good performance on toxicity
and anti-cancer activity prediction for small graph models,
but it could not solve large graphs with high degrees in
average. In [15], a fast subtree kernel was designed to deal
with graphs with node labels based on the WL isomorphism
test; however, the kernels only run on limited graph data-
base. The neighborhood kernel in [47] adopts binary arrays
to represent node labels and uses logical operations to pro-
cess labels, but the complexity is proportional to the number
of nodes times the average degree of nodes. By contrast,
[44], [48] both focus on how to mine frequent substructure
patterns in graph data instead of graph classification.

There have also been several studies on fast graph classi-
fication using hashing techniques. Actually, hashing has
been one of the most effective solutions for approximately
nearest neighbor search and similarity search, and in turn
contributes to the kernel designs in [49]. A 2-dimensional
hashing scheme is employed to construct an “in-memory”
summary of the graph streams in [37]. The first random-
hash scheme is used to reduce the size of the edge set, while
the second MinHash scheme is used to dynamically update
a number of hashes, which is able to summarize the fre-
quent patterns of co-occurrence edges in the graph stream
observed thus far. Recently, [39] proposed to detect clique
patterns from a compressed network obtained via random
edge hashing, and the detected clique patterns are further
hashed to a fixed-size feature space [19]. Nevertheless, the
two hashing techniques aim to deal with network flows and
thus cannot be applied to arbitrary labeled graphs with
node labels. To the best of our knowledge, there have been
two studies on hashing techniques for graph sketching. One
is NSH, which is extended from the fast subtree kernel [15]
by employing a random hashing scheme for recursively
hashing tree structures. The other is MinHash Fingerprints
(MHF) [50], which first enumerates all the paths (between a
certain range of orders) as a pattern set to represent each
graph and then employs a standard MinHash scheme for
fingerprinting. Compared to MHF, our algorithms adopt
efficient matrix operations to extract subtree patterns, which
are much more effective than paths for graph classification.

Also, some studies have been conducted on hashing tree-
structured data [51], [52]. The hierarchical MinHash algo-
rithm [51] proceeds from bottom to top of the tree, where
the information of labels obtained by fingerprinting is prop-
agated to an upper level of the tree. In contrast, our KATH
algorithms extend the tree from the root node. After new
leaf nodes are generated via extension, the algorithm will
fingerprint the new pattern to encode the information of
labels on each node and the tree structure. On the other
hand, [51] is only applicable to trees where only leaf nodes
own labels such that it cannot be directly adopted in our
problem setting, where each node of the graph has a label.
In [52], a subtree pattern called embedded pivot substruc-
ture is proposed, which is composed of two nodes and their
lowest common ancestor in the tree. A tree can thus be rep-
resented as a bag of such embedded pivots, and subse-
quently, the MinHash algorithm is applied to the bag.
Unfortunately, in order to obtain all embedded pivots in
the tree, the algorithm requires a computational complexity
of Oðn2Þ, where n is the number of nodes in the tree.
Obviously, compared to the KATH algorithm that is linear
in the number of nodes, it can hardly be scaled up to deal
with large-scale graph data sets.

6 CONCLUSION

In this paper, we propose a graph feature extraction (includ-
ing fingerprinting) algorithm, called KATH, which makes
use of K-ary trees to approximate the relabeling process of
the WL kernel with dramatically reduced computation time
and negligible space. In order to build K-ary trees, we
design an efficient data structure named a traversal table.
Our algorithm adopts two alternative solutions for selecting
neighbors for the traversal table, and employs a recursive
indexing process that only performs r times of matrix index-
ing to generate all ðr� 1Þ-depthK-ary trees, whose leaf nodes
can be ordered to uniquely specify an ðr� 1Þ-depth subtree
pattern. By virtue of the recursive indexing process, we can
quickly obtain almost the same subtree patterns as those
found in theWLkernel, without global insertion and search.

We conduct extensive empirical tests of KATH and com-
pare it to state-of-the-art methods for fast graph classifica-
tion, i.e., WL and NSH. We evaluate its effectiveness and
efficiency on 16 real-world graph benchmarks and 1 large-
scale synthetic graph set (104). The experimental results
show that KATH not only achieves similar classification
performance to WL but also performs much faster and uses
less space than WL and NSH, and KATH-MinHash is more
suitable for relatively large data with many node labels.

ACKNOWLEDGMENTS

This work was partially supported by the Fudan University
Startup Research Grant and the Program for Professor of
Special Appointment (Eastern Scholar) at the Shanghai
Institutions of Higher Learning.

REFERENCES

[1] C. C. Aggarwal and H. Wang, Managing and Mining Graph Data,
vol. 40. Berlin, Germany: Springer, 2010.

[2] C. C. Aggarwal, Y. Zhao, and S. Y. Philip, “On clustering graph
streams,” in Proc. SIAM Int. Conf. Data Mining, 2010, pp. 478–489.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 947

[3] C. C. Aggarwal, “On classification of graph streams,” in Proc.
SIAM Int. Conf. Data Mining, 2011, pp. 652–663.

[4] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph classi-
fication,” IEEE Trans. Cybern., vol. 45, no. 3, pp. 430–443,
Mar. 2015.

[5] S. Pan, J. Wu, X. Zhu, and C. Zhang, “Graph ensemble boosting
for imbalanced noisy graph stream classification,” IEEE Trans.
Cybern., vol. 45, no. 5, pp. 940–954, May 2015.

[6] Y.-M. Zhang, K. Huang, X. Hou, and C.-L. Liu, “Learning locality
preserving graph from data,” IEEE Trans. Cybern., vol. 44, no. 11,
pp. 2088–2098, Nov. 2014.

[7] K. Riesen and H. Bunke, “Graph classification by means of
Lipschitz embedding,” IEEE Trans. Syst. Man Cybern. Part B:
Cybern., vol. 39, no. 6, pp. 1472–1483, Dec. 2009.

[8] S. Pan, J. Wu, and X. Zhu, “CogBoost: Boosting for fast cost-sen-
sitive graph classification,” IEEE Trans. Knowl. Data Eng., vol. 27,
no. 11, pp. 2933–2946, Nov. 2015.

[9] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive fea-
ture exploration and learning for multitask graph classification,”
IEEE Trans. Cybern., vol. 47, no. 3, pp. 744–758, Mar. 2017.

[10] V. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley,
1998.

[11] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels
between labeled graphs,” in Proc. Int. Conf. Mach. Learn., 2003,
pp. 321–328.

[12] T. G€artner, P. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Proc. Ann. Conf. Learning
Theory, 2003, pp. 129–143.

[13] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in Proc. IEEE Int. Conf. Data Mining, 2005, pp. 74–81.

[14] P. Mah�e and J.-P. Vert, “Graph Kernels based on Tree Patterns for
Molecules,”Mach. Learn., vol. 75, no. 1, pp. 3–35, 2009.

[15] N. Shervashidze and K. Borgwardt, “Fast subtree kernels on
graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2009, pp. 1660–
1668.

[16] S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph Kernels,” J. Mach. Learning Res., vol. 11,
pp. 1201–1242, 2010.

[17] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach.
Learning Res., vol. 12, pp. 2539–2561, 2011.

[18] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwa-
nathan, “Hash kernels for structured data,” J. Mach. Learning Res.,
vol. 10, pp. 2615–2637, 2009.

[19] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Atten-
berg, “Feature hashing for large scale multitask learning,” in Proc.
Int. Conf. Mach. Learn., 2009, pp. 1113–1120.

[20] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applications,”
J. Algorithm, vol. 55, pp. 58–75, 2005.

[21] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE
Trans. Cybern., vol. 44, no. 8, pp. 1362–1371, Aug. 2014.

[22] Z. Jin, D. Zhang, Y. Hu, S. Lin, D. Cai, and X. He, “Fast and accu-
rate hashing via iterative nearest neighbors expansion,” IEEE
Trans. Cybern., vol. 44, no. 11, pp. 2167–2177, Nov. 2014.

[23] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing
with local models for approximate similarity search,” IEEE Trans.
Cybern., vol. 44, no. 7, pp. 1225–1236, Jul. 2014.

[24] W. Wu, B. Li, L. Chen, and C. Zhang, “Cross-view feature hashing
for image retrieval,” in Proc. Pacific-Asia Conf. Knowl. Discovery
Data Mining, 2016, pp. 203–214.

[25] W. Wu, B. Li, L. Chen, and C. Zhang, “Canonical consistent
weighted sampling for real-value weighted min-hash,” in Proc.
IEEE Int. Conf. Data Mining series, 2016, pp. 1287–1292.

[26] W. Wu, B. Li, L. Chen, and C. Zhang, “Consistent weighted sam-
pling made more practical,” in Proc. Int. World Wide Web Conf.,
2017, pp. 1035–1043.

[27] P. Li, “0-bit consistent weighted sampling,” in Proc. Annu. ACM
SIGKDD Conf., 2015, pp. 665–674.

[28] P. Li and C. K€onig, “b-Bit minwise hashing,” in Proc. Int. World
Wide Web Conf., 2010, pp. 671–680.

[29] A. Shrivastava and P. Li, “Densifying one permutation hashing
via rotation for fast near neighbor search,” in Proc. Int. Conf. Mach.
Learning, 2014, pp. 557–565.

[30] P. Li, A. Owen, and C.-H. Zhang, “One permutation hashing,” in
Proc. Annu. Conf. Neural Inf. Process. Syst., 2012, pp. 3113–3121.

[31] A. Shrivastava and P. Li, “In defense of minhash over SimHash,”
in Proc. Int. Conf. Artif. Intell. Statistics, 2014, pp. 886–894.

[32] P. Li, A. Shrivastava, J. L. Moore, and A. C. K€onig, “Hashing
algorithms for large-scale learning,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2011, pp. 2672–2680.

[33] D. Yang, B. Li, L. Rettig, and P. Cudr�e-Mauroux, “HistoSketch:
Fast similarity-preserving sketching of streaming histograms with
concept drift,” in Proc. IEEE Int. Conf. Data Mining, 2017, to be
published.

[34] D. Yang, B. Li, and P. Cudr�e-Mauroux, “POIsketch: Semantic
place labeling over user activity streams,” in Proc. Int. Joint Conf.
Artif. Intell., 2016, pp. 2697–2703.

[35] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” J. Comput. Syst. Sci., vol. 66,
no. 4, pp. 671–687, 2003.

[36] P. Indyk, “Stable distributions, pseudorandom generators, embed-
dings and data stream computation,” J. ACM, vol. 53, no. 3,
pp. 307–323, 2006.

[37] C. C. Aggarwal, “On classification of graph streams,” in Proc.
SIAM Int. Conf. Data Mining, 2011, pp. 652–663.

[38] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested subtree hash kernels
for large-scale graph classification over streams,” in Proc. IEEE
Int. Conf. Data Mining, 2012, pp. 399–408.

[39] L. Chi, B. Li, and X. Zhu, “Fast graph stream classification using
discriminative clique hashing,” in Proc. Pacific-Asia Conf. Knowl.
Discovery Data Mining , 2013, pp. 225–236.

[40] B. J. Weisfeiler and A. A. Leman, “A reduction of a graph to a
canonical form and an algebra arising during this reduction,”
Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[41] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” in Proc. Annu. ACM
Symp. Theory Comput., 1998, pp. 327–336.

[42] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph ker-
nels for chemical informatics,” Neural Netw., vol. 18, no. 8,
pp. 1093–1110, 2005.

[43] S. Pan, X. Zhu, C. Zhang, and S. Y. Philip, “Graph stream classifi-
cation using labeled and unlabeled graphs,” in Proc. IEEE Int.
Conf. Data Eng., 2013, pp. 398–409.

[44] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in Proc. IEEE Int. Conf. Data Mining, 2002, pp. 721–724.

[45] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,”ACMTrans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27, 2011.

[46] D. Haussler, “Convolution kernels on discrete structures,” UC
Santa Cruz, Santa Cruz, CA, USA, Tech. Rep. UCSC-CRL-99–10,
1999.

[47] S. Hido and H. Kashima, “A linear-time graph kernel,” in Proc.
IEEE Int. Conf. Data Mining, 2009, pp. 179–188.

[48] W. Fan, et al., “Direct mining of discriminative and essential fre-
quent patterns via model-based search tree,” in Proc. 14th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008, pp. 230–
238.

[49] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity
search: A survey,” CoRR, abs/1408.2927, 2014.

[50] C. H. C. Teixiera, A. Silva, and W. M. Jr, “Min-hash fingerprints
for graph kernels: A trade-off among accuracy, efficiency, and
compression,” J. Inform. Data Manag., vol. 3, no. 3, pp. 227–242,
2012.

[51] S. Gollapudi and R. Panigrahy, “The power of two min-hashes for
similarity search among heirarchical data objects,” in Proc. Symp.
Principles Database Syst., 2008, pp. 211–219.

[52] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data:
Methods and applications,” in Proc. IEEE Int. Conf. Data Eng.,
2010, pp. 429–440.

Wei Wu received the MSc degree in computer
science from Peking University, Beijing, China, in
2014. He is currently working toward the PhD
degree in the Centre for Artificial Intelligence,
University of Technology Sydney, Australia. His
research interests are randomized hashing algo-
rithms, data mining, and local search, and his
papers appear in major conferences including
WWW, ICDM, and PAKDD.

948 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 5, MAY 2018

Bin Li received the PhD degree in computer
science from Fudan University, Shanghai, China.
Hewas a senior research scientist withData61 (for-
merly NICTA), CSIRO, Eveleigh, NSW, Australia,
and a lecturer with the University of Technology
Sydney, Broadway, NSW, Australia. He is currently
an associate professor in the School of Computer
Science, Fudan University, Shanghai, China. His
current research interests include machine learn-
ing and data analytics, particularly in complex data
representation, modeling, and prediction.

Ling Chen received the PhD degree from
Nanyang Technological University, Singapore.
She is a senior lecturer in the Centre for Artificial
Intelligence, University of Technology Sydney
(UTS). Before joining UTS, she was a post-doc-
toral research fellow in the L3S Research Center,
University of Hannover, Germany. Her research
interests include data mining and machine learn-
ing, social network analysis, and recommender
systems. Her papers appear in major conferen-
ces and journals including SIGKDD, ICDM, SDM,
and ACM TOIS.

Xingquan Zhu (SM’12) received the PhD degree
in computer science from Fudan University,
Shanghai, China. He is an associate professor
in the Department of Computer and Electrical
Engineering and Computer Science, Florida
Atlantic University, Boca Raton, Florida, and a
distinguished visiting professor (Eastern Scholar)
with the Shanghai Institutions of Higher Learning.
His current research interests include data min-
ing, machine learning, and bioinformatics. Since
2000, he has published more than 220 refereed

journal and conference papers in these areas, including two Best Paper
Awards and one Best Student Paper Award. He is an associate editor of
the IEEE Transactions on Knowledge and Data Engineering (2014-cur-
rent), and an associate editor of the ACM Transactions on Knowledge
Discovery from Data (2017 - current). He is serving on the editorial board
of the Journal of Big Data (2014-current), the International Journal of
Social Network Analysis and Mining (2010-current) and the Network
Modeling Analysis in Health Informatics and Bioinformatics Journal
(2014-current). He was the program committee cochair for the 14th
IEEE International Conference on Bioinformatics and BioEngineering
(BIBE-2014), IEEE International Conference on Granular Computing
(GRC-2013), 23rd IEEE International Conference on Tools with Artificial
Intelligence (ICTAI-2011), and the 9th International Conference on
Machine Learning and Applications (ICMLA-2010). He also served as a
conference co-chair for ICMLA-2012. He also serves (or served) as a
program vice chair, finance chair, publicity co-chair, and program commit-
tee member for many international conferences, including ACM-KDD,
IEEE-ICDM, and ACM-CIKM. He is a senior member of the IEEE.

Chengqi Zhang (SM’95) received the PhD
degree from the University of Queensland,
Brisbane, Australia, in 1991 and the DSc degree
(higher doctorate) from Deakin University,
Geelong, Australia, in 2002. Since December
2001, he has been a professor of information
technology with the University of Technology,
Sydney, Australia, and has been the executive
director of UTS Data Science since September
2016. Since November 2005, he has been the
chairman of the Australian Computer Society

National Committee for Artificial Intelligence. He has published more
than 200 research papers, including several in first-class international
journals, such as Artificial Intelligence, and IEEE and ACM Transactions.
He has published six monographs and edited 16 books, and has attracted
11 Australian Research Council grants. His research interests mainly
focus on data mining and its applications. He has served as an associate
editor for three international journals, including the IEEE Transactions on
Knowledge and Data Engineering (2005-2008); and as general chair, PC
chair, or organizing chair for five international conferences including
ICDM 2010 and WI/IAT 2008. He was/is general co-chair of KDD 2015 in
Sydney, the local arrangements chair of IJCAI-2017 in Melbourne, a fel-
low of the AustralianComputer Society, and a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WU ETAL.:K-ARY TREE HASHING FOR FASTGRAPH CLASSIFICATION 949

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

