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Abstract—Ensemble learning is a common tool for data stream classification, mainly because of its inherent advantages of

handling large volumes of stream data and concept drifting. Previous studies, to date, have been primarily focused on building

accurate ensemble models from stream data. However, a linear scan of a large number of base classifiers in the ensemble during

prediction incurs significant costs in response time, preventing ensemble learning from being practical for many real-world time-

critical data stream applications, such as Web traffic stream monitoring, spam detection, and intrusion detection. In these

applications, data streams usually arrive at a speed of GB/second, and it is necessary to classify each stream record in a timely

manner. To address this problem, we propose a novel Ensemble-tree (E-tree for short) indexing structure to organize all base

classifiers in an ensemble for fast prediction. On one hand, E-trees treat ensembles as spatial databases and employ an R-tree like

height-balanced structure to reduce the expected prediction time from linear to sub-linear complexity. On the other hand, E-trees

can be automatically updated by continuously integrating new classifiers and discarding outdated ones, well adapting to new trends

and patterns underneath data streams. Theoretical analysis and empirical studies on both synthetic and real-world data streams

demonstrate the performance of our approach.

Index Terms—Stream data mining, classification, ensemble learning, spatial indexing, concept drifting

Ç

1 INTRODUCTION

DATA stream classification represents one of the most
important tasks in data stream mining [1], [2], which

has been popularly used in real-time intrusion detection,
spam filtering, and malicious website monitoring. In the
applications, data arrive continuously in a stream fashion,
timely predictions in identifying malicious records are of
essential importance.

Compared to traditional classification, data stream classi-
fication is facing two extra challenges: large/increasing data
volumes and drifting/evolving concepts [3], [4]. To address
these challenges, many ensemble-based models have been
proposed recently, including weighted classifier ensembles
[5], [6], [7], [8], [9], incremental classifier ensembles [10],
classifier and cluster ensembles [11], to name a few. While
these models vary from one to another, they share striking
similarity in their design: using divide-and-conquer techniques
to handle large volumes of stream data with concept drifting.
Specifically, these ensemble models partition continuous
stream data into small data chunks, build one or multiple
light-weight base classifier(s) from each chunk, and

combine base classifiers in different ways for prediction.
Such an ensemble learning design enjoys a number of
advantages such as scaling well, adapting quickly to new
concepts, low variance errors, and ease of parallelization.
As a result, ensemble has become one of the most popular
techniques in data stream classification.

To date, existing works on ensemble learning in data
streams mainly focus on building accurate ensemble mod-
els. Prediction efficiency has not been concerned mainly
because (1) prediction typically takes linear time, which is
sufficient for general applications with undemanding pre-
diction efficiency. (2) Existing works only consider combin-
ing a small number of base classifiers, e.g., no more than 30
[5], [11], [12]. However, there are increasingly more real-
world applications where stream data arrive intensively in
large volumes. In addition, the hidden patterns underneath
data streams may change continuously, which requires a
large number of base classifiers to capture various patterns
and form a quality ensemble. Such applications call for fast
sub-linear prediction solutions.

Motivating example. In online webpage stream monitor-
ing, ensemble learning can be used to identify malicious
pages from normal pages, both arriving continuously, in
real time. We deployed a detection system on a Linux
machine with 3 GHz cpu and 2 GB memory. Each day, a
batch of base classifiers are trained using decision trees
(C4.5 algorithm [13]) with all base classifiers being com-
bined to classify pages in the next day. In our experiments,
in total 120 days of stream data [14] were used.

The curve in Fig. 1 summarizes our experimental results,
showing the typical linear relationship between prediction
time and ensemble size. For example, it takes an ensemble
with 50 members 0.083 second to classify a page. Suppose
that the webpage stream flows 10,000 pages per second,
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which is common for backbone networks. Then, monitoring
all stream records requires a sophisticated parallel comput-
ing architecture having 830 processors!

To achieve sub-linear time for prediction, a practical
approach is to explore shared patterns among all base classi-
fiers. Without loss of generality, suppose that base classifiers
of an ensemble are built using decision trees. Then, each
base classifier is comprised of a batch of decision rules. Each
decision rule covers a rectangular area in the decision space,
and can be considered as a spatial object in the decision
space. This way, each base classifier is converted to a batch
of spatial objects, and an ensemble model is converted to a
spatial database as shown in Fig. 2. By doing so, the problem
can be reduced to exploring shared patterns among all spa-
tial objects (base classifiers) in the spatial database (ensem-
ble model).

Challenges. Spatial databases have been extensively stud-
ied in the past several decades. Many spatial indexing struc-
tures exist that utilize shared patterns among spatial data to
reduce query and update costs [15]. Examples include R-
tree [16], R�-tree [17], Rþ-tree [18], M-tree [19], to name a few
[20]. Generally, these methods can be used to index ensem-
ble models. However, compared to traditional spatial data-
bases, indexing ensemble models has its unique
characteristics that pose non-trivial technical challenges:

� Complex indexing objects. Existing spatial indexing
methods are designed for conventional spatial data
such as image, map, and multimedia data. The
indexing objects for ensemble models are decision
rules with much richer information, including class
labels, class probability distribution, and weights of
classifiers.

� Different objectives. Conventional spatial indexing
aims at fast retrieval and updating of spatial data.
Ensemble model indexing aims at fast prediction of
incoming stream records.

� Changing data distributions. Due to concept drifting,
hidden patterns underneath stream data change
continuously. Therefore a decision region in ensem-
ble models may be associated with different class
labels.

Our solution. In light of these challenges, in this paper we
propose a novel Ensemble-tree (E-tree for short) structure
that organizes base classifiers in a height-balanced tree
structure to achieve logarithmic time complexity for predic-
tion. Technically, an E-tree has three key operations:
(1) Search: traverse an E-tree to classify an incoming stream
record x; (2) Insertion: Integrate new classifiers into an
E-tree; (3) Deletion: Remove outdated classifiers from an
E-tree. As a result, the E-tree approach not only guarantees
a logarithmic time complexity for prediction, but is also
able to adapt to new trends and patterns in stream data.

The rest of the paper is structured as follows. Section 2
introduces the ensemble indexing problem. Section 3
describes the main structure and key operations of E-trees.
Section 4 studies the theoretical aspects of E-trees. Section 5
reports experiments. Section 6 surveys related work, and
we conclude the paper in Section 7. Important symbols
used in the paper are summarized in Table 1.

2 PROBLEM DESCRIPTION

Consider a two-class data stream S consisting of an infinite
number of records fðxi; yiÞg, where xi 2 Rd is a
d-dimensional attribute vector, and yi 2 fnormal; abnormalg
is the class label, which is unobservable unless the sample is
properly labeled. Suppose that we have built n base classi-
fiers C1; C2; . . . ; Cn from historical stream data using a deci-
sion tree algorithm (such as C4.5). All the n base classifies are
combined together as an ensemble classifier E. Each base
classifier Ci ð1 � i � nÞ is comprised of l decision rules
Rij ð1 � j � lÞ represented by conjunction literals (i.e., rules
are expressed as “if . . . then . . .”). Then, there are N ¼ n� l
decision rules in the ensemble E. The aim of this paper is to
generate accurate prediction for an incoming stream record
x, using the ensemble model E, with sub-linear time com-
plexityOðlogðNÞÞ.

In order to achieve this goal, we first convert each base
classifier Ci ð1 � i � nÞ into a batch of spatial objects
oij ð1 � j � lÞ. This way, the ensemble model E is converted
to a spatial database AE containing all spatial objects oij
ð1 � i � n; 1 � j � lÞ. As a result, the original problem isFig. 2. Mapping an ensemble model to a spatial database.

TABLE 1
List of Symbols

Fig. 1. Prediction time versus ensemble size.
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reduced to classifying each incoming stream record x by search-
ing over the spatial database AE .

In the following, we use Example 1 to illustrate the map-
ping from the ensemble model E to the spatial database AE .
This example will be used throughout the paper.

Example 1. Consider a Web monitoring stream S with two
classes (normal versus abnormal). Suppose that each
stream record has two attributes r1; r2, where ri 2 ½0; 5�,
and the most recent five base classifiers C1; C2; . . . ; C5

built along the stream are incorporated in the ensemble
model E, with decision rules for the base classifiers listed
in Table 2. For simplicity, each classifier contains one lit-
eral clause (in an if-then expression) corresponding to
the target abnormal class. The goal is to classify each
incoming record x using the ensemble E.

Now we demonstrate the conversion of the ensemble
model E to a spatial database AE . As shown in Fig. 3, the
whole decision space is a two-dimensional rectangle
A ¼ ð0; 0; 5; 5Þ. For each base classifier, a small gray rectan-
gle is used to represent its decision rule for the target abnor-
mal class. Besides, due to concept drifting, the gray
rectangles associated with the five classifiers drift from the
bottom left corner to the upper right corner in the decision
space A. By doing so, the ensemble model can be repre-
sented by a batch of spatial objects (i.e., the gray rectangles)
generated from all base classifiers. These spatial objects con-
stitute the spatial database AE . Given a small circle
x ¼ ð4; 4Þ as an incoming record, we want to classify x as
accurate and as fast as possible by searching over AE .

3 E-TREE INDEXING STRUCTURE

In this section, we introduce the E-tree data structure and its
three key operations, Search, Insertion, and Deletion for main-
taining E-trees.

3.1 Basic Structure of E-Trees

An E-tree, as shown in Fig. 4, is a height-balanced tree
mainly consisting of two components: an R-tree like struc-
ture T on the right-hand side storing all decision rules of
the ensemble, and a table structure on the left-hand side stor-
ing all classifier-level information of the ensemble, such as
IDs and weights of classifiers. The two structures are con-
nected together by linking each classifier in the table to its
corresponding decision rules in the tree.

The tree structure consists of two different types of
nodes: leaf nodes and pivot nodes. Similar to R-trees, each
leaf node contains a batch of decision rules that are located
in a heavily overlapping area in the decision space. Each

decision rule can be represented as a special type of spatial
object of the following form:

ðQ; classifier id; siblingÞ; (1)

where Q denotes a rectangle bounding the decision rule,
classifier id denotes the classifier generating the decision
rule, and sibling denotes the memory address of the next
decision rule generated by the same classifier. Generally, a
decision rule covers a closed space Q ¼ ðQ0;Q1; . . . ;QdÞ
with each Qi representing a closed bounded interval along
dimension i. On the other hand, a pivot node in the tree
structure contains entries in the form of

ðQ; child pointerÞ; (2)

where Q is the smallest rectangle covering all decision rules
in its child nodes, and child pointer references its child
node. A non-root node contains between m and M entries.
The root node has at least two entries except a leaf node.

The table structure contains information about all base
classifiers in an ensemble with each entry denoted by

ðclassifier id; weight; pointerÞ; (3)

where the first item represents the classifier ID in the ensem-
ble, the second item represents the classifier’s weight, and
the last item denotes the memory address of its first compo-
nent decision rule in the tree structure.

It is worth noting that while R-trees index conventional
spatial objects such as image, map, and multimedia data, E-
trees index a new type of spatial data, decision rules, with
the following constraints:

� All decision rules are built in a continuous attribute
space. In case that a discrete attribute is observed, we
can convert it to a continuous attribute by severely
penalizing its difference. For example, if a binary
attribute r3 ðTrue; FalseÞ appears in Example 1, and
the decision rule in C1 is “if ðr1 � 1:5Þ ^ ðr2 � 1:5Þ
^ðr3 ¼ TrueÞ then abnormal; otherwise normal”, the
decision rule in C2 is “if ð0:5 � r1 � 2Þ ^ ð0:5 � r2 �
2Þ ^ ðr3 ¼ FalseÞ then abnormal; otherwise normal”,

Fig. 3. Mapping ensemble E in Example 1 to spatial databaseAE .

Fig. 4. An illustration of E-tree (some links are omitted).
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then the first decision rule on abnormal class will be
ð0; 0; 0; 1:5; 1:5; 0Þ, while the second one will be ð0:5;
0:5; 1; 2; 2; 1Þ. However, any change of r3 will be
heavily penalized by assigning a much heavier
weight.

� Each decision rule covers a closed space. In case a
decision rule covers only a partially-closed space, a
lower or upper bound of the decision space will be
added to make it closed. For example, in Example 1,
decision rule R11 from classifier C1 is a half-closed
rule ðr1 � 1:5Þ ^ ðr2 � 1:5Þ, then the lower bound
r1 ¼ 0; r2 ¼ 0 will be added to make it a closed space
ð0 � r1 � 1:5Þ ^ ð0 � r2 � 1:5Þ. Moreover, if a deci-
sion rule covers only k ðk < dÞ dimensions, it will be
expanded over the remaining ðd� kÞ dimensions. For
example, for a decision rule defined in partially
closed spaceR ¼ ð0 � r1 � 1:5Þ;we will expandR to
a closed space asR0 ¼ ð0 � r1 � 1:5Þ ^ ð0 � r2 � 5Þ.

� All decision rules will make “hard” decisions. For
example, a Web page has 100 percent chance of
being malicious or not. Therefore, there are no
explicit items in Eqs. (1) and (2) to define the poste-
rior class distributions.

� We only consider binary classification at this time.
The extension to multi-class problems are further
addressed in Section 3.6. We only index decision
rules from one class (the minor class containing
fewer decision rules). For multi-class, an intuitive
method is to combine multiple E-trees by using a
one-against-one/ one-against-all strategy.

Example 2. Fig. 5 shows the E-tree structure for the ensem-
ble model used in Example 1. For simplicity, some links
from leaf nodes to the table structure are omitted.

3.2 Search Operation

Each time a new record x arrives, a search operation is
invoked to predict a class label for x. The algorithm first tra-
verses the E-tree and finds decision rules in the leaf node(s)
covering record x. Then it calculates the class label for x by
combining decisions from all the retrieved rules,

yx ¼ sgn
Xu

i¼1
wiP ðCindexjxÞ; g

� �
; (4)

where yx denotes the class label of x, u is the total number of
retrieved decision rules covering x, sgnða; gÞ is a threshold
function that decides x’s class label by comparing a and g,
and Cindex is the indexing class in the tree. Recall that only
the minor class with fewer decision rules is indexed in E-
trees. For instance, in Example 1, Cindex represents the
abnormal class. P ðCindexjxÞ is a “hard” posterior probability
of either 0 or 1.

Algorithm 1 lists detailed procedures of the search opera-
tion. The algorithm performs a depth-first search over the
tree. To derive a class label for x, it first traverses along
the branches whose rectangles cover x, and then calculates
the class label for x using Eq. (4). We use Example 3 derived
from Example 1 to explain the search process.

Example 3. Suppose x ¼ ð4; 4Þ is an incoming record as
shown in Example 1, and the parameter g in Eq. (4) is 0.5.
The search algorithm first compares x with entries P1

and P2 in the root node, and then descends along entry
P2 that covers x. After that, it finds that both entries (P6

and P7) in P2’s child cover x. Next, it obtains the weights
for entries P6 and P7 in the table structure through their
classifier id entries. Based on these results, the probabil-
ity of x belonging to the abnormal class is

w4P ðabnormaljxÞ þ w5P ðabnormaljxÞ ¼ 0:75 > 0:5:

Therefore, x is predicted as abnormal. At the worst case,
a maximum of four comparisons are needed (P1, P2, P6,
and P7) in this example. Compared to a linear scan that
needs five comparisons, E-tree achieves a 20 percent
improvement.

3.3 Insertion Operation

Insertions are used to integrate new base classifiers into the
ensemble model, so that the ensemble model can adapt to
new trends and patterns in data streams. Algorithm 2 lists

Fig. 5. E-tree for the ensemble model in Example 1.

TABLE 2
The Five Base Classifiers in Example 1
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detailed procedures of the insertion operation. When a new
classifier C arrives, a new entry associated with C is added
into the table structure. Meanwhile, its decision rules R are
inserted into the tree structure one by one, and linked
together by their pointer entries.

Inserting R into the tree structure is similar to the inser-
tion operation in R-trees. First, a searchLeaf(R, T) function is
used to find a leaf node to insert each decision rule R. This
function searches from the root node, and traverses the
branches covering R. Once a leaf node (e.g., PL) is found,
the algorithm will investigate whether node PL has spare
room for inserting R. If it contains less than M entries, R
will be successfully inserted, and a function updateParent-
Node(P_L) will be invoked to revise the corresponding entry
in the parent node to cover the minimum bounding rectan-
gle (MBR) of the new node. On the other hand, if node PL is
full, a splitNode(P_L) function will be invoked to split the
current leaf node.

The most critical step in the insertion operation is node
splitting. Similar to R-trees, in principle the total area of the
two covering rectangles after a split should be minimized. Com-
pared to existing methods, node splitting in E-trees faces a
new challenge which is that a decision rule may contain dis-
crete attributes that cannot be changed during area enlarge-
ment. To solve this problem, a much heavier weight is
assigned to each discrete attribute during node splitting to
avoid enlargement or shrinkage. Formally, when a new
entry R is added into node P incurring a split, the following
objective function should be optimized:

<PL; PR > ¼ argmin
<X;Y > jX;Y 2R[P

ðX:Qþ Y:QÞ; (5)

where X and Y are variables, and PL and PR are the new
nodes containing R and all entries in P . We want to separate
the entries in R [ P into two classes with the total area of the
two covering rectangles being minimized. Obviously, this is
far from triviality. The above optimization problem can be
formally written as in

S� ¼ argmin
S

ffðSÞ :¼ AreaðSÞ þAeraðSÞg; (6)

where S is a nontrivial subset and S � R [ P (i.e., S 6¼ ; and
R [ P ), AreaðSÞ is the area of the minimal rectangle that
covers S, and S is the complementary set of S. The optimum
solutions should satisfy PL ¼ S� and PR ¼ S�.

Lemma 1. The set function fðSÞ in Eq. (6) is symmetric
submodular.

Proof. See Appendix A.1, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2014.2298018. tu
The symmetric submodular property guarantees that

the convexity of the discrete set function in Eq. (6) [21],
and minimizing a convex function can be achieved in
OðM3Þ time. Notice that if M is very large, the problem
would be very expensive to solve. As a solution, we
make use of a greedy heuristic that first randomly select
two entries in R [ P with the largest distance, and then
cluster all the remaining m� 1 entries in R [ P into the
two classes.

In the following we use Example 4 to explain the inser-
tion and node splitting of the five classifiers in Example 1.
This process is also illustrated in Fig. 6. Due to page limita-
tions, we omit the table structure of the E-tree.

Example 4. We insert five classifiers in Example 1 one by
one. Suppose parameters M ¼ 3 and m ¼ bM2 c ¼ 1. The
first three classifiers can be inserted by simply adding
them to the root node. Upon inserting C4, the number
of entries in the root node is four, which exceeds M.
Thus, the greedy splitting algorithm with initial points
ð0; 0; 1; 1Þ and ð2:5; 2:5; 4; 4Þ will be invoked to partition
the root node into two leaf nodes. Besides, a new root
node with two entries is generated to index the two
leaf nodes. In the end, C5 is inserted into the right
leaf node directly as the node size is smaller than M.

3.4 Deletion Operation

The deletion operation discards outdated classifiers when
the E-tree reaches its capacity. For example, if the largest
classifier size is set to four in Example 1, C1 will be dis-
carded from the E-tree when C5 arrives.

Possibly two different deletion methods can be adopted.
The first one resembles deletions in B-trees. It merges the
under-full nodes to one of the siblings resulting in the least
area increase. The second one resembles deletions in R-trees
and performs delete-then-insert. It first deletes the under-full
node, then inserts the remaining entries into the tree using
the insertion operation.

The second method is advantageous in that: (1) It is
easy to implement; and (2) Re-insertion will incremen-
tally refine the spatial structure of the tree. In addition,
it has been shown [16] that the B-tree method may
cause excessive node splits. Therefore, we use the sec-
ond method for our deletion operation. Specifically, if a
classifier C needs to be deleted from the E-tree, we first
find its classifier ID in the table structure using function
searchClassifier(C, A), and then delete its component

Fig. 6. Inserting the five classifiers in Example 1 to E-tree.
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decision rules by traversing the pointer entries. After
each deletion, if a leaf node has less than m entries,
the node will be deleted and re-inserted into the E-tree.
The update will propagate to the upper level unless the
½m;M� condition is met. Algorithm 3 gives the details of
the deletion operation.

3.5 Ensemble Learning with E-Trees

Fig. 7 shows the architecture of ensemble learning with
E-trees on data streams. The training module maintains an
E-tree that is constantly updated by calling the insertion and
deletion operations. The prediction module contains a syn-
chronized copy of the E-tree to make online predictions by
calling the search operation.

For each incoming stream record, on one hand, the pre-
diction module will call the search operation to predict its
class label. On the other hand, the record will be stored in a
buffer of the training module, where it will be labeled by
experts (either human experts or intelligent labeling
machines). Note that the labeling process is time-consum-
ing, and only a small portion of incoming records can be
labeled. In order to provide uniform labeling, a practical
approach is to set a sampling frequency parameter that
matches the labeling speed. Once the buffer is full, all
labeled records will be used to build a new classifier, which
is inserted into the E-tree by calling the insertion operation.
In case the E-tree is full, an outdated classifier will
be deleted by calling the deletion operation. The updated
E-tree will be synchronized to the E-tree copy in the
predictionmodule.

3.6 E-Forests

E-trees aim to solve binary classification problems. In this
subsection, we propose E-forests which combine multiple
E-trees for multi-class classification.

E-forests are inspired by the one-against-all structure
used in multi-class support vector machines (SVMs). In an
E-forest, each component E-tree is associated with one sin-
gle class, and a prediction operation sequentially goes
through all component trees in the forest. The best-case sce-
nario would be that the first component tree returns a posi-
tive answer and acquires the class label. As a result, the
prediction takes the same amount of time as a single tree. In
the worst case, the prediction has to go through the whole
forest, which demands extra time that may not meet the
needs of online classification.

To avoid worst-case scenarios, a practical solution is to
adaptively order the component trees in the forest to comply
with data distributions in streams. Ordering of trees on
streams can be induced to the problem of pipelined filter order-
ing on streams [22], where various greedy and randomized
algorithms can be used for fast computation.

>Algorithm 4 lists the E-forest label search algorithm.
First, we combine all component E-trees in the forest. Then,
for each incoming record x, the algorithm goes through the
forest, until the search result probðxÞmeets the given thresh-
old g. The algorithm terminates with the ultimate class label
for record x.

3.7 Why Ensemble Classifiers Work

We now theoretically prove that ensemble classifiers have a
lower expected error rate than a single classifier on data
streams with dynamically changing/evolving data distribu-
tions (i.e., concept drifting).

Assume that we have built a batch of classifiers Ck

fk ¼ 1; . . . ; ng from historical stream data, and we are
observing an incoming test example ðx; yÞ. Let Errorensemble

be the expected error of ensemble classifier, and Errorrandom
be the expected error of a random single classifier, then we
have Theorem 1 as follows:

Theorem 1. The expected error rate of ensemble classifier is
smaller than that of a random single classifier, i.e.,
Errorensemble � Errorrandom.

Proof. See Appendix A.2, available in the online supple-
mental material. tu

Fig. 7. Architecture of ensemble learning with E-trees.
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Theorem 1 follows the fact that ensemble classifiers
always exhibit smaller variance error than a random single
classifier, especially in unstable learning environments.

4 THEORETICAL ANALYSIS

In this section, we present theoretical studies on the proper-
ties and performance of E-trees.

4.1 Online Label Search

When classifying a stream record x using an E-tree, the
ideal scenario is that all target decision rules covering x
are located in one single leaf node. This way, the search
algorithm only needs to traverse one path down the tree to
make the final prediction for x. In the worst scenario, if the
target decision rules span all leaf nodes, the search algo-
rithm will have to traverse all possible paths in order to
classify x. In light of this observation, the key to analyzing
E-tree’s performance is to estimate the probability that x’s
target decision rules are located in one single leaf node.

Assume decision rules are mutually independent (depen-
dency between rules will only improve E-tree’s performance
as will be discussed shortly), the probability that two rules
are located in the same leaf node is proportional to the over-
lapping region between two hyper-rectangles representing
the two rules. Thus, the problem becomes that given a set of
decision rules, how to estimate the size of their overlapping region?

To answer this question, consider two decision rules Ra

and Rb in the label search space S ¼ S1 � 	 	 	 � Sd, where
Si 2 ½0; si�; 1 � i � d. Since not all rules cover all the
d-dimensions, rules Ra and Rb may overlap in some dimen-
sions. Without loss of generality, assume rule Ra is defined
in ra dimensions S1 � S2 � 	 	 	 � Sra , with the ith ð1 � i � raÞ
dimension Si spanning in ai region (out of the whole domain
½0; si�), and rule Rb is defined in rb dimensions S10 � S20�
	 	 	 � Srb , with the jth ð1 � j � rbÞ dimension Sj spanning in
bj region. Due to temporal correlations of data streams, it is
often the case that Ra and Rb overlap on r ðr < ra; r < rbÞ
dimensions. Then, we have Theorem 2:

Theorem 2. Given two decision rules Ra and Rb, the probability
that they are located in the same leaf node is

’ðRa;RbÞ /
Yr
i¼1

ai 	 bi
si 	 si

Yra
j¼rþ1

aj
sj

Yrb
k¼rþ1

bk
sk

: (7)

Proof. See Appendix A.3, available in the online supple-
mental material. tu
From Eq. (7), we can infer that the higher the data

dimensionality, the less possibility the two decision rules
will be located in the same node. Specifically, we have
Lemma 2 as follows:

Lemma 2. Given decision rules Ra, Rb and R0
a, R

0
b, let the data

dimensionality r0a 
 ra and r0b 
 rb, then ’ðR0
a; R

0
bÞ �

’ðRa;RbÞ.
Proof. See Appendix A.4, available in the online supple-

mental material. tu
Lemma 3. Consider n decision rules, assume the number of data

dimension increases by DðrÞ, then the increased query time DT

is bounded by DT 2 ½rðtÞDðrÞ; rðtÞnDðrÞ�, where rðtÞ is the aver-
age query time in one dimension. Moreover, let � be the over-

lapping rate between DðrÞ attributes, then the increased query

cost is rðtÞnð1��ÞDðrÞþ�DðrÞ.

Proof. See Appendix A.5, available in the online supple-
mental material. tu
Lemma 3 describes the relationship between query cost

and data dimensionality. The query cost increase depends
on the attribute overlapping rate. In the worst case, the
data are sparsely distributed in a disjoint high-dimen-
sional space, then the query cost increases exponentially
with the increase of data dimensionality. In the best case,
the data are densely distributed in a low-dimensional sub-
space, then the query cost increases linearly with respect
to the increase of the dimensionality.

Based on the above analysis, we study important issues
on the number of comparisons required for classifying x
under two extreme conditions: (1) All target decision rules
are located in the same leaf node; and (2) Target decision
rules are uniformly distributed across all leaf nodes.

Formally, consider an ensemble model E containing n
classifiers, with each classifier having l decision rules
defined for the target indexing class. Then we have the
following lemmas:

Lemma 4. The E-tree structure for ensemble modelE has dn	lMe leaf
nodes, 1

M�1 ðdnlM � 1eÞ pivot nodes, and logMdn	lMe þ 1 levels.

Proof. See Appendix A.6, available in the online supple-
mental material. tu
We now analyze the prediction time under two extreme

distributions for target decision rules.

Lemma 5. In case that all target rules are located in the same
node, the worst case prediction time is OðMlogMdn	lMeÞ for each
record.

Proof. See Appendix A.7, available in the online supple-
mental material. tu

Lemma 6. In case that target rules are uniformly distributed
across m leaf nodes, the worst case prediction time is
Oðm 	MlogMdn	lMeÞ for each record.

Proof. See Appendix A.8, available in the online supple-
mental material. tu
Based on Lemma 6, the prediction time can be large ifm is

large because there are m paths to traverse. However, in
most real-world applicationsm is small, because stream data
exhibit temporal correlations. Decision rules trained from
temporally correlated data often share the same dimensions.
Thus the r values in Theorem 2 are large. In other words,
m�!m0, where m0 � dn	lMe. Consequently, the worst case
scenario can be avoided and a logarithm prediction time can
be achieved inmost real-world applications.

4.2 E-Tree Traversal Analysis

Tree traversal plays a key role in the insertion and deletion
operations. In this part, we analyze the traversal cost for
E-trees. Considering an E-tree storing N decision rules
fR1; . . . ; RNg summarized from a data stream, when a new
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decision rule Rx arrives, we aim to calculate the query cost (the
number of node accesses) of inserting Rx into the tree.

Intuitively, let h be the height of the tree, Lij the aver-
age minimum bounding rectangle extent of level-i
ð1 � i � hÞ nodes along dimension j ð1 � j � dÞ, and Ni

the number of level-i nodes. Then, the expected query
cost of inserting rectangle Rx is the summation of all
intersections of Rx along the top-down search path, as
shown in

NAðRxÞ ¼
Xh
i¼1

(
Ni 	

"Yd
j¼1

ðLij þRx:rjÞ
#)

; (8)

where Rx:rj refers to the MBR extent length along the jth

ð1 � j � dÞ dimension for rectangle Rx (NA stands for node
accesses). The above equation, albeit straightforward, has
limited practical applicability for E-tree analysis. This is
because the extents of all nodes in trees, Lij, are usually not
available in advance and, even if they are known (e.g., for
static data), their summation may lead to expensive estima-
tion overhead.

To estimate Lij, we first borrow the concept of regular
uniform data model, proposed by Theodoridis and Sellis [23]
in R-tree analysis, as shown in Fig. 8, where

1) All rectangles share the same extent length LD along
each dimension.

2) They align into N1=d (N is the data set cardinality)
lows/columns with a gap gD between two consecutive
rows/columns.

For example, given a collection of rectangles with density
D, as shown in Fig. 8, all rectangles share the same extent
length LD and gap space gD,

LD ¼
�
D

N

�1
d

; gD ¼ 1�D1=d

N1=d � 1
:

Under the regular uniform data, we have Lemma 7 below.

Lemma 7. In E-trees, based on the regular uniform data
model, the node extent at level ðiþ 1Þ is

Liþ1 ¼ f�1=dLi � gDð1� f�1=dÞ; (9)

where f is the average node fanout, i.e., the number of entries
in a node (f ¼ 4 in Fig. 8).

Proof. See Appendix A.9, available in the online supple-
mental material. tu

The regular uniform data model provides a basic tool for
E-tree analysis. However, the model is based on the strict
assumption that decision rules at the same level share similar
size, which is impractical for data streams with drifting/
evolving concepts. In the following, we relax the assump-
tion for arbitrary extent analysis.

We first analyze the extent distribution function for dynam-
ically changing decision rules, and then predict the number
of node accesses by using a new evaluation function extent
random walk.

4.2.1 Extent Distribution Function

In this part, we derive the extent distribution function of a
decision rule Rx under concept drifting rate c. For simplic-
ity, we only consider the discrete distribution function on
one dimension rj (1 � j � d). Let I:l 2 ½0; �� be the length of
decision rule Rx on dimension rj. The range ½0; ��, as shown
in Fig. 9, is divided into L equal partitions, each partition
having length �=L.

Due to concept drifting, the length of interval I is

I:l ¼ jI:e� I:sj; (10)

may randomly change length by step size �=L, where I:s
and I:e are the starting and ending points of the interval I.

The concept drifting, as shown in Fig. 10, can be
described as a 1D random walk, under the state transition
probability T , which can be summarized in Lemma 8.

Lemma 8. For an interval I, let the matrix T in Eq. (11) be the
state transition probability matrix of I:sðeÞ, then I has proba-
bility c changing its length within a random step (i.e., the con-
cept drifting rate is c)

T ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
1� ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

0 0 	 	 	
1� ffiffiffiffiffiffi

1�c
p
2

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
1� ffiffiffiffiffiffi

1�c
p
2 0 	 	 	

0 1� ffiffiffiffiffiffi
1�c

p
2

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
1� ffiffiffiffiffiffi

1�c
p
2 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 0 1� ffiffiffiffiffiffi

1�c
p
2

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
1� ffiffiffiffiffiffi

1�c
p
2

	 	 	 0 0 1� ffiffiffiffiffiffiffiffiffiffiffi
1� c

p ffiffiffiffiffiffiffiffiffiffiffi
1� c

p

0
BBBBBBB@

1
CCCCCCCA
:

(11)

Proof. See Appendix A.10, available in the online supple-
mental material. tu

Fig. 8. Regular data model for 2D decision rules (N ¼ 16).

Fig. 9. The length distribution of interval I in range ½0; ��.

Fig. 10. The state transition probability of a Markov chain corresponding
to concept drifting rate c, where an interval I has probability c lengthen/
shorten its length, and probability ð1� cÞ remains unchanged.
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Lemma 9. The distribution density P ðI:l ¼ k�=LÞ can be calcu-
lated as in

PðI:l ¼ k�=LÞ ¼

2L�1
2L2 ; k ¼ 0;

2ðL�kÞ
L2 ; k ¼ 1; 2; . . . ;L� 1;

1
2L2 ; k ¼ L:

8>><
>>: (12)

Proof. See Appendix A.11, available in the online supple-
mental material. tu

4.3 Extent RandomWalk Function

In this part, we estimate the expected node extents Lij for
each level i along each dimension j. The problem can be
described as, given a set of decision rules satisfying the distribu-
tion in Eq. (12), how to estimate Lij, without actually performing
the exact extent calculation?

The problem can be simplified as in Fig. 11. Assume that
a data set contains five decision rules denoted by the solid
rectangles. When a new rule R3 (dashed rectangle) arrives,
a split operation will be invoked leading to two new leaf
nodes. The purpose is to estimate the average extents of the
two generated nodes. Obviously, the extents of the two
nodes along dimension r1 are decided by boundaries m and
h, i.e., the length of the first node is ½0; h�, and the second
one is ½m; ��. In the following, we aim to compute the expected
values of points m and h.

Formally, assume that the range ½0; �� is divided into L
equal partitions with Lþ 1 stamps. Again, let Ii ¼ ½Ii:s; Ii:e�
ð1 � i � M þ 1Þ be M þ 1 independent 1D intervals, where
M is the node capacity and Ii:sðIi:eÞ is the coordinate of the
starting(ending) point of interval Ii. For each interval
Ii ð1 � i � M þ 1Þ, we assume

1) Its starting point Ii:s and ending point Ii:e fall on
above stamps.

2) Its length Ii:l ¼ �i:e� �i:s satisfies the length distri-
bution function in Eq. (11), denoted by pk :¼ PðI:l ¼
k�=LÞ.

3) Its starting point Ii:s distributes uniformly in the
range f0 	 �L ; 1 	 �L ; . . . ; �� Ii:lg.

We refer to the above three conditions as the generative
rule of the 1D interval for decision rules. Because intervals
Iið1 � i � M þ 1Þ are independently and identically distrib-
uted (i.i.d.), we use I to represent Ii. For the purpose of
length comparison, we give the following definition:

Definition 1. For two intervals I and J , we define

� I < J : if I:s < J:s, or, I:s ¼ J:s and I:e < J:e;

� I ¼ J : if I:s ¼ J:s and J:e ¼ J:e;

� I > J : if I:s > J:s, or, I:s ¼ J:s and I:e > J:e.

Based on the above definition, for any two intervals, we
first compare their starting points and ending points. We
sort these intervals to get a new ordered sequence
Ið1Þ; Ið2Þ; . . . ; IðMþ1Þ; where IðiÞ � Iðiþ1Þ. In the new sequence,
IðiÞ:s < Iðiþ1Þ:s or, IðiÞ:s ¼ Iðiþ1Þ:s and IðiÞ:e � Iðiþ1Þ:e. For
convenience, we use I1; I2; . . . ; IMþ1 to denote the ordered
statistics.

Assume that these intervals are split into two nodes,
such that the first node contains I1; I2; . . . ; Iu, and the sec-
ond one contains Iuþ1; . . . ; IMþ1, where u 2 f1; 2; . . . ;
M þ 1g. Let Mh be the largest ending point of the first u
intervals

Mh :¼ max
i¼1;...;u

Ii:e (13)

The purpose is to estimate the expected values of both
Eð�� Iuþ1:sÞ and EðMhÞ.The former corresponds to the variable
m, and the latter h.

Theorem 3 (Expected value of Eð�� Iuþ1:sÞ).

Eð�� Iuþ1:sÞ ¼ �� �

L

XL
m¼0

XL
h¼m

m 	 Eðuþ1Þ
mh ; (14)

where Eðuþ1Þ
mh denotes the probability that the ðuþ 1Þ-th order

statistic is equal to ½m 	 �L ; h 	 �L�.
Proof. See Appendix A.12, available in the online supple-

mental material. tu
Theorem 4 (Expected value of EðMMhÞ).

EðMhÞ ¼ �� �

L

XL�1

�¼0

X�
m¼0

X�
h¼m

E
ðuÞ
mhð��Þ; (15)

where E
ðuÞ
mhð��Þ to denote the probability that the ðuÞ-th order

statistic is equal to ½m 	 �L ; h 	 �L� andMh � � �
L.

Proof. See Appendix A.13, available in the online supple-
mental material. tu

4.4 Expected Query Cost

Based on the expected lengths of Eð�� Iuþ1:sÞ and EðMhÞ,
we derive in this part the expected query response time
for an arbitrary query Rx with extent length Rx:rj ¼ p.
Specifically, we first derive the expected extent length Lij

based on Eð�� Iuþ1:sÞ and EðMhÞ in Lemma 10, and then
estimate in Theorem 5 the average access time for the
query Rx under the access cost model given in Eq. (8).

Lemma 10 (Expected value of extent length LLij).

EðLijÞ ¼ �� �

2L

(XL�1

�¼0

X�
m¼0

X�
h¼m

E
ðuÞ
mhð��Þ þ

XL
m¼0

XL
h¼m

mEðuþ1Þ
mh

)
:

(16)

Proof. See Appendix A.14, available in the online supple-
mental material. tu
By plugging the above result into Eq. (8), we have the fol-

lowing conclusion:

Fig. 11. Node split after inserting rule R3(M ¼ 5).
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Theorem 5 (Expected query cost). Given a random query Rx

with expected extent length p, we have

NAðRxÞ ¼
Xh
i¼1

Yd
j¼1

Ni

(
�� �

2L

"XL�1

�¼0

X�

m¼0

X�
h¼m

E
ðuÞ
mhð��Þ

þ
XL
m¼0

XL
h¼m

mEðuþ1Þ
mh

#
þ p

)

Proof. See Appendix A.15, available in the online supple-
mental material. tu
Intuitively, the above theorem reveals that the query cost

depends on the tree height h, the number of nodes at each
level Ni (which ultimately depends on the node capacity
M), the query length p, and the distribution of rectangles in
the decision space (the [. . .] part). When the rectangles are
uniformly distributed and the query length p is much
smaller than the window size �, the overlapping of the
query window and the observed rectangles will be small,
leading to low query cost. For example, as shown in our
experiments Figs. 19, 20, and 21, available in the online sup-
plemental material, when the query length r ¼ 0:01 and the
window size � ¼ 0:01, the query cost reaches its minimum
value of �0.03 s. Generally, if the query length p �
�� EðLijÞ, then the expected query cost is no more than
OðhM�dÞ, whereM is the node capacity.

The 1D random interval and its properties in R�-trees
have been studied by Tao and Papadias [24]. Compared to
their work, we make three contributions:

(1) We give a rigorous definition, in Definition 1, for 1D
random interval ranking and related statistics.

(2) We derive Eð�� Iuþ1:sÞ, in Theorem 3, when the extent
distribution function F ð�Þ is a discrete distribution, in con-
trast to the continuous distribution in their work.

(3) We calculate EðMhÞ through the probability E
ðmÞ
mhð��Þ

instead of P ðMs ¼ �L=L;Mh � �L=LÞ, leading to a better
estimation statistic, given in Theorem 4.

5 EXPERIMENTS

In this section, we present extensive experiments on both
synthetic and real-world data streams to validate the perfor-
mance of E-trees with respect to prediction time, memory
usage, and prediction accuracy. All experiments are con-
ducted on a Linux machine with 3 GHz CPU and 2 GB
memory. The E-tree source code can be downloaded from
http://streammining.org.

5.1 Methodology

Benchmark data streams. Three real-world streams [25] and
one synthetic steam from the UCI repository were used [25].
Table 3 lists these streams after using the F-Score feature
selection [26]. The synthetic stream is similar to Example 1.
It was generated as follows. First, we randomly generated a
collection of stream data f. . . ; ðxi; yiÞ; . . .g, where xi 2 Rd is
a d-dimensional vector with the jthelement xij 2 ½0; 1�, and
yi 2 fnormal; abnormalg is the class label. Thus the decision
space is a d-dimensional hyper-cube. The class of each
stream record is defined by the rule that if a � xi � b, where
a 2 ½0; 1�d; b 2 ½0; 1�d; ai < bi for each i 2 ½1; d�, then

“abnormal”; otherwise, “normal”. That is to say, we defined
a small sub-cube in the decision space as the abnormal class.
To simulate concept drifting, after generating a data chunk
of D records, we randomly selected its jth; ð1 � j � dÞ
dimension aj; bj to change to aj þ ua; bj þ ua, where
u ¼ f�1; 1g controls the direction of the change and u ¼ �1
with probability v. If the upper or lower bound of the deci-
sion space is reached, u will change its value. We initially
set v ¼ 50%, a ¼ 0:1 and b� a ¼ 0:5.

Benchmark methods. We implemented four ensemble
methods for the purpose of online label search comparisons.
1) Global E-tree (GE-tree), which has no upper bound on the
number of base classifiers in an ensemble. For each new
base classifier, GE-tree simply integrates it into the ensem-
ble and deletions are never invoked. 2) Local E-tree
(LE-tree). Different from GE-tree, LE-tree sets an upper
bound on the ensemble size. Once the upper bound is
reached, the oldest classifier will be removed from the
ensemble. Obviously, E-trees are in the LE-tree category.
3) Global Ensemble (G-Ensemble). A traditional linear scan is
used during prediction. Classifiers will be added into the
ensemble model continuously without deletions. 4) Local
Ensemble (L-Ensemble). Similar to LE-tree, an upper bound
on the ensemble size is set. In all the four methods, C4.5 is
used to generate decision rules from data streams. All deci-
sion rules make “hard” decisions.

For E-tree traversal analysis, we compared our method
with four analytical approaches for R-trees. 1) The TS model
proposed by Theodoridis et al. [27], which is used to ana-
lyze nonuniform distributed rectangular objects. 2) The frac-
tal method proposed by Proietti and Faloutsos [28], which is
used to evaluate rectangular objects obeying power laws.
3) The selectivity method [29] and 4) the ERF model [24],
which computes node extents as a function of node splits.

Measures. Three measures are used for online query eval-
uation. 1) Time cost. By using a height-balanced tree to
index all classifiers in the ensemble, E-trees are expected to
achieve a much lower computational cost than traditional
ensemble models. 2) Memory cost. E-trees are expected to
consume a larger but affordable size of memory space.
3) Accuracy. E-trees are expected to achieve the same pre-
diction accuracy as original ensemble models.

For E-tree traversal analysis, we measure the average rel-
ative error in answering a workload of 200 decision rules
with the same parameter, denoted by ð1=200Þ 	P200

i¼1 j
esti � actij=acti, where esti and acti are the estimated and
actual costs of the ith query (1 � i � 200).

5.2 Experimental Results

We compare four methods under different parameter set-
tings with respect to number of classifiers n, parameter M,
and the target indexing class. By default, the chunk size is

TABLE 3
Real-World Data Streams
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set to 10,000, parameter g is set to 0.5, the ensemble size is
set to 30 for the local methods and 100 for the global meth-
ods. In addition, all base classifiers are weighted by an aver-
aging weighting scheme.

ParameterM. This parameter controls the node size and is
the most important parameter for E-trees. If a node contains
more thanM entries, node splitting will be invoked. Ideally,
M should be set such that splits do not happen when the
entries in a node heavily overlap each other. Fig. 12 shows
E-tree’s performance with respect to different M values on
both synthetic and real-world data streams. From the results
we have the following observations. When M increases at
the very early stage (e.g., from 10 to 30), both the prediction
time and memory cost decrease significantly. After that, the
benefit becomes marginal and then turns negative if M con-
tinuously increases. For example, in the spam data set,
when M increases from 10 to 40, the prediction time drops
sharply from 6,990 to 3,780 ms, meanwhile the memory cost
also drops quickly from 3,218 to 2,520 KB. On the other
hand, when M increases from 60 to 100, both the prediction
and memory costs increase.

Indeed, increasing M values at an early stage reduces the
numbers of pivot nodes and leaf nodes. As a result, entries
that overlap heavily can be stored in the same node, leading
to reduced search and storage costs. However, when M

continues to increase, entries that slightly overlap with each
other will be mistakenly stored in the same node, leading to
extra comparisons on each node and increased search time.
Therefore, a satisfactoryM value should neither be too large
nor too small. In the following experimentsM was set to 30.

Ensemble size n. To evaluate how E-trees improve predict-
ing efficiency, we compared the LE-tree and GE-tree meth-
ods by varying ensemble size n. From the results in Fig. 13,
we can come to two important conclusions: (1) E-trees can
significantly reduce the prediction cost. For example, in the
malicious URL detection data stream, when n ¼ 100, E-tree
took 39,166 ms to classify a record, about four times faster
than the original ensemble model, which took 172,937 ms.
(2) As far as the memory cost is concerned, E-trees consume
a larger but affordable memory space comparing to the orig-
inal ensemble models. More results are reported in Appen-
dix B, available in the online supplemental material.

Target indexing class. As discussed in Section 3.1, for a
binary classification problem, E-trees only index decision
rules from the target class. This leads to a question on which
class should be selected as the target class? To answer this
question, we conducted a series of experiments presented
in Table 4. From the results we can observe that, indexing
the minor class will enhance E-tree’s performance. For
example, in the intrusion detection data stream, there are 20
decision rules for “normal” and 2,308 for “abnormal”. Obvi-
ously, indexing “normal” will significantly reduce the pre-
diction time. Thus, for binary classification the minor class
should be chosen as the target class.

Ensemble versus single tree.We compare ensemble and sin-
gle tree on synthetic data sets where data chunk size varies
from 100 to 2,000, and ensemble size equals to 30. Fig. 14
shows test results w.r.t. time cost (the left Y-axis) and pre-
diction error rate (the right Y-axis). From the results, we can
observe that compared to a single tree it always takes more
time for ensemble trees to make predictions. On the other

Fig. 12. Comparisons w.r.t. parameterM.

Fig. 13. E-trees versus original ensembles w.r.t. prediction time (a, b) and memory consumption (c, d). Obviously, E-trees significantly reduce the
prediction time with affordable memory. More results are reported in Appendix B, available in the online supplemental material.

TABLE 4
Indexing Different Classes
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hand, ensemble trees enjoys lower prediction error rates
than a single tree. Therefore, we can come to the conclusion
that ensemble classifiers are a compromise solution between
prediction error rate and test time costs, i.e., ensemble classi-
fiers obtain lower error rate at a cost of heavier time cost. The con-
clusion motivates the proposed E-tree indexing structure,
where the time cost can be reduced to logarithmic magni-
tude without increasing error rate.

Online label query. In Table 5, we compare the four bench-
mark methods on 10 data sets. From the results, we can
observe that: (1) LE-tree performs better than GE-tree with
respect to both prediction time and memory cost. For exam-
ple, in the Syn-10 data stream, LE-tree is nearly three times
faster than GE-tree, meanwhile takes less memory space.
(2) LE-tree performs better than L-Ensemble with respect to
prediction time. Besides, LE-tree achieves the same predic-
tion accuracy as L-Ensemble. For example, in the URL data
stream, LE-tree only takes 3 percent prediction time of
L-Ensemble, but achieves the same prediction error rate
5.60 percent. On the other hand, although LE-tree consumes
more memory than L-Ensemble, it is still an efficient
method, continuously deleting outdated classifiers to
release memory space. This guarantees that LE-tree will not
be too large to be stored in main memory. (3) LE-tree per-
forms better than G-Ensemble w.r.t. prediction time and
memory cost. It is obvious that E-tree, which indexes the
most recent classifiers, outperforms G-Ensemble, which lin-
early scans all historical classifiers during prediction.

6 RELATED WORK

Stream classification. Existing data stream classification mod-
els can be roughly categorized into two groups: online/
incremental models [30], [31] and ensemble learning [5], [6],

[7], [8], [9], [10], [11], [32]. The former aims to build a single
sophisticated model that can be continuously updated.
Examples include the Very Fast Decision Tree (VFDT)
model and the incremental SVM model. Ensemble learning
employs a divide-and-conquer strategy. It first splits contin-
uous data streams into small data chunks, and then builds
light-weight base classifiers for these chunks. Ensemble
models scale well to large volumes of stream data, adapt
quickly to new concepts, achieve a lower variance error,
and are easy to be parallelized [10]. Due to these advan-
tages, ensemble learning has become a common tool for
data stream classification.

Stream indexing. A stream classification model can be
considered as a special query model that queries for class
labels of incoming stream records. However, it differs
from traditional query models, such as aggregate query
[33] that aims to obtain statistical results from data
streams, and Boolean expression query [34], [35] where
queries appear as DNF or CNF expressions [34]. Classifi-
cation queries involve more complex if-then rules that
may contain both continuous and discrete attributes.
They also have to face decision conflicts due to concept
drifting. These differences lead to different indexing tech-
niques. Other stream indexing methods exist that index
multimedia data [36] or micro-clusters [37] on data
streams. However, none of them considers the problem of
indexing classifiers for anytime data stream classification.

K-d trees and M-trees. K-d trees, M-trees and R-trees are
popularly used space-partitioning structures for query high
dimensional data. The major difference is that K-d trees and
M-trees are designed for organizing points, while R-tree is
designed for organizing rectangles. Because decision trees
generally cover rectangular areas, the proposed E-trees
extend R-trees structure. On the other hand, the K-d trees
and M-trees can be used in the instance-based learning
models and SVMmodels. For example, our recent work [38]
proposes a new L-tree structure that extends M-trees to
index instance-based learning on data streams.

Spatial indexing. E-trees are originated from R-trees,
which have been extensively studied in the past several dec-
ades, and many variants have been proposed to enhance its
performance, such as the R�-trees [17], Rþ-trees [18], Hilbert
R-trees [39], and SS-trees [40]. Techniques in these works can
be employed to enhance E-trees’ performance.

R-tree analysis. The earliest R-tree analytical models, such
as the regular model [23] and the 1D R/R+-trees model [41],

TABLE 5
Comparisons with Benchmark Methods

Fig. 14. Ensemble classifiers versus single classifier.
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assumed that the extents of a node satisfy uniform distribu-
tions in all dimensions, which limited their practical appli-
cability. Later, the assumption was relaxed to nonuniform
data analysis models [23], [28], [29], based on the rationale
that objects within a sufficiently small region are almost uni-
form. These models, however, need analytic expressions of
node size, which cannot meet the needs of dynamic spatial/
temporal data, where the extents follow certain probabilistic
distribution that is related to the length distribution of
objects’ lifespan. A recent work [24] proposed the extent
regression model (ERM) that can analyzes R/R�-trees under
arbitrary extent distributions.

Ensemble pruning. For the purpose of reducing computa-
tional and memory costs, ensemble pruning [42], [43]
searches for a good subset of all ensemble members that
perform as good as the original ensemble. A basic assump-
tion in ensemble pruning is that all the base models share a
unique global probability distribution. Therefore, some base
models can be discarded from the ensemble to reduce pre-
diction costs. However, in data streams with dynamic
changing concepts, it is difficult to predict which base
model(s) can be discarded from the ensemble.

Online trees. Various online decision trees have been pro-
posed for real-time data stream classification/regression.
For example, the option trees [44] have been modified for
data stream classification [45] and regression [32] by
enabling continuous learning and any-time prediction. On
the other hand, ensembling multiple sophisticated trees is
also an important research topic. For example, the online
random forests [46] were proposed for online computer
vision and machine learning applications, where the off-line
RFs are modified to cater sequentially arriving data and
continuously changing data distribution. However, these
online trees mainly focus on enabling/accelerating the
online training/learning part, while neglecting the online
testing/prediction part. Therefore, our work can be viewed
as an complement work to theirs.

Classifier indexing. Indexing classifiers can enhance system
performance in data intensive applications. For example, in
search engines and relevance feedback systems, a query can
be a ranking function learned by SVMs. Processing the query
to find top-k results requires evaluating the entire database
by the query function. To alleviate the query response time,
several inexact/exact indexing solutions were proposed for
SVMs [47], [48]. Compared to these work, this paper extends
the idea of indexing one classifier to multiple classifiers,
where exploring shared patterns among classifiers plays a
key role in improving the system performance.

7 CONCLUSIONS

In this paper, we proposed a novel E-tree indexing struc-
ture for sublinear time complexity for classifying high
speed stream records. The main contributions of this study
are threefold: (1) We formulate and address the prediction
efficiency problem for ensemble models on data streams,
which is a legitimate research problem well motivated by
increasing real-time applications. (2) Our solution converts
ensemble models into spatial databases and applies spatial
indexing techniques to achieve sub-linear prediction. This
novel technique can be extended to other data stream

classification models besides ensemble learning, or general
classification models that require timely prediction. (3) The
proposed E-tree evaluation method can be extended to
spatial/temporal data analysis where data nodes have
arbitrary extents.
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