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Abstract—Real-world data is noisy and can often suffer from corruptions or incomplete values that may impact the models created

from the data. To build accurate predictive models, data acquisition is usually adopted to prepare the data and complete missing

values. However, due to the significant cost of doing so and the inherent correlations in the data set, acquiring correct information for all

instances is prohibitive and unnecessary. An interesting and important problem that arises here is to select what kinds of instances to

complete so the model built from the processed data can receive the “maximum” performance improvement. This problem is

complicated by the reality that the costs associated with the attributes are different, and fixing the missing values of some attributes is

inherently more expensive than others. Therefore, the problem becomes that given a fixed budget, what kinds of instances should be

selected for preparation, so that the learner built from the processed data set can maximize its performance? In this paper, we propose

a solution for this problem, and the essential idea is to combine attribute costs and the relevance of each attribute to the target concept,

so that the data acquisition can pay more attention to those attributes that are cheap in price but informative for classification. To this

end, we will first introduce a unique Economical Factor (EF) that seamlessly integrates the cost and the importance (in terms of

classification) of each attribute. Then, we will propose a cost-constrained data acquisition model, where active learning, missing value

prediction, and impact-sensitive instance ranking are combined for effective data acquisition. Experimental results and comparative

studies from real-world data sets demonstrate the effectiveness of our method.

Index Terms—Data mining, intelligent data preparation, data acquisition, cost-sensitive, machine learning, instance ranking.
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1 INTRODUCTION

DATA mining techniques have been widely employed in
various applications. A general mining procedure

usually involves the following four major steps:

1. collecting data,
2. transforming/cleansing the data,
3. model building, and
4. model deployment/monitoring [1], [2].

Most practitioners have agreed that data preparation, in
steps 1 and 2 above, consumes the majority of the data
mining cycle time and budget [3]. As a result, intelligent
data preparation has attracted significant attention, in
which data integrity and quality control [4] issues play
more and more important roles for effective mining. A
common real-world problem is that many data mining
applications are characterized by the collection of incom-
plete data in which some of the attribute values are missing
(due to reasons such as privacy, data ownership, or
unavailability) but can be acquired at a cost. For example,
a patient’s record in hospital A may have the diagnoses of
one particular disease missing, but this information is likely
available in the patient’s record in hospital B and, therefore,
can be acquired at a cost. Similarly, the credit card
companies have data on customer transactions with their

cards, but usually do not have data on the same customer’s
transactions with other cards. An important issue here for
intelligent data preparation is how to acquire incomplete
data items for better data quality, integrity and, conse-
quently, better results.

To induce a decision tree or build other classification
models, in the context of incompletely-specified training
examples, simply ignoring instances with missing values
leads to inferior model performance [5], and the model
specifically designed for classifying incomplete data [6], [7],
[8], [9] also suffers from a decrease of accuracy in describing
the concept. Accordingly, many research efforts [10], [11]
have been conducted to prepare the data through predict-
ing missing attribute values (which is called imputation in
statistics) by using other instances in the data set, such as
filling in missing attribute values with the attributes’ most
common values [12], using a Bayesian formalism [13] or a
decision-tree [10] to predict the missing values, or adopting
clustering and regression techniques [14]. Quinlan [15] uses
the entropy and splits the examples with missing attribute
values to all concepts while constructing a decision tree.
These methods are efficient in their own scenarios, but their
reliability is still the biggest concern because the accuracy of
predicting the missing values could be very low in many
situations [16] (and it is not surprising that many attribute
values simply cannot be predicted at all). Accordingly,
users are reluctant to adopt these “automatic” imputation
methods if they are very serious with their data, e.g.,
hospital or Census Bureau data. On the other hand, widely
existed missing values actually force users to complete
some of the missing items for many data mining purposes.
For real-world applications, acquiring information for all
incomplete instances is completely out of the question and
impractical given the amount of human labor and costs
involved. These contradictions raise a new research issue:
how many, and which incomplete instances need additional
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data, so that the learned model can maximize its perfor-
mance? In reality, this problem is complicated by the fact
that the costs associated with the attributes are different,
and fixing missing values of some attributes is much more
expensive than others. Therefore, the problem becomes that
given a fixed budget, what kinds of instances should be
selected for processing, so that the learner built from the
processed data set can maximize its performance. We call
this problem cost-constrained data acquisition because a
good solution should consider the attribute costs and
acquire information with a budget constraint.

2 RELATED WORK

Given a target problem, selecting “good” instances to
facilitate the problem solving has been a major issue for
many research areas, which include:

1. instance selection for effective learning,
2. instance selection for large data sets, and
3. instance selection for active learning.

To select “good” examples for effective learning, Wilson
[17] used a k-nearest neighbor (k-NN) classifier to select
instances that were then used to form a 1-NN classifier, and
only those instances that were classified correctly by the
k-NN were retained for the 1-NN. Based on this scheme,
many instance selection schemes have been developed for
effective learning [18]. A comprehensive overview of the
research on this topic can be found in [19]. Due to the fact
that the quality of the training data vitally determines the
accuracy of the classifier, the idea of selecting “good”
examples has also been applied to other types of classifiers,
where various kinds of selection approaches, such as near
misses and the most-on-point cases, are adopted to find the
examples that can improve the effectiveness of the
classifiers [20].

When the size of the training set becomes considerable, it
will inevitably raise the challenge for induction algorithms
to scale up for large data sets. Many existing efforts alleviate
this problem by selecting some “good” instances to feed the
learner. The underlying assumption is that having access to
massive amounts of data does not necessarily mean that
induction algorithms must use them all, and by carefully
selecting some good instances from massive data, we shall
improve (at least do not decrease) the learner’s ability, such
as improving the classification accuracy or enhancing the
performance of the classifiers in dealing with large data sets
[21]. As illustrated by Lewis and Catlett [22], sampling
instances using an estimate of classification certainty
drastically reduces the amount of data needed to learn a
concept.

Active learning [23], [24], [25], [26] (also called pool-
based sample selection), on the other hand, provides goal-
directed data selection, in which the learner has the
freedom to select which data points to be added to its
training set. The intuitive assumption is that labeling
training examples is often expensive, an active learner
may begin with a very small number of labeled examples,
carefully select a few additional examples for which it
requests labels, learn from the results of that request, and
then using its newly-gained knowledge, carefully choose
which examples to request next. In this way, the active
learner aims to reach high performance using as few labeled
examples as possible (in comparison with randomly
selecting instances to label). The most popular solutions to
handle this problem are to label the instances that likely

confuse the learner [26], or receive the most disagreement
from the committee [24]. Preparing information for these
instances likely provides more fresh knowledge to the
learner and, therefore, may possibly result in the lowest
error on future test examples.

Unfortunately, all methods above are based on the data
with complete information, which are essentially different
from our objective. In [27], an active data acquisition
approach has been proposed to complete information for
instances with missing values. This method is the most
close to our paper. However, the disadvantage of this
approach is twofold: 1) it did not consider the correlation
between the attributes and the class and 2) the attribute,
which receives the most disagreements from different
imputation methods, is regarded as the most important
attribute for completion. Clearly, if one attribute is totally
independent of others, the predictions from all imputation
methods on this attribute are likely random (with the
maximum disagreements), but providing information for
this attribute has a very limited contribution to the system.
In [28], an impact-sensitive instance ranking mechanism has
been proposed to rank suspicious instances with erroneous
attribute values. Although this method was not originally
designed for data sets with missing values, it actually
motivates us that a data acquisition approach should take
the attribute importance into consideration and put a
preference on informative attributes (the attributes with a
high relevance to the target concept). Motivated by this
observation, we have proposed a data acquisition approach
with impact-sensitive instance ranking [29]. It takes the
attribute importance into consideration, and selects the
incomplete instances with the most missing values on the
important attributes for preparation.

Existing data acquisition efforts assume that acquiring
correct information for each incomplete instance has the
same expense, no matter how many attributes of the
instance actually contain missing values. This is rarely the
case in reality, where finding information for some
attributes costs much more than for others (which is a
well-known fact in cost-sensitive classification [30], [31])
and, therefore, the costs to acquire complete information for
different instances are inherently different, depending on
how many and which attribute values are missing. Take the
Heart disease data set from the UCI data repository [32] as
an example, where monitoring the patient’s maximum heart
rate (attribute 8), which costs $102.90, is 13 times more
expensive than checking the patient’s serum cholesterol
(attribute 5), which costs $7.27.

In the context that the attribute cost is a big concern, a
data acquisition algorithm cannot just put priority on
informative attributes because these attributes might be
too expensive compared with their contributions. We will
have to develop a new measure to compromise the attribute
importance and its cost for better results. Research efforts in
cost-sensitive classification have already addressed related
problems [30], [31], [33], [34], where the test cost is used to
develop systems which cost less in the test phase but still
maintain good accuracy. In a naı̈ve sense, just imagine that
you are a doctor with a decision theory of your own domain
of expertise. To determine the disease of a new patient, you
will have to evaluate his/her symptoms (attribute values)
with a certain amount of cost for each symptom. The
“optimum” decision is the one which costs the least to
diagnose the patient but still reach the correct decision. To
this end, many heuristic mechanisms, e.g., ICET [31], EG2
[33], CS-ID3 [34], have been developed, where the essential
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idea is to use a greedy strategy to modify a normal decision
theory by taking attribute costs into consideration.
Although these approaches are not originally designed to
solve our problem here, they actually inspire us on how to
integrate the attribute cost and importance for better results.

Intuitively, we believe that three important issues should

be taken into consideration when designing cost-con-

strained data acquisition algorithms:

1. Missing values of different attributes are inherently
different, in terms of costs and their relevance to the
target concept. We should pay more attention to the
economical attributes, which are important for
classification but cost relatively less.

2. Some incomplete instances may already contain
enough information for model construction, and
putting efforts to them is unlikely to receive much
improvement.

3. Some missing values in an instance might be
predictable by other instances, so we may put less
effort to them when acquiring data for completion.

In this paper, we report our recent research efforts in
resolving the above concerns. We propose a unique
Economical Factor (EF) to comprise the attribute importance
and cost, and explore the economical attributes for data
acquisition purposes in Section 3. In Section 4, we discuss a
new cost-constrained data acquisition mechanism that
combines active learning, attribute prediction, and the
EF measure. We perform comparative studies in Section 5.
Concluding remarks are given in Section 6.

Throughout the paper, we use the notion that each

instance Ik is represented by a pair of ordered vectors

(A1; . . . ; Ai; . . . ; AM; cÞ and (CA1
; . . . ; CAM

), where c is the

target concept (class label), Ai and CAi
denote the

ith attribute and its cost, respectively, and M is the number

of attributes. For each attribute, say Ai, it has Mi values,

denoted by ai;1; . . . ; ai;Mi
. pðai;jÞ means the probability that

attribute Ai has value ai;j, pðclÞ is the probability of the class

cl, and pðcljai;jÞ is the probability of class cl conditioned by

attribute Ai with value ai;j.

3 ATTRIBUTE EVALUATION

3.1 The Attribute Discrimination Measure

The problem of measuring the attribute Discrimination
Efficiency (DE) has received much attention in the literature,
and the essential goal is to evaluate the relevance between
the attribute and users’ tasks at hand (in the context of
classification, it is the relevance between the attribute and
the target concept). There are many measures for estimating
attributes’ discrimination efficiency, and several most
popular measures for classification problems include the
Gini index [9] and Information-gain Ratio (IR) [15].
Basically, most of the existing DE measures are impurity-
based, meaning that they measure impurity of the class
value distribution. They assume the conditional (upon the
class) independence of the attributes, and evaluate each
attribute separately by measuring impurity of the splits
resulting from partitions of the learning instances according
to the values of the evaluated attribute (without taking the
context of other attributes into account). The general form of
all impurity-based measures is defined by (1):

DEðAiÞ ¼ iðcÞ �
XMi

j¼1 pðai;jÞiðcjai;jÞ; ð1Þ

where iðcÞ is the impurity of the class values before the split,
and iðcjai;jÞ is the impurity of the class values after the split
on attribute Ai ¼ ai;j. By subtracting weighted impurity of
the splits from the impurity of unpartitioned instances, we
measure the gain in the purity of class values resulting from
each split. Larger values of DEðAiÞ imply better splits and,
therefore, better attributes (in terms of the target concept).

Although we have several choices in selecting different
DE measures, we adopt the information-gain ratio IR [15],
defined by (2), in our system. The reason is that IR is
implemented in C4.5 and is the most often used impurity-
based measure. If IR successfully solves our problems, other
impurity-based measures could be integrated in the same
way. Equation (2) gives the definition of the IR for attribute
Ai, denoted by IRi:

IRAi
¼

Pjcj
l¼1 pðclÞ log pðclÞ �

PMi

j¼1
Pjcj

l¼1 pðcljai;j log pðcljai;jÞPMi

j¼1 pðai;jÞ log pðai;jÞ
:

ð2Þ
With (2), the information gain part (the numerator) tries to
maximize the difference of entropy (which serves as the
impurity function) before and after the split. To prevent an
excessive bias caused by the number of attribute values, the
information gain was normalized by the attribute’s entropy.
The higher the IRAi

, the more important the attribute Ai is.

3.2 Attribute Economical Factor

With the DE measure above, we can explicitly and
quantitatively evaluate the importance of each attribute.
The higher the DE value, the more informative the attribute
is (in terms of classification). Accordingly, an intuitive
solution in data acquisition is to pay more attention to the
attributes with larger DE values, so the classifier learned
from a cleansed data set can possibly achieve more
improvement. This intuitive solution, however, ignores
the cost of the attributes, and may possibly stick to some
uneconomical attributes that cost too much in comparison
with their contributions. When attributes appear to have
different costs, another naı̈ve approach is to pay attention to
the cheapest attributes, so given a fixed budget, this method
can provide more correct (not necessarily useful) informa-
tion. This approach, however, ignores the DE of attributes,
and may possibly provide corrections with very limited
contribution for inductive learning. The above observations
motivate the design of a new measure which integrates the
attribute cost and DE for data acquisition purposes. We call
this measure Economical Factor because it shall help us
explore the “economical” attributes, i.e., cheap in costs but
informative for classification.

To integrate the cost and DE of an attribute Ai, let’s
assume the existence of an evidence assertion E and a
hypothesis assertion H for this purpose, where H is the
benefit in supporting the evidence assertion E, and � H is
the complement of the benefit (disagreement) of supporting
E. With the Likelihood Ratio (LR) in statistics [35], defined
by (3), we can quantitatively measure how much more
likely the evidence E is under explanation H than under the
alternative explanation � H. A large LR value means that E
is encouraging for H, and vice versa.
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LR ¼ P ðEjHÞ
P ðEj � HÞ : ð3Þ

In the context of attribute evaluation which integrates the

attribute cost and the discrimination efficiency, we can find

that the cost CAi
and the discrimination efficiency DEðAiÞ of

attribute Ai are actually a pair of complementary measures.

We obviously expect that the evidence assertion E prefers

the attribute with a cheaper cost, but a larger discrimination

efficiency. Accordingly, we can take the discrimination

efficiency DEðAiÞ as the observation assertion H, and take

the cost CAi
, as the � H (the complement of H). We then

propose an Economical Factor (EF) for attribute Ai, as defined

by (4), where gðÞ and fðÞ represent the functions of

transforming the discrimination efficiency and the cost.

EFAi
¼ P ðEjHÞ

P ðEj � HÞ ¼
gðDEðAiÞÞ
fðCAi

Þ : ð4Þ

In order to define the transformation function gðÞ for DE,

the signal noise (S/N) concept as a measure of efficiency of a

transmission line has been adopted. The analogy of the

above concept (S/N), from Information Theory [33], [36] is

the measure between the useful and nonuseful information

of the analyzed attribute, as defined by (5). Actually, we can

also refer to (3) for the correctness of the prototype function

defined by (5):

gðDEÞ ¼ Useful Information

Nonuseful Information
¼ UI

NI
: ð5Þ

Since UI þNI is equal to the Total Information TI, we

can therefore transform (5) to (6), where [] defines a high-

level prototype function with regards to the ratio between UI

and NI, which will be resolved in (10).

gðDEÞ ¼ UI

NI

� �
¼ TI

NI

� �
� 1: ð6Þ

Until now, we still do not actually know the meaning of

TI=NI, so we have the following definition by taking the

information-gain into consideration:

�I ¼ HðTIÞ �HðNIÞ ¼ HðTIÞ
HðNIÞ

� �
: ð7Þ

By definition of the entropy [36], we know that

TI ¼ 2HðTIÞ; NI ¼ 2HðNIÞ: ð8Þ

Therefore, we can transform (7) to (9):

�I ¼ log2
TI

NI

� �
; ð9Þ

so we have

2�I ¼ TI

NI

� �
: ð10Þ

Combining (6) and (10), we will find that the prototype

of the function g() is defined by (11):

gðDEÞ ¼ 2�I � 1: ð11Þ

In (4), we define the transformation function of fðÞ by
(12), to avoid (4) becoming infinite when the cost of the
attribute equals to 0:

fðCAi
Þ ¼ CAi

þ 1: ð12Þ

With (4), (11), and (12), we can finally get the EF for

attribute Ai by (13), where �I is the information-gain of

attribute Ai [33]:

EFAi
¼ 2�I � 1

CAi
þ 1

: ð13Þ

In our system, we use the information-gain ratio (IR)

instead of the information-gain. With (13), there are two

possibilities to introduce bias:

. If the IR values of all attributes are relatively small,
all attributes will receive very small EF values
because 2�I � 1 is very close to 0. As a result, the
costs of the attributes tend to be ignored, which
leaves obscuration to assess the attributes.

. If all attributes have relatively large cost values, the
attributes’ DE tend to be ignored too because the
numerator of (13) is far less than the denominator.

Our solution in solving the first problem is to normalize
the IR values of all attributes by using (14). Actually, the
numerator of (14) is the norm of the vector which takes all
IR values as the elements:

½IRAi
� ¼ IRAiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fIRA1
; IRA2

; . . . IRAM
g:fIRA1

; IRA2
; . . . IRAM

gT
q :

ð14Þ

To prevent the bias caused by large attribute costs, we

use the average cost �CCA ¼
PM

i CAi
to replace the base of

2�I . So, the final EF measure for Ai is defined by (15).

The higher the EFAi
, the more economical Ai is, and the

more likely Ai deserves a further investigation, if Ai does

contain a missing value:

EFAi
¼ ð

�CCAÞ½IRAi
� � 1

CAi
þ 1

: ð15Þ

4 COST-CONSTRAINED DATA ACQUISITION

4.1 EF-Sensitive Instance Ranking for Data
Acquisition (ERA)

When learning models for classification, it is obvious that
not all attributes have the same impact on the system
performance. The impact of an attribute is inherently
determined by the correlation between the attribute and
the target concept: the higher the correlation, the more
important the attribute. Therefore, a data acquisition
algorithm should pay attention to the instances containing
missing values of the attributes, which have high correla-
tion with the class, because those instances may possibly
provide more valuable information to the learner and,
therefore, enhance the system performance. In the context
of cost-constrained data acquisition, we may directly use
(15) to evaluate each attribute, and select the most
economical instances for further investigation. However,
the problem here is to determine which instances are the
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most economical ones. We refer to an EF-sensitive instance
ranking mechanism for solutions.

Given a data set D, we first calculate the EF value of each
attribute Ai, and take the inverse of EF as the impact
weight1 (IW) for Ai. The impact value for each incomplete
instance Ik, IP ðIkÞ, is then defined by (16), which is the sum
of the impact weights of all attributes in Ik with missing
values.

With (16), we can rank all incomplete instances by their
IP ðIkÞ values (in ascending order), and select instances
from the top of the list to complete missing information. We
refer to this mechanism as ERA, and will take it as a
benchmark method for comparison purposes.

IP ðIkÞ ¼
XM

i
IW ðAi; IkÞ;

W ðAi; IkÞ ¼
1=EFAi

; If Ai has a miss: value for Ik

0 otherwise:

�

ð16Þ

In (16), we actually evaluate each instance by the sum of
the inverse EF value from all attributes containing missing
values. We use the inverse value of EF, which means that
we prefer instances with less missing attributes. For
example, assuming instance I1 has only two missing
attributes, A1 and A2, and instance I2 has only one missing
attribute A1, we prefer to select I2. Our experimental results
in Section 5 will indicate that such a mechanism likely
receives better performances than other alternatives, e.g.,
selecting I1 instead. The reason is that preferring instances
with less missing attributes can possibly provide more
complete instances, given the same amount of budget.

4.2 Cost-Constrained Data Acquisition with Active
ERA (AERA)

While ERA takes EF of each attribute into consideration to
select economical instances, it may possibly ignore two
facts: 1) an incomplete instance may already contain enough
information for model construction, even though it still
contains missing values, and 2) for an incomplete instance
Ik, some of its missing values might be predictable by
existing instances in the data set. Therefore, completing
missing information for these two types of incomplete
instances likely results in redundancy, and prohibits the
constructed model from achieving much improvement. In
this section, we propose an active ERA (AERA) algorithm
that can possibly take these two facts into consideration.

The pseudocode of AERA is shown in Fig. 1. It consists of
three major steps:

1. active instance selection,
2. missing value prediction, and
3. instance ranking for data acquisition.

In the first step, we borrow the essential idea of active
learning to select incomplete instances that cannot be
effectively classified by a benchmark classifier because
those instances likely confuse the learner and deserve more
attention. In the second step, for each selected incomplete
instance Ik from step 1, we try to predict its missing values

by using the Attribute Prediction mechanism (Section 4.2.2).
If a missing value in Ik is predictable by others, we need not
take this attribute into consideration when calculating the
total Economical Factor value of Ik, EF ðIkÞ. After that, we
conduct the third step (instance ranking) by considering
that for each incomplete instance, Ik, how many attributes
contain missing values, and among all these missing values,
how many of them are actually predictable by others. We
use all this information to calculate the EF value of Ik, and
rank Ik based on its EF value. The data acquisition is
conducted by selecting instances from the ranked list.

4.2.1 Active Instance Selection

The first step of AERA is to adopt the essential idea of active
learning to select incomplete instances that likely confuse
the learning theory, and then put more efforts on them to
enhance the system performance, as shown on lines 5 to 8 of
Fig. 1. For this purpose, we split the data set into n disjoint
subsets. In each iteration It, we first train a benchmark
classifier TIt from ~DDIt, which is constructed by excluding
the subset DIt from D, and then use TIt to evaluate each
incomplete instance in DIt. The subset SIt is constructed by
using the following criteria:

1. If an incomplete instance Ik in DIt cannot be
correctly classified by TIt, we forward it to SIt.

2. If an instance Ik in DIt does not match any
classification rule in TIt, we forward it to SIt, too.

Our method relies on the benchmark classifier trained
from the noisy set for active instance selection. This is
different from [17], where only complete instances were
involved to train the classifier for any evaluation purpose.
There are two reasons of doing so: 1) when a data set
contains high level missing values, it may have very limited
complete instances, therefore the theory learned from
complete instances will have serious bias; and 2) for
incomplete instances, the attributes without missing values
can still provide valuable information to construct models.

4.2.2 Missing Value Prediction

The purpose of the missing value prediction is to evaluate
whether a missing attribute value of an instance is
predictable by others, and if it is predictable, we will not
consider this attribute when ranking instances for data
acquisition. The whole procedure is presented on lines 9 to
18 of Fig. 1. At each iteration It, given an incomplete
instance Ik in SIt, we denote the aggregation of all attributes
with missing values in Ik by MAk (Missing Attributes), and
the number of attributes in MAk by K. Our objective is to
evaluate that among K missing attributes in MAk, how
many of them could be predicted by using the theory TIt.
We denote those predictable attributes in MAk by PAk

(Predictable Attributes). When ranking Ik, we should exclude
the attributes in PAk from MAk, as shown on line 16 of Fig. 1
because acquiring correct values for predictable missing
attribute values will not bring much improvement to the
system performance.

To evaluate whether the missing value of an attribute in
MAk is predictable or not, we adopt an Attribute Prediction
(AP) mechanism, as shown in Fig. 2. Basically, Attribute
Prediction uses all other attributes A1; . . .Aj; . . .AM (j 6¼ i)
and the class label c to train a classifier, APi, for Ai (using

1546 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 11, NOVEMBER 2005

1. We call it impact weight, instead of weight, to emphasize on the fact
that this value reveals the unified impact of an attribute (incorporating both
the classification importance and the cost). In addition, the term weight is
too broad and hard to characterize this particular scenario.



instances in ~DDIt). Given an instance Ik in SIt, if Ai contains a
missing value, we use APi to predict a new value for Ai.
Assuming the predicted value from APi is AV k

i , we then use
the benchmark classifier TIt to determine whether the
predicted value from APi makes more sense: If we change
the attribute value of Ai from unknown to AV k

i (as shown
on line 4 of Fig. 2, where an unknown attribute value is
denoted by “?”), and Ik can be correctly classified by TIt, it
will indicate that the change results in a better classification.
We therefore conclude that the missing value of Ai is
predictable by others. However, if the change still makes Ik
incorrectly classified by TIt, we will leave Ai unchanged
and try to evaluate other attributes. If the prediction from
each single attribute does not conclude any predictable
attribute, we will start to revise multiple attribute values at
the same time. For example, change the values of two
attributes Ai and Aj to AV k

i and AV k
i simultaneously, and

then evaluate whether multiple changes make sense to TIt.
We can iteratively execute the same procedure until a
change makes Ik correctly classified by TIt, or none of the
changes can make Ik correctly classified by TIt (in this case,
PAk  �). Then, we exclude all predictable attributes from
MAk, and use the remaining attributes in MAk to take part
in the ranking of Ik.

With the above procedure, one important issue should be
resolved in advance: Which attribute to select if multiple
attributes are found to be predictable?

Our solution in solving this problem is to maximize the
prediction confidence while locating the predictable attri-
butes, as shown in Fig. 2. When learning APi for each
attribute Ai, we use a classification rule algorithm, e.g., C4.5
rules [15], to learn an Attribute prediction Rule set (ARi).
Assuming the number of rules in ARi is Ri, for each rule
ARr

i , r ¼ 1; . . .Ri, in ARi, we evaluate its accuracy on subset
~DDIt. This accuracy will indicate the confidence that ARr

i

classifies the instance. In our system, we use C4.5 rules to
learn the rule set ARi, so the accuracy value has been
provided with each learned rule.

When adopting the rule set ARi to predict the value of
Ai, we use the first hit mechanism [15], which means we
rank the rules in ARi in advance, and classify instance Ik by
its first coved rule in ARi. Meanwhile, we also use the
accuracy of the selected rule as the confidence (ACk

i ) of APi

in predicting Ai of Ik.
Given an incomplete instance Ik, assume the predicted

values for K attributes in MAk are AV k
i ; . . . ; AV

k
K , respec-

tively, with the confidences for each of them denoted by
ACk

1 ; . . . ; AC
k
K . We first set J to 1 to locate a predictable

ZHU AND WU: COST-CONSTRAINED DATA ACQUISITION FOR INTELLIGENT DATA PREPARATION 1547

Fig. 1. Cost-constrained data acquisition (AERA).



attribute by (17). If this procedure does not find any
predictable attribute, we increase the value of J by 1 and
repeat the same procedure, until we find the predictable
attributes or J reaches the number of attributes in MAk, as
shown in lines 14 to 17 in Fig. 1:

PAk ¼ fAi1 ; :; AiJg;

arg
i1;...;iJ

max
XJ

l
ACk

il

n o
fAi1

;:Aij
:;AiJ

g2MAk; i1 6¼:ij: 6¼iJ ; Aij
28MAk

8><
>:

9>=
>;;

where CorrectClassify ðAV k
i1
; :; AV k

iJ
; TItÞ ¼ 1:

ð17Þ

Validity Analysis. By switching each attribute Ai and
the class c to learn an APi classifier for each attribute, our
attribute prediction mechanism looks similar to the decision
tree-based imputation method [10], where the decision tree
was generated to predict the missing values for each
attribute. However, there are essential differences between
them. With the method in [10], it directly uses the
prediction results from the decision tree trained for each
attribute to fill the missing value. One can imagine that if
the classification accuracy of one attribute is low, the
imputation results become very unreliable (possibly even
worse than a random guess) [16]. In our method, never-
theless, the prediction from each APi classifier just provides
a guide for the benchmark classifier TIt to evaluate whether
a change makes the classification better or not. The
prediction from APi would not be adopted unless TIt

agrees that the value predicted by APi will make the
instance correctly classified. In other words, the proposed
mechanism relies more on TIt than on any APi. Even if the
prediction accuracy from APi is 100 percent, we will not
take its prediction unless it gets the support from T .
Therefore, low prediction accuracy from APi does not have
much influence with our proposed algorithm.

Although our method does not crucially depend on the
performance of each APi, we obviously prefer a high
prediction accuracy from APi because it can increase the
algorithm’s reliability. Then, the question becomes how
good APi could be with a normal data set? Actually, the
performance of APi is determined by the correlations

among attributes. If all attributes are independent or
conditionally independent given the class c, the accuracy
of APi could be very low because no attribute could be used
to predict Ai. However, it has often been pointed out that
this assumption is a gross oversimplification in reality, and
the truth is that the correlations among attributes exten-
sively exist [10], [37]. Instead of taking the assumption of
conditional independence, we take the benefits of interac-
tions among attributes, as well as between the attributes
and class. Just as we can predict the class C by using the
existing attribute values, we can turn the process around
and use the class and some attributes to predict the value of
another attribute. Therefore, the average accuracy of APi

classifiers from a real-world data set usually maintains a
reasonable level, as shown in Table 1.

4.2.3 Instance Ranking for Data Acquisition

We repeat procedures in Sections 4.2.1 and 4.2.2 for n times
and forward all instances in SIt to a subset S. Our next step
is to rank instances in S for data acquisition. To this end, we
adopt a similar ranking mechanism to ERA, as shown on
lines 19 to 21 in Fig. 1.

For each instance Ik in S, we first check how many
attributes in Ik contain missing values; in addition, how
many of these missing values are unpredictable by other
instances. Then, we use the sum of the inverse EF value of
all these (missing and unpredictable) attributes as the EF
value of the instance Ik, as defined by (18):

EF ðIkÞ ¼
XM

i

1

EFAi

��; Ai is missing and unpredictable

� �
:

ð18Þ

After we calculate the EF value for each instance in S, we
rank all instances in ascending order and put instances into
the list L. In addition, for other incomplete instances which
do not belong to S, we also use (18) to rank them (but
without considering whether an attribute is predictable or
not). Then, we append the ranked instances to L (because
these instances are likely less important than the instances
in S, we would like to give them less priority). Finally, all
incomplete instances are ranked.
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Given a user-specified budget, AERA starts from the top
to the bottom of the list L and selects instances to fill the
missing values, as shown on lines 23 to 25 in Fig. 1. AERA
keeps selecting instances from the list L, until the budget
has been filled, and then returns partially completed data
set D0.

5 EXPERIMENTAL RESULTS

5.1 The Objective and Evaluation Criteria

The objective of our experimental comparisons is to
evaluate the performances of our proposed efforts in
acquiring missing attribute values in cost bounded envir-
onments. Our assumption is that each data set comes with a
cost matrix which specifies the price for acquiring a missing
value for each single attribute. Meanwhile, we also assume
that when acquiring a missing value, the user has the power
of completing any particular missing value, as long as he/
she is willing to pay the price and the total cost is bounded
by a previously given number. We make this strong
assumption for objective evaluation purposes, although in
reality, many factors may actually impact the procedure
and make some missing values unable to restore. When
comparing different approaches, the major evaluation
criterion is the classification accuracy improvement from
the models built from the data sets that have been processed
by different data acquisition methods, given the same data
sets and the same cost matrix and budget.

In the following sections, we will conduct extensive
studies to assess the performances of the proposed efforts,
in comparison with several benchmark methods, which
include the missing value prediction accuracy, the data
acquisition results of various missing value levels, different
attribute costs, different cost budgets, and the results from
one real-world case study.

5.2 Experiment Setting

The majority of our experiments use C4.5, a program for
inducing decision trees [16]. To construct the benchmark

classifier TIt and APi classifiers, C4.5rules [16] is adopted in
our system. We report and analyze our results on 12 data
sets from the UCI data repository [32]. For each numerical
attribute, we will discretize it into 10 levels in advance
(using the k-means clustering algorithm [38]).

We did not intentionally select those data sets in UCI
which originally come with missing values because even if
they do contain missing values, we still do not know the
correct value to complete the missing information. So, we
propose a random missing value corruption model to
systematically study the performance of the proposed data
acquisition mechanisms. With this corruption model, when
the user specifies a corruption level x � 100%, we will
introduce missing values to all attributes, with the value of
each attribute having x � 100% of chance to be hidden
(corrupted as missing values). If the original value of the
attribute is unknown (it happens when the data set comes
with missing values), we still set it as unknown. In our
system, we set x 2 ½0:1; 0:5�.

For each experiment, we execute 10 times 3-fold cross-
validation and use the average as the final result. In each
run, the data set is randomly (with a proportional
partitioning scheme) divided into a training set and a test
set, and we apply the above corruption model on the
training set. The learner first builds a classifier (C1) from the
corrupted data set, then we use the data acquisition
schemes to complete a certain amount of data.2 After that,
the leaner builds another classifier (C2). The comparison of
system performance is made by comparing the classifica-
tion accuracy between C1 and C2 (on the same test set).

To assign costs for attributes, we adopt a random
mechanism (unless otherwise specified; e.g., for the Heart
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2. With manual corruption schemes, we actually know the original value
of the missing attribute, so we can complete an incomplete instance with
100 percent accuracy. If the original data set contains a missing value for an
attribute (e.g., Soybean and Vote), such a procedure will still provide a
missing value for the attribute because we do not actually know the correct
attribute value.

TABLE 1
Missing Attribute Value Prediction Results



disease data set, we use the costs from the original data set).
Given a maximum attribute cost MaxAttCst, we randomly
select a cost value within the constraint [1, MaxAttCst] for
each attribute. The cost values for attributes are generated at
the beginning of each trial of 10 time cross-validation. When
the system picks one instance, say Ik, for users to complete
the missing information, we assume that users can provide
correct information for all attributes in Ik with missing
values. We take this assumption because from the data
acquisition point of view, once the user has started to
investigate one instance, he/she has already gotten the
background knowledge of Ik, and it is convenient (also
reasonable) for the users to complete the missing values of
Ik as much as they can (because if the user only picks some
attributes to fix, he/she may reexamine the instance again
at the later stage). In our system, we take this assumption
for all data acquisition algorithms.

For comparison purposes, we also consider several naı̈ve
data acquisition solutions and implement one existing
algorithm AVID [27], and use them as the benchmark to
evaluate the performance of the proposed methods.

5.2.1 Random Data Acquisition (Random)

Random data acquisition randomly selects incomplete
instances for data acquisition until the user-specified
budget has been filled.

5.2.2 The Most/Least Expensive (MstExp/LstExp)

With these two mechanisms, the system will rank all
incomplete instances in D by their total cost. The MstExp
always tries to fix the instance with the most expensive cost
at first, and the LstExp, inversely, always prefers the
instance with the least expensive cost. Both mechanisms
discard the importance of the attributes. The intuitive sense
is that MstExp can finish the job by checking the least
number of examples, and is suitable for users who want to
finish their job quickly. LstExp, on the other hand, examines
most examples and is suitable for users who do not care
about the time cost.

5.2.3 The Most Informative (MstInf)

With this mechanism, the system first calculates the
Information-gain Ratio (IR) of each attribute. For each
incomplete instance Ik, MstInf uses the sum of IR of all
attributes with missing values as the impact value of Ik.
MstInf selects the instances with the highest impact values
until the budget has been filled. Obviously, MstInf
disregards attribute costs but considers the importance of
the attributes only.

5.2.4 Acquisition Based on Various Imputation

Data (AVID)

For a better comparison, we also implement an existing data
acquisition algorithm, AVID [27]. The essential idea of
AVID is to put priority on the missing attribute with the
largest variance of the imputation results. Given one
instance, Ik, if attribute Ai of Ik contains a missing value,
AVID first introduces B imputation methods to predict the
value of Ai, and then calculate the variance from the
imputation methods. The total score of instance Ik is based
on the average variance of all attributes with missing

values, as defined by (19). The larger the score, the more
important Ik is for data acquisition. When implementing
AVID, we use three imputation algorithms, i.e., B ¼ 3,
which are the most common attribute values [12], the
Bayesian formalism [13], and the decision rule prediction
[10]. The final score for Ik is calculated by (19):

SðIkÞ ¼
XM

i¼1 1�MaxðBAi
Þ

B

� ���Ai has a missing value

� �
;

ð19Þ

where BAi
represents the imputation results for attribute Ai

(with a missing value), and MaxðBAi
Þ denotes the number

of imputation methods with the same results. Obviously, if
all imputation results for Ai are the same, SðIkÞ equals to 0.
We rank all incomplete instance by their SðIkÞ in descend-
ing order, and select the instances from the top to the
bottom of the list for data acquisition until the budget has
been satisfied.

With the above five mechanisms and the ERA method
introduced in Section 4.1, we actually have six benchmark
algorithms for comparison purposes.

5.3 Missing Attribute Value Prediction Results

AERA has integrated a missing value prediction mechan-
ism to evaluate whether a missing value of an instance is
predictable by others. We need to assess the performance of
such a prediction procedure because if the prediction
accuracy is very low, it may provide wrong information,
and AERA will falsely ignore the missing values from
important attributes. Therefore, for each attribute, say Ai,
we will evaluate its Prediction Accuracy (PA) and Prediction
Recall (PR), as defined by (20), where ni, pi, and di represent
the number of actual corrupted missing values, the number
of correctly predicted values, and the number of predicted
values in Ai, respectively. PAi and PRi are the accuracy
and recall for Ai, and PA and PR are the average accuracy
and recall of all attributes. Actually, we define the accuracy
as that among all predictions from the algorithm, how many
of them are exactly the same as the original values (before
the missing value corruption). And, the recall is defined as
that among all actually corrupted missing values (for each
attribute), how many of them are correctly detected by the
algorithm.

Table 1 reports the results from several representative
data sets (we only report the results from the first nine
attributes, where N/A means the data sets do not have so
many attributes).

PA ¼
XM

i¼1 PAi; PAi ¼
pi
di
;

PR ¼
XM

i¼1 PRi; PRi ¼
pi
ni

:
ð20Þ

As we can see from Table 1, when the corruption level
(x � 100%) is relatively low, the average prediction accura-
cies from all data sets are reasonably good. When the
corruption level goes higher, the accuracies likely decrease.
This makes sense because with more missing values
introduced, both learned attribute classifiers APi and the
benchmark classifier TIt become worse. On average, about
half of the predictions are correct, which implies that the
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proposed algorithm looks promising in predicting some
missing attribute values. However, for some attributes (e.g.,
attributes eight to 24 of LED24, and attribute 7 of Auto-
mpg), the prediction accuracies are very low, regardless of
the corruption level. Further analysis indicates that there
are cases that some attributes in the data set simply cannot
be predicted by others. For example, the values in attributes
8 to 24 of LED24 are randomly generated, which leaves no
way for a high prediction accuracy. But, since a data set is
likely constructed with lots of interactions among attributes
[10], having some independent attributes in the data sets
does not impact too much on our algorithm.

As we can see from the third column of Table 1, the
overall recall of the prediction is relatively low (on average,
less than 10 percent), which means that the algorithm can
only handle less than 10 percent of missing attribute values.
Simply looking at this value might raise an argument
against the efficiency of the algorithm. Nevertheless, this is
actually the merit of our algorithm. Instead of predicting
missing values for all incomplete instances (like most
imputation methods do), we only select and predict the
missing values for the most problematic incomplete in-
stances. In addition, our prediction mechanism depends on
the trained benchmark classifier TIt, where those less
important attributes, e.g., the random attributes 8 to 24 in
LED24, are less likely to show up in theory TIt, so our
prediction mechanism will make less prediction for these
attributes. Our experimental results in the following
sections will indicate that our method contributes very
significantly for data acquisition mechanisms, especially
when the user’s budget is very small.

The results from some attributes (e.g., in LED24 and
Tictactoe) likely suggest that when the missing values in a
data set are very limited, we may use the predicted attribute

values to change the data set (notice that AERA does not do
so). However, the risk is that incorrectly predicted attribute
values may harm the system. So, we compare the same
levels of missing and incorrect attribute values to check
which one is more harmful. Given one data set, we first
introduce a certain level of missing values, and acquire a
classifier C1. Then, we change each of the manually
corrupted missing attribute value with a random attribute
value, and learn a classifier C2. We execute experiments on
Car and Tictactoe at five corruption levels and report the
results in Fig. 3, where “Missing” and “Incorrect” represent
the accuracy of C1 and C2, respectively. As we can see,
given the same corruption level, the incorrect attribute
values do much more harm to the system than missing
values. This clearly suggests that instead of bringing
benefits, adopting “automatic” imputation methods to
change the missing attribute values may actually bring
more negative impacts. So, AERA does not use any
predicted values to change the original data set.

5.4 Experiments with Various Corruption Levels

In this section, we evaluate the performances of different
algorithms on data sets with different levels of missing
values (x � 100%). For each experiment, we need to specify
the maximum attribute cost MaxAttCst to generate attribute
costs (Section 5.1). Based on the generated attribute costs and
the number of attributes with missing values, we can
calculate the total cost we will have to pay to complete all
missing information in the data set, denoted by TotalCst. In
the context of cost-constrained environments, users will
specify a budget for data acquisition, which is � � 100% of the
TotalCst. In all experiments in this section, we set
MaxAttCst ¼ 20 and � ¼ 0:1. (We believe both of these
two values are representative in reality and, in Sections 5.5
and 5.6, we will evaluate the impacts of MaxAttCst and � on
the system performance.) Then, we learn classifiers from the
data sets that have been processed by different data
acquisition mechanisms, and report their accuracy in Fig. 4
and Table 2. Fig. 4 provides detailed results from the Car
data set, where the x-axis represents the corruption level and
the y-axis is the classification accuracy. ORG means the
accuracy of the classifier learned from the corrupted data set
(without any data acquisition), and each of the other curves
represents the results from one data acquisition method
(including six benchmarks and one proposed solution).

From Fig. 4, we can find that with the increase of the
corruption levels, all methods suffer from the decrease of
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Fig. 3. Classification accuracy comparison between missing values and

incorrect values. (a) Car data set and (b) Tictactoe data set.

Fig. 4. Classification accuracy comparison at various corruption levels

(Car data set, � ¼ 0:1, MaxAttCst ¼ 20).



the classification accuracy because more missing values
have been introduced and the model generated from the
data has been corrupted. With data acquisition mechan-
isms, we can improve the performance of the classifier
learned from the processed data sets. Even random data
acquisition can achieve a good performance, especially
when the corruption level is relatively high. When compar-
ing different data acquisition algorithms, we can find that
AERA is always better than the other methods, and ERA
and LstExp appear to be the second best methods (with
ERA being slightly better than LstExp). If we rank all
approaches in descending order of the performance, we will
get the list from AERA, ERA, LstExp, MstInf, Random,
AVID to MstExp. When comparing LstExp and MstExp, we
can find that LstExp is much better than MstExp (this
phenomenon has been found from most data sets). We
believe the reason is that given the same budget, LstExp
provides the data set with more complete instances (in
comparison with MstExp), so the generated model can
acquire a better performance. When comparing Random
with all other approaches that ignore the attribute costs
(MstInf and AVID), we can find that their performances are
comparable, and it is hard to conclude which one is clearly
the best. This indicates that in the context of cost-
constrained environments, most existing data acquisition
models tend to fail, and their performances are hardly
better than random selection. This conclusion becomes
especially clear in the experiment of the next section, where
the MaxAttCost becomes relatively large, e.g., 100. With the
AVID mechanism, we can find that its performance is far
less than promising. The problem of AVID is that it ignores
the attribute importance and heavily relies on the imputa-
tion results (which are also questionable). Therefore, its
performance is almost the same as Random, even if we set
the MaxAttCost to a very small value, e.g., 2, as we will
discuss in the next section.

With cost-constrained data acquisition, we focus on the
attributes rather than each instance. So, given a fixed
budget, different algorithms may need to process different
numbers of incomplete instances. An intuitive sense is
that an “optimal” data acquisition model should process
the least number of instances but acquire the best accuracy

improvement, given a fixed budget. To make a compar-
ison in this regard, we compare the percentages of
processed instances by different algorithms, and provide
the results in Fig. 5, where the x-axis represents the
corruption level and the y-axis is the percentage of
processed instances (in comparison with the total number
of instances in the data set). As we can see, LstExp
receives the highest percentage value, which means that
LstExp has to process the most instances, given a fixed
budget. In another word, LstExp has the lowest efficiency,
if the user takes the number of processed instances into
consideration. From the results in Figs. 4 and 5, it is not
hard for us to conclude that AERA is the best solution if
we take both the system improvement and the percentage
of processed instances into consideration.

In Table 2, we summarize the results from 10 benchmark
data sets, where the second column represents the corrup-
tion levels (x � 100%), and all other columns from 3 to 7
report the results from different algorithms (due to space
restrictions, we ignore the performance of MstExp and
MstInf). The text in bold indicates the result with the
maximum value, and the text in the highlighted region is
the second maximum value.

As we can see, from all 10 data sets, AERA is
significantly better than all other methods. On average,
AERA acquires 2-3 percent more improvement than others.
When comparing four benchmark methods (Random,
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TABLE 2
Classification Accuracy with Various Corruption Levels (� ¼ 0:1, MaxAttCst ¼ 20)

Fig. 5. Percentages of processed instances at various corruption levels

(Car data set, � ¼ 0:1, MaxAttCst ¼ 20).



LstExp, AVID, and ERA), we can find that ERA receives a
relatively better performance, and can beat all other
methods more often (with a 14/30 possibility). This
complies with our intuitive assumption that the EF
measure, which combines the attribute cost and importance,
appears to be promising for data acquisition purposes.
Nevertheless, as we can see, even if ERA does outperform
others, the improvement is very limited, and only if we
integrate the EF measure with active learning and attribute
prediction, a significant amount of improvement could be
achieved.

5.5 Experiments with Various MaxAttCst Values

In the above section, we have fixed the maximum attribute
value (MaxAttCst ¼ 20), so the attribute cost-ratio between
the most and the least expensive attributes is no larger than
20. In this section, we evaluate the impacts of different
attribute cost-ratios (the cost ratio between the most and the
least expensive attributes) on the system performances, and
this study shall help us explore the merits and disadvan-
tages of different data acquisition algorithms in the context
of cost-sensitive environments. For this purpose, we set the
MaxAccCst to four values (2, 20, 50, and 100). In each
experiment, we will fix the budget to be 10 percent (� ¼ 0:1)
of the total cost TotalCst, and the missing value corruption
levels x � 100% is set to 30 percent. In Fig. 6, we report the
results from two data sets (Car and LED24), where the
x-axis represents MaxAttCst, and the y-axis is the classifica-
tion accuracy after the data acquisition.

The experimental results from Fig. 6 indicate that AERA
outperforms all other six benchmark approaches, regardless
of the value of MaxAttCst. It implies that AERA is reliable
in real-world environments (where the attribute cost-ratio
could vary from several to over hundreds). With the
increase of the MaxAttCst, we noticed that the perfor-
mances from five benchmark approaches (Random,
MstExp, LstExp, MstInf, and AVID) likely keep constant,
and their results are similar to the results of random
selection. This is understandable because these mechanisms
do not have any solution to handle variances among the
attribute costs for effective data acquisition, the change of
the attribute cost-ratio does not impact to these methods too
much. One interesting result is that when the MaxAttCst is
relative large, e.g., 100, the performance of Random is
actually better than most other benchmark algorithms. As
shown in Fig. 6, when MaxAttCst=100, Random is better
than MstInf, MstExp, and AVID. This embarrassing ob-
servation indicates that in cost-constrained environments, if

the attribute cost varies significantly, existing data acquisi-
tion methods will inevitably fail. With ERA, however, we
can find a clear ascending trend, with the increase of the
MaxAttCst. The higher the MaxAttCst value, the better the
performance of ERA is, and the closer ERA and AERA are.
The reason is that ERA uses the EF measure to select
economical attributes, and the merit of EF becomes more
significant with the increase of the attribute cost-ratios.
With AERA, we do not find such a strong trend of increase
(although we do notice a small amount of changes) because
AERA has already optimized the system performance, and
its result is very close to the up ceiling (see next section for
details). So, it is hard for AERA to exhibit a strong
performance boost with the increase of the MaxAttCst.

5.6 Experiments with Various Budget Values

In the experiments above, we have fixed the budget to be
10 percent of the total cost of the database (� ¼ 0:1).
Nevertheless, a good data acquisition algorithm should
work well with different � values, especially when the
� value is small because users always prefer that a
significant performance could be achieved with a very
small amount of costs, and there is clearly no need to adopt
any proposed mechanism if the user decides to fill all
incomplete information in the data set. So, we set � to
different values with � 2 ½0:1; 0:5�, and the corruption levels
are set to three values 0.1, 0.3, and 0.5. Fig. 7 presents
detailed results from the Car data set, where the x-axis
represents the value of �, and the y-axis denotes the
classification accuracy.

For better comparisons, we introduce the concept of “up
ceiling” of data acquisition in evaluating different algo-
rithms. When conducting data acquisition, we assume that
if we complete all missing information in the data set, we
can get the best classification accuracy. So, we use this
accuracy as the up ceiling of data acquisition, denoted by
UpCeiling in Fig. 7. Note that although all results are
theoretically bounded by this ceiling, there are many
exceptions where the results are not well bounded, because
we normally use divide and conquer learning algorithms
(e.g., C4.5), where providing good information does not
necessarily result in better results or vice versa, as shown in
the Heart data set in Fig. 8.

The results from Fig. 7 indicate that when the budget (�)
increases, the results from all data acquisition schemes get
better. This does not surprise us, because when data
acquisition fills more incomplete instances, we actually
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Fig. 6. Classifiction accuracy comparison with different attribute cist-ratios (� ¼ 0:1, x ¼ 0:3). (a) Car data set and (b) LED24 data set.



provide more valuable information to the data set, therefore
better performances could be achieved. Fig. 7 also shows
that AERA achieves the best results, regardless of the
budget value. When comparing results from different
corruption levels, we can find that the smaller the x value,
the earlier AERA hits the up ceiling, if we increase the
budget (�). As we can see, when x ¼ 0:1, AERA almost hits
the ceiling by setting the value of � to 0.4. When x ¼ 0:5,
AERA is still significantly less than the ceiling even if we set
� to 0.5. The reason is that with a small corruption level, we
can acquire an accurate benchmark classifier TIt for active
instance selection and attribute prediction. Therefore,
AERA could achieve better results.

The results in Fig. 7 also indicate that the higher the
corruption level, the more likely data acquisition can
achieve a significant improvement. As shown in Fig. 7a
and Fig. 7c, when introducing 10 percent missing values to
each attribute, the results from all benchmark mechanisms
(excluding AERA) are close to the original data set. On the
other hand, when each attribute has 50 percent missing
values, all benchmark algorithms are significantly better
than the original data set. The reason is that when a data set
contains heavy missing values, the theory learned from the
data set is seriously corrupted, and putting a small amount
of correct information to the data set can restore the system
performance significantly. This indicates the needs and the
merits of data acquisition in real-world applications,
especially when the data set contains heavy missing values.
The above observation also shows the merit and advantage
of AERA, especially when the budget is very limited, e.g.,
� ¼ 0:1. As we can see from Fig. 7a, when x ¼ 0:1 and
� ¼ 0:1, AERA can still receive a significant improvement.
This is very interesting because it indicates that AERA is
particularly useful when the user has a very limited budget.

In Table 3, we summarize the results from 10 benchmark
data sets, where the second column represents the user-
specified budget value (�), and all other columns from 2 to
6 report the results from different algorithms (due to space
restrictions, we only report the results from a representative
corruption level (30 percent)). The text in bold indicates the
result with the maximum value, and the text in the
highlighted region represents the second maximum value.
Again, all experimental results demonstrate the effective-
ness of AERA in comparison with all benchmark algo-
rithms, where AERA is significantly (and exclusively)
better, regardless of the user specified budget values.

5.7 A Case Study on Real-World Attribute Costs

All experiments above are based on a random attribute cost
generation. In this section, we perform a case study on a
real-word data set, the Heart disease data set [32] from the
UCI data repository, where attribute costs come with the
original data set [31], as shown in Table 4. We introduce
three corruption levels, x ¼ 0:1, 0.3 and 0.5, and report the
results in Fig. 8, where the x-axis represents the budget �,
and the y-axis denotes the classification accuracy.

As we can see from Fig. 8, adopting the proposed cost-
constrained data acquisition can also achieve a good
performance from a real-world cost scenario, where given
the same amount of predefined budget, AERA can improve
the system performance remarkably, in comparison with all
benchmark solutions. However, we notice that with the
Heart disease data set, it is quite often that AERA does not
comply with the up ceiling bound of data acquisition. Even
if we increase the number of cross validation, the same
phenomenon still exists. It seems to us that the adopted
learning algorithm (C4.5) tends to overfit the training set, if
we complete all missing information of the data set.
Another possible reason is that we have adopted the k-
means [38] based discretization method to discretize the
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Fig. 7. Classification accuracy comparison with different user-specified budgets (Car data set). (a) x ¼ 0:1, TotalCst = 4,722.5. (b) x ¼ 0:3, TotalCst

= 16,104.1. (c) x ¼ 0:5, TotalCst = 33,170.4.

Fig. 8. A case study on the Heart disease data set with real-world attribute costs. (a) x ¼ 0:1, TotalCst = 9,670.3. (b) x ¼ 0:3, TotalCst = 34,868.8.

(c) x ¼ 0:5, TotalCst = 51,021.7.



numerical attributes (into 10 levels), which might have lost

some information, and therefore caused this problem.

Despite these reasons, we have found that even if the

overfiting does exist, AERA can still explore the economical

incomplete instances to enhance the data quality, and

improve the system performances or serve other data

mining purposes.

6 CONCLUSIONS

In this paper, we have proposed a cost-constrained data

acquisition mechanism to recommend incomplete instances

in a data set for information completion, where the costs of

fixing the missing information of different attributes are

inherently different, and the data acquisition is bounded by

a user-specified budget. The essential ideas that motivate

the design of our algorithm, and also the novel features that

distinguish our work from existing approaches, include

three components:

1. We seamlessly combine the cost and the discrimina-
tion efficiency of each attribute into a unique
Economical Factor to explore the economical attri-
butes (informative but cheap) for effective data
acquisition;

2. Use the basic idea of active learning to select
incomplete instances which likely confuse the learn-
ing theory to enhance the system performance; and

3. Adopt a missing attribute value prediction to
avoid introducing redundancy from information
completion.

The experimental results from 12 real-world data sets have
demonstrated the effectiveness of the proposed approach.
Our experimental results concluded that in the context that
fixing attributes comes with different prices, the existing
data acquisition mechanisms become less efficient and can
totally fail, especially when the attribute cost-ratio (the cost
ratio between the most and the least expensive attributes)
becomes relatively large. With the proposed AERA algo-
rithm, which integrates the attribute cost and discrimination
efficiency, we can significantly improve the accuracy of the
models built from the processed data set, compared with
several benchmark approaches.
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