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Abstract—Hierarchical video browsing and feature-based video
retrieval are two standard methods for accessing video content.
Very little research, however, has addressed the benefits of inte-
grating these two methods for more effective and efficient video
content access. In this paper, we introduce InsightVideo, a video
analysis and retrieval system, which joins video content hierarchy,
hierarchical browsing and retrieval for efficient video access.
We propose several video processing techniques to organize the
content hierarchy of the video. We first apply a camera motion
classification and key-frame extraction strategy that operates
in the compressed domain to extract video features. Then, shot
grouping, scene detection and pairwise scene clustering strategies
are applied to construct the video content hierarchy. We introduce
a video similarity evaluation scheme at different levels (key-frame,
shot, group, scene, and video.) By integrating the video content
hierarchy and the video similarity evaluation scheme, hierarchical
video browsing and retrieval are seamlessly integrated for efficient
content access. We construct a progressive video retrieval scheme
to refine user queries through the interactions of browsing and
retrieval. Experimental results and comparisons of camera motion
classification, key-frame extraction, scene detection, and video
retrieval are presented to validate the effectiveness and efficiency
of the proposed algorithms and the performance of the system.

Index Terms—Video browsing, video content organization, video
retrieval, video similarity assessment.

1. INTRODUCTION

ECENT advances in high-performance networking and
R improvements in computer hardware have led to the emer-
gence and proliferation of video and image-based applications.
Database management techniques for traditional textual and nu-
meric data cannot handle video data; therefore, new models for
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storage and retrieval must be developed. In general, a video data-
base management system should address two different prob-
lems: 1) the presentation of video content for browsing and 2)
the retrieval of video content based on user queries.

Some methods have been developed for presenting video
content by hierarchical video shot clustering [1], [2], organizing
storyboards [3], or joining spatial-temporal content analysis
and progressive retrieval for video browsing [4]. These methods
allow a viewer to rapidly browse through a video sequence,
navigate from one segment to another, and then either get a
quick overview of video content or zoom to different levels of
detail to locate segments of interest. These systems are efficient
in video browsing and content presentation; however, they fail
either in detecting semantically related units for browsing [1],
[2], [4] or in integrating efficient video retrieval with video
browsing [3].

In comparison with video content presentation, more exten-
sive research has been done in the area of video retrieval. Several
research prototype systems have been developed which provide
automatic indexing, query and retrieval based on visual features,
such as color and texture [5]-[12]; others execute queries on
textual annotation [13]. Elmagarmid, et al. [14] has published a
comprehensive overview of this topic.

The first video parsing, indexing and retrieval framework was
presented by Zhang, et al. [2]. It uses the annotations and vi-
sual features of key-frames for video browsing and retrieval.
QBIC [12] supports shape queries for semi-manually extracted
objects. The Virage [8] system supports feature layout queries,
and users can assign different weights to different features. The
Photobook system [9] enables users to plug in their own content
analysis procedures. Cypress [11] allows users to define con-
cepts using visual features like color. VisualSEEk [10] allows
localized feature queries and histogram refinements for feed-
back using a web-based tool. Systems such as CVEPS [15] and
JACOB [16] support automatic video segmentation and video
indexing based on key-frames or objects. The web-based re-
trieval system, WebSEEK [17], builds several indexes for im-
ages and video based on visual features and nonvisual features.
The Informedia digital video library project [18] has done ex-
tensive research in exploring video knowledge by integrating vi-
sual features, closed caption, speech recognition etc. A more ad-
vanced content-based system, VideoQ [7], supports video query
by single or multiple objects, using many visual features such
as color, texture, shape, and motion.
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However, the video retrieval approaches introduced above
usually just add the functionalities for shot segmentation and
key-frames extraction to existing image retrieval systems. After
shot detection and key-frame extraction, they merely apply sim-
ilarity measurements based on low-level features of the video
frames or shots. This is not satisfactory because video is a tem-
poral media, so the sequencing of individual frames creates new
semantics that may not be present in any of the individually re-
trieved shots.

A naive user is interested in querying at the semantic level,
rather than having to use features to describe his (her) concept.
In most cases, it is difficult to express concepts using feature
matching, and even a good match in terms of feature metrics
may yield poor query results for the user. For example, in mul-
tiple domain recall, a query for 60% green and 40% blue may
return an image of a grass and sky, a green board on a blue wall
or a blue car parked in front of a park, as well as many others.
Helping users to find query examples and refine their queries is
also an import feature for video retrieval systems. However, in-
stead of integrating the efficient video browsing and retrieval to-
gether, the systems described above emphasize either browsing
or retrieval. A progressive strategy should be developed to join
video browsing and retrieval schemes together to improve the
effectiveness and efficiency of both.

Motivated by the above observations, we propose a novel
video content organization and accessing model for video
browsing and retrieval. A progressive video retrieval scheme
is formed by executing the browsing and retrieval iteratively.
The distinct features of our system are the following: 1) sev-
eral novel video processing techniques are introduced which
improve existing algorithms in important areas; 2) a video
content hierarchy is constructed which allows hierarchical
video browsing and summarization to be executed directly and
efficiently; 3) by addressing video similarity at different levels
and granularity, our retrieved results mostly consist of visually
and semantically related units; and 4) the seamless integration
of video browsing and retrieval allows users to efficiently shrink
and refine their queries.

System flowchart for InsightVideo.

II. SYSTEM OVERVIEW

The process flow for the InsightVideo system is illustrated
in Fig. 1. The system consists of three parts: 1) video analysis
and feature extraction; 2) hierarchical video content organiza-
tion; and 3) progressive video content access. To extract video
features, a shot segmentation algorithm is applied to each input
video. Then, for each segmented shot, the camera motion classi-
fication strategy is utilized to qualitatively classify camera mo-
tions. Based on identified motion information, key-frame ex-
traction is executed to select the key-frame(s) for each shot.
The detected camera motions and low-level features are uti-
lized for video similarity evaluation. After the video features
have been extracted, the video content table is constructed by
shot grouping, scene detection, and scene clustering strategies
to generate a three-layer video content hierarchy (group, scene,
clustered scene).

Based on this video content hierarchy and extracted video
features, we propose a progressive video content access scheme
in which we first address the video similarity evaluation
scheme at different levels and then integrate the hierarchical
video browsing and retrieval for video content access and
progressive retrieval. Using hierarchical video browsing, a user
is provided with an overview of video content from which a
query example can be selected. Then, video retrieval is invoked
to produce a list of similar units, and the user can browse the
content hierarchy of retrieved results to refine the query. With
interactions between the retrieval and browsing, a user’s query
can be quickly refined to retrieve the unit of interest.

The remainder of this paper is organized as follows.
Section III presents several video analysis and feature extrac-
tion techniques, including camera motion classification and
key-frame extraction schemes. Then, based on extracted video
features, Section IV introduces techniques for hierarchical
video content organization. In Section V, the video similarity
assessment scheme is applied at different levels of the video
content hierarchy. Section VI presents techniques that join hier-
archical video browsing and retrieval for efficient video content
access. The conclusion and remarks are given in Section VIIL.
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III. VIDEO ANALYSIS AND FEATURE EXTRACTION

Most schemes for video feature extraction begin by seg-
menting contiguous frames into separate shots, and then
selecting key-frames to represent shot content. With this
scheme, a video database is treated somewhat like an image
database, because the motion information in the video (or shot)
is missed. In our system, the motion information in the video is
detected and extracted as a shot feature to help in identifying
video content. We first apply shot segmentation to the video,
and then execute the camera motion classification scheme.
Based on extracted motion information, a key-frame extraction
scheme is proposed and the camera motion in the shot will also
be utilized as the features to evaluate similarity between shots.

A great deal of research has been done in shot boundary de-
tection, and many approaches achieve satisfactory performance
[1], [19]. In previous work, we have developed a shot segmenta-
tion approach with an adaptive threshold selection for break and
gradual shot detection [20]. In the next sections, we will intro-
duce the camera motion classification and key-frame extraction
schemes.

A. Camera Motion Classification

Motion characterization plays an important role in content-
based video indexing. It is an essential step in creating com-
pact video representation automatically. For example, a mosaic
image can represent a panning sequence [21]; the frames be-
fore and after a zoom can represent the zoom sequence. As the
research work in [53] has demonstrated, in addition to various
visual features, the motion information in video shots can also
be explored for content-based video retrieval. Thus, an effective
characterization of camera motion greatly facilitates the video
representation, indexing, and retrieval tasks. And the proposed
multimedia content description standard MPEG-7 [59] has also
adopted various descriptors (DS) to qualitatively (different types
of motions) and quantitatively (the amount of motions) describe
the camera motion in each shot [57], [58].

To extract the camera motion, Ngo et al. [22] proposed a
method using temporal slice analysis for motion characteriza-
tion, however, to distinguish different types of motion patterns
in the slice is a challenging task for videos with cluttered
background or containing moving objects. Srinivasan et al.
[24] introduced a qualitative camera motion extraction method
that separates the optical flow into two parts, parallel and rota-
tion, for motion characterization. Xiong et al. [23] presented a
method that analyzed spatial optical flow distribution. However,
these last two methods can only be used when the focus of
expansion (FOE) or focus of contraction (FOC) [25] is at the
center of the image, and this is not always the case in generic
videos.

To analyze camera motion in the compressed domain, Tan et
al. [26], Kobla et al. [27] and Dorai et al. [28] presented three
methods based on motion vectors in MPEG streams. In [26], a
6-parameters transformation model is utilized to classify camera
motions into panning, tilting and zooming. The methods in [27],
[28] map motion vectors in the current frame into eight direc-
tions. Motion classification was developed based on the values
in these eight directions. However, these strategies are sensitive
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Fig. 3. Mutual relationship between motion vectors. (A) The mutual
relationship between motion vectors on the same side of vector V4 5. (B) The
mutual relationship between motion vectors on different sides of vector V5.

to noise in motion vectors and fail to detect the camera rolling.
Furthermore, extracted optical flow or motion vectors may con-
tain considerable noise or errors, which significantly reduces the
efficiency of their strategies.

We have found that the statistical information for the mutual
relationship between any two motion vectors is relatively robust
to noise (see Fig. 4) For a given type of camera motion con-
tained in the current frame, the statistical mutual relationship
in the frame will show a distinct distribution tendency. Based
on this observation, we propose a qualitative camera motion
classification method. In addition to detecting most common
camera motions (pan, tilt, zoom, still), our method can also de-
tect camera rolling, and various detected camera motions will
directly comply with the motion descriptors in MPEG-7 stan-
dard [59].

1) Problem Formulation: Our objective is to efficiently
process videos stored in MPEG format for camera motion
classification. As shown in Fig. 2, the syntax of MPEG-1
video defines four types of coded pictures: intracoded pictures
(I-frames), predicted pictures (P-frames), bidirectionally pre-
dicted pictures (B-frames), and DC' encoded frames (which are
now rarely used). These pictures are organized into sequences
of groups of pictures (GOP). Each video frame is divided into
a sequence of nonoverlapping macroblocks (MB), such that
each MB is then either intracoded or intercoded. An I-frame is
completely intracoded, and the MB in P-frame may be sepa-
rated into two types: intracoded (containing forward prediction
motion vectors) and intercoded (containing no motion vectors).
In this paper, we use only the motion vectors from P-frames,
that is, we are sampling the camera motion. For example, if
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the MPEG video is coded at a rate of 30 frames per second
using the GOP in Fig. 2, there are 8§ P-frames per second in the
video. We will require the underlying camera motion rates (per
frame) to have a bandwidth of less than 4 Hz. For most videos,
this is a reasonable assumption. Using motion vectors from
both P and B-frames has the potential to yield better accuracy,
but at the cost of increased computation. In our classification
scheme, we assume that there is no large object motion or the
motion caused by large objects can be ignored. Thus, only the
dominant camera motion is detected.

2) The Mutual Relation Between Motion Vectors: Given two
points A, B in current frame P; with positions p4 = (z4,y4),
pp = (zB,yp) and motion vectors V4 = (u4,v4) and Vp =

(up,vB), we denote the vector from point A to B as V 4, and
the line crossing point A and B as y = ((ya — yB)/(za —
zg))z+ (xayp_yarp/(ra—xp)). As shown in Fig. 3, there
are four types of mutual relationships between V4 and Vg: ap-
proach, parallel, diverging, and rotation.

To classify the mutual relationship between V4 and Vg, we
first measure whether they are on the same side [Fig. 3(a)] or

different sides [Fig. 3(b)] of vector V 4p5. Based on the geo-
metrical relationship among the four points (24,v4), (x4 +
ua,ya+va), (zp,yp) and (25 +up, ys + vB), it is obvious
that if V4 and Vp are on the same side of vector V 4p, both
points (z4 +ua,ya+va)and (zp +up,yp +vp) should be
above or below the line which crosses point A and B at the same
time. Hence, we multiply y; and yo (from (1)).. If the product
is nonnegeﬁive, we will claim V4 and Vg are on the same side

of vector V ap; otherwise, V4 and Vg are on different sides of

vector V 4
— _ Ya—yYB . _ TAYB-YATH
Y1 =Ya+va— = (ra+ua) Ry — )
_ _ Ya—ym . _ TAYB-YATB
Y2 =YB T VB~ T, (B +uB) Ry —

As shown in Fig. 3, if we assume that « denotes the angle
between V 4 and V4, and § denotes the angle between Vg
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and V 4 g, if V4 and Vp are on the same side of V 4, then their
mutual relationship is classified as follows.

e If a+ B < 180° — Tpagra, the mutual relationship be-
tween V4 and Vp is approach.

e Ifa+ 3 > 180° + Tpara, the mutual relationship be-
tween V4 and Vp is diverging.

e Otherwise, the mutual relationship between V4 and Vp is
parallel.

If V4 and Vg are on different sides of V' 4 g, then their mutual
relationship is classified as follows.

e Ifa+p < Tecrosk, the mutual relationship between Vy
and Vp is approach.
e If a4+ B > Trgag, the mutual relationship between V4
and Vp is diverging.
¢ Otherwise, the mutual relationship between V4 and Vp is
rotation.
In our system, we set Tpara, Tcrose and Tpag to 15°,
60°, and 250° respectively.
3) The Relationship Between Camera Motion and Motion
Vectors: Fig. 4 shows the relationship between the camera mo-
tion and motion vectors contained in the frame:

* If the camera pans or tilts, most motion vectors’ mutual
relationships in the frame are parallel.

* If the motion of the current frame is zooming, most mo-
tion vectors’ mutual relationships in current frame either
approach to (zoom out) FOC or diverge from (zoom in)
FOE.

e If the camera rolls, most vertical vectors’ (defined in
Section I1I-A4d) mutual relationship in the frame either
approach to (Roll_Clockwise) FOC or diverge from
(Roll_AntiClockwise) FOE.

Based on these observations, a motion feature vector is con-

structed to characterize the motion vectors.

4) Motion Feature Vector Construction: In this subsection,
we introduce four histograms to characterize motion vectors in
each frame. A 14-bin feature vector is then formed by packing
these four histograms sequentially from bin 1 to bin 14.

a) Motion vector energy histogram (Hpo): For any
P-frame P, and its motion vectors, we assume there are
N MB contained in P;. We denote AP; as the aggregation
of all available motion vectors (intercoded MB) in P;, and
the number of motion vectors in AP; is denoted by Np.
Given point A (P4 = (24,y4)) in P; and its motion vector
Vi = (ua,va), then (2) defines the energy of V4

[Vall> = u% + v )

Assuming SP; denotes the aggregation of motion vectors in
AP; with energy smaller than a given threshold Tsyarr, the
number of vectors in S P; is denoted by Ngp.1. We calculate
the mean g and variance § of the motion vectors in SP;. If we
assume L P; denotes the aggregation of motion vectors in AP;
whose distance to g is larger than 77,0, and the number of vec-
tors in LP; is denoted by Njo.. The motion vector energy his-
togram (H ) is constructed using (3).

(N_ va +Nloc)‘

Nsmall
N ’ )

Hme [0] = N

Hy[l] = 3)
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In our system, we set Tpoc = 1.56 and Tspar, = 2 re-
spectively. In the next section, the motion vectors in aggregation
VP, VP, = AP,N(SP; U LP;), is referred to as the valid mo-
tion vectors in P;, i.e., the valid motion vectors are those with
relatively high energy and low variance.

b) Motion vector orientation histogram (Hy,): Clearly,
the orientations of the valid motion vectors V P; in P; will help
us determine the direction of the camera motion. For each mo-
tion vector V4 = (ua,v4)in V P;, we denote D(V4) as its ori-
entation, and then divide all valid motion vectors’ orientations
into four categories: (—45°, 45°), (45°, 135°), (135°, 225°),
(225°, 315°). The motion vector orientation histogram is con-
structed using (4)

1
Va;VAEV P;,—45°490°-k<D (V4 )<45°+90° k .
’
va - Nsmall
E=0,1,2,3. (4

Hpyo(k) =

¢) Motion vector mutual relationship histogram (Hy,,):
Given two motion vectors in V P;, their mutual relationship is
classified with the strategy given in Section III-A2. The his-
togram of the mutual relationships in P; are then calculated and
put into different bins of histogram H,,, with H,,,,[0], Hy,,[1],
H ., [2], and H,,,[3] corresponding to approach, diverging, ro-
tation and parallel, respectively.

d) Motion vector vertical mutual relationship histogram
(Hywr): As described in Section III-A3, if the camera rolls,
the mutual relationships of most motion vectors’ vertical lines
will approach to FOC or diverge from FOE. Hence, given
any motion vector V4 = (ua,v4) in VP, its vertical vector
is defined by V; = (—va,ua), and we can use the strategy
in Section III-A2 to calculate the mutual relationship for
any two vertical vectors V) and V} in V P;. The histogram
constructed in this way is denoted as the vertical mutual rela-
tionship histogram (Hpyy) With Hppor[0], Hiner[1], Hinvr[2]
and Hp,,[3] representing approach, diverging, rotation and
parallel, respectively.

5) Camera Motion Classification: The experimental results
in Fig. 4(e) show that for any type of camera motion, the 14-bin
motion feature vector will have a distinct distribution mode. For
example, when the camera pans, H,,,, [3] will contain the largest
value in H,,;, and the bin with the largest value in H,,, will
indicate the direction of the panning. For zooming operations,
either H,,,[0] or H,,.[1] will have the largest value in H,,,. If
the camera rolls, Hy,,[2] will have the largest value in H,,,, and
either Hy,[0] or H o [1] will have the largest value in Hopy,.
Hence, based on the 14-bin vector, a qualitative camera motion
classification strategy is presented.

Input: 14-bin motion feature vector of current P-frame F;.
Output: The motion category (pan left, pan right, tilt up, tilt
down, zoom in, zoom out, roll_clockwise, roll_anticlock-
wise, still, unknown) P; belongs to, denoted as “FP; «7”.
Procedure:
1) If Hpel0] is larger than threshold Tyyg, P« “un-
known”, otherwise go to step 2.
2) If Ho[1] is larger than threshold Tstrrr, P « “still”,
if not go to step 3.
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3) If Hyel0] + Hye[l] is larger than threshold Ty nvron,
P; « “unknown”, otherwise, go to step 4.

4) Find the largest and second largest values among H,,, and
denote them as H 2™ and H<S respectively. If the ratio
between H;F and H'** is larger than threshold Trer,
P; «— “unknown”, otherwise, the steps below are used for
classification.

o If H®* = H,,[0], then P; « “zoom out”; else if
HRex = H, 1], P; < “zoom in”.

o If HB** = H,,,[2], go to step 6; else if H12* = H,,[3],
go to step 5.

5) Find the maximal value among H, and denote it as
Hpax:

o If HR2* = H.,,[0], P; « “panning left”; else if H2a*
equals Hy,o[1], P; « “tilting down”.

o If HD2* = Hy,0[2], P; + “panning right”; else if HD:ax
equals Hy,,[3], P; < “tilting up”.

6) Find the maximal value among H,,., and denote it as
Hpes:

o If HE2* = H,,,[0], P; « “roll_anticlockwise”; else If

mvr
HP2x = Hpoo[1], P; < “roll_clockwise”; Otherwise,
P; «— “unknown”.

The thresholds TUNK, TSTILL, TREL and TUNION may be
determined by empirical studies; in our system we set them to
0.55, 0.5, 0.8, and 0.8, respectively.

There is little doubt that some conditions might result in an
incorrect classification of the camera motion. Since the camera
motion should be consistent over a certain length of time, the
temporal filter operation is used to eliminate those errors, that
is, any camera motion lasting less than 3 P-frames is absorbed
by preceding or succeeding camera motions. The filtered camera
motion information is then stored as the motion feature of the
shot.

B. Key-Frame Extraction

Key-frame(s) summarize the content of a video shot. Other
research has addressed the problem of key-frame extraction
[30]-[35], and a recent survey can be found in [29] and [55]. A
first attempt in key-frame extraction was to choose the frame
appearing at the beginning of each shot as the key-frame [35].
However, if the shot is dynamic, this strategy will not provide
good results. In order to address this problem, clustering [31]
and low-level features [30] are utilized for key-frame extraction
by clustering all frames into M clusters or calculating accu-
mulated frame differences. Due to the fact that the motions in
video shots imply the content evolution and changes, a motion
activity-based key-frame extraction method has been proposed
in [54], [55], where the MPEG-7 motion intensity in each
shot is used to guide the key-frame selection. Given a user
specified number, the system selects the corresponding number
of key-frames by using the cumulative motion intensity, where
more key-frames are extracted from the high motion frame
regions. However, determining the number of key-frames that
optimally addresses the video content change is a difficulty. On
the other hand, if there is a large camera or object motion in
the shot, the selected key-frames may be blurred, and thus not
suitable for the key-frame.

Key-frames in S;

4000

3000

2000

1000 Camera motion in §;

0 T

i >
Range (a), Zoom In P-frame

LI rgl
— Shots,

Range (b), Still
I >

>

—_—p P-frame

P-frames in 5;

Fig. 5. Camera motion based key-frame selection.

The authors in [34] and [32] avoid these problems by
proposing threshold-free methods for extracting key-frames.
In [34], the temporal behavior of a suitable feature vector
is followed along a sequence of frames, and a key-frame is
extracted at each point on the curve where the magnitude of
its second derivative reaches the local maximum. A similar
approach is presented in [32], where the local minima of motion
is utilized for key-frame extraction. However, two problems
remain: 1) locating the best range to find the local minimum is
also determined by a critical threshold and 2) since the small
motion of the video can cause large variations in the optical
flow, these methods may focus on many activity details but not
the shot content overview.

To extract key-frames using these strategies, the video must
be fully decoded. In the next section, we introduce a threshold-
free method that extracts key-frames in the compressed domain.
Our method is based on the method from literature [32], how-
ever, there are several distinguishing elements: 1) our method is
executed in the compressed domain (only a very limited number
of frames need to be decoded); 2) instead of using optical flow,
we use motion vectors from the MPEG video; and 3) instead of
using the threshold, we use camera motions in the shot to deter-
mine the local maximum or minimum.

1) The Algorithm: Our key-frame extraction algorithm is
executed using the following steps.

1) Given any shot .S;, use the camera motion classification
and temporal motion filter to detect and classify the
camera motions, as shown in Fig. 5.

2) Find the representative frame(s) for each type of motion
(see Fig. 5), and the collection of all representative frames
is taken as the key-frames for S;.

From the start frame to the end frame in shot S;, for any given
P-frames (P;), denote A P; the aggregation of all available mo-
tion vectors in P;, then (5) is used to calculate the motion mag-
nitude of P;

M(p;) =

>

Vi, Vi =(uk.,vk),Vk €AP; AP;CP;

(up +v7) (5

where Vj, denotes the motion vectors in P;. Given P;, its M (F;)
is influenced by two factors.
e The motion information contained in P;. The smaller the
amount of motion, the smaller M (P;) is.
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e The number of intracoded MB in P;. The more intracoded
MB, the smaller M (P;) is.

We then determine the motion magnitude for each P-frame
in .S;. These values will help us select the representative frame
for each type of camera motion in S;. As shown in Fig. 5, from
the start frame of S; to the end frame, we sequentially select one
type of camera motion and execute the following steps.

1) If the camera motion is still (as shown in Fig. 5 range (b)),
find the smallest value of M (P;) among all frames in that
range, and denote it as M ,;,,. The corresponding P-frame
is selected as the representative frame for all frames in this
range.

2) For all other types of camera motion, find the largest value
of M(P;) among all frames in that range [as shown in
Fig. 5 range (a)]. Denote this value as M. We then
use M.« to separate the frames in this range into two
separate and consecutive parts, Py and Pg, as shown in
Fig. 5.

3) For any part of Py and Pg, find the smallest value of
M (P;) among all frames in that part, and use the corre-
sponding P-frame as the representative frame. Denote the
selected representative frame for part Pz, and Pr as Rp,
and Rp, respectively.

4) Some small camera motions may cause very little frame
difference, and two representative frames from this range
might be redundant. Hence, we calculate the visual feature
based frame difference between Rp, and Rp, (using the
(29) introduced in Section V-A). If this value is smaller
than threshold Tierg (Tmerg = 0.35 in our system), only
Rp, is used as the representative frame in the range. Oth-
erwise both Rp, and Rp, are selected as the representa-
tive frames.

5) Iteratively execute steps 1—4 until all camera motions in
S; have been processed successfully, the selected repre-
sentative frames are considered the key-frames for S;.

Since content changes in shots are usually caused by camera
motions, we first use the camera motion classification strategy to
separate the frames in .S; into different ranges, with each range
containing one distinct camera motion. The collection of rep-
resentative frames for all ranges forms the set of key-frames
for the shot. Furthermore, the representative frames are selected
with the local minimal M (P;), so they will have higher defini-
tion and more “fresh” content.

By adopting motion activity in camera motion selection, our
method is also similar to the scheme in [54], [55]. However,
there are two key distinctions: 1) with the method in [54], [55],
it is the authors but not the system that determine the number of
key-frames to be extracted from each shot. Given a video that
contains hundreds of shots, it would be very hard (or even unrea-
sonable) for users to specify the number of key-frames for each
shot. Consequently, the naive users may simply specify a con-
stant key-frame number for all shots. In that case, the proposed
scheme may introduce redundancy in low motion shots and miss
the content change in high motion shots and 2) the method in
[54] and [55] does not consider the local motion minimum but
uses only the accumulative motion activity, as a result, the select
key-frames may be blurred and not clear enough for the content
presentation purpose.
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TABLE 1
CAMERA MOTION CLASSIFICATION RESULT

Camera Frame P-Frame Precision Precision
Motion Numbers Numbers (A) B)
Pan 7780 2022 0.84 0.82
Tilt 2004 501 0.85 0.81
Zoom 2948 761 0.73 0.65
Rotation 890 233 0.65 N/A
Still 4589 1684 0.87 0.84
Average 20011 5201 0.804 0.756

C. Experimental Results

1) Camera Motion Classification Results: Table 1 shows
the results produced by our camera motion detection algorithm.
We evaluated the efficiency of our algorithm (denoted by A)
through an experimental comparison with the transformation
model based method [26] ! (denoted by B). Several standard
MPEG-I streams (about 11 711 frames) were downloaded from
http://www.open-video.org and used as our test bed. One edited
MPEG-I file (about 16 075 frames) containing a large number
of zooming and roll motions was also used as a test dataset. For
better evaluation, the precision defined in (6) is used, where 7.,
ny denote the correctly and falsely detected camera motion in
the P-frames

Te

(et 1p)’ ©

Precision =

Among all 27786 frames in the video, the sequential frame
regions with a distinct camera motion (pan, tilt, zoom, roll, still)
are selected as our ground truth. These frames (about 20011
frames) occupy about 72% of the entire video, and contain about
5201 P frames. Our experiment is executed with these 5201
P-frames. From Table I, we find that, on average, our method
has a precision of approximately 80.4%, about 5% higher than
the transformation model based method [26]. In detecting pure
panning and tilting, both methods have about the same preci-
sion. However, while some abnormal motion vectors caused by
objects motion or other reasons contained or FOE/FOC is not at
the center of the image, the efficiency of this method is rather re-
duced, since those motion vectors cannot be characterized by the
proposed transformation model. However, our method is a sta-
tistical strategy, the abnormal or distorted motion vectors would
not have much influence on unfolding the dominant camera mo-
tion in the frames, thus resulting in a relatively higher precision.
Furthermore, while method B is not able to detect roll motion,
our method produces a precision of 68% for roll detection.

On a PC with PIIT 900-MHz CUP, the average time to process
one P-frame is three times faster than real time and four times
faster than method B.

2) Key-Frame Extraction Results: Since there is no compre-
hensive user study that validates the applicability of key-frames

IRemark: We compare our method with the method in literature [32], since
it also works in compressed domain and utilizes only the motion vector of
P-frame for classification.
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Fig. 6. Key-frame extraction results. (a) Indicates the results of our method. (b) Indicates results with the method in [32]. (c) Represents the sampling of the shot

with 15 frames stepsize, from top left to bottom right;

extracted with different methods, a quantitative comparison be-
tween our method and other strategies is not available. We thus
present some pictorial experimental results. Fig. 6 illustrates a
comparison of our strategy with the literature [32]. (Instead of
using optical flow, we use motion vector to calculate M (t)).
Fig. 6(c) denotes the sampled frames in shot S; with a step-
size of 15 frames. The shot starts with a still camera motion
focusing on the two children playing with the rings. Then, the
camera zooms in to emphasize the rings. Finally, some close up
frames of the ring are shown. With our camera motion classifi-
cation strategy, this shot was separated into three motion ranges:
still, zoom in, irregular (due to the motion of the hands) se-
quentially. Hence, four key-frames [as shown in Fig. 6(a)] are
extracted with our method: the first key-frame is produced by
still, the second and third are produced by zoom in, and the last
one is produced by irregular motion (since the two representa-
tive frames in the irregular motion range are similar, only one is
used.) Using the strategy in [32], nine key-frames are extracted,
as shown in Fig. 6(b), where most of the details of the shot have
also been addressed, even the movement of the hand. Although
our strategy did lose some detail information, the content in-
formation is very well maintained. We believe that key-frames
should be used to get the overview of the video shot content (not
the details), and hence, we believe our method maintains a rel-
atively good balance between overall shot content and details.

IV. HIERARCHICAL VIDEO CONTENT ORGANIZATION

Generally, videos can be represented using a hierarchy of five
levels (video, scene, group, shot, and key-frame),? increasing in
granularity from top to bottom. Much research has addressed

2Remark: In this paper, the video group and scene are defined as in [37]: 1) a
video scene is a collection of semantically related and temporally adjacent shots,
depicting and conveying a high-level concept or story and 2) a video group is an
intermediate entity between the physical shots and semantic scenes; examples
of groups are temporally or spatially related shots.

the problem of constructing semantically richer video entities by
visual feature based shot grouping [35]-[38] or joint semantic
rules and knowledge information for scene detection [39]-[41],
[50]. However, these strategies only solve the problem of se-
mantic units detection and visualization. Since similar scenes
may appear repeatedly in a video, redundant scene information
should be reduced by clustering beyond the scene level. In this
way, a concise video content table can be created for hierar-
chical browsing or summarization. Instead of using the semantic
unit for video content table construction, other strategies uti-
lize the video shot (or key-frames) based clustering strategy [1],
[2], [42] to construct video content hierarchy. However, the con-
structed hierarchy just addresses some low-level feature based
frame differences.

To address this problem, we generate a three level hier-
archy from clustered scenes to groups. By integrating video
key-frames and shots, a five level video content hierarchy
(clustered scene, scene, group, shot, key-frame) is successfully
constructed.

As shown in Fig. 1, we construct the video content hierarchy
in three steps: 1) group detection; 2) scene detection; and 3)
scene clustering. The video shots are first grouped into se-
mantically richer groups. Then, similar neighboring groups are
merged into scenes. Beyond the scene level, a pairwise cluster
scheme is utilized to eliminate repeated scenes in the video,
thus reducing the redundant information. Using the content
structure constructed by this strategy, the hierarchical video
browsing and summarization is accessed directly. In addition,
we have also addressed the problem of the representative unit
selection for groups, scenes, and clustered scene units for
visualizing the generated video content information.

Generally, the quality of most proposed methods is heavily
based on the selection of thresholds [36]-[38], however, the con-
tent and low-level features among different videos vary greatly.
Thus, we use the entropic thresholding technique to select the
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i+3  Shot

Fig. 7.

Shot grouping strategy.

optimal threshold for video group and scene detection; it has
been shown to be highly efficient for the two-class data classifi-
cation problem.

A. Video Group Detection

The shots in one group usually share similar background or
have a high correlation in time series. Therefore, to segment spa-
tially or temporally related video shots into groups, a given shot
is compared with the shots that precede and succeed it (no more
than two shots) to determine the correlation between them, as
shown in Fig. 7. Assume StSim(S;, S;) denotes the similarity
between shot S; and S;, which was given in (35). Our group
detection procedure is stated as below.

Input: Video shots. Output: Video groups
Procedure:

1) Given any shot S;, if CR; is larger than T Ho:

a) If R(7) is larger than T'Hy, claim a new group starts at
shot S;.
b) Otherwise, go to step 1 to process other shots.

2) Otherwise:

a) If both CR; and C'L; are smaller than 1T'H,, claim a
new group starts at shot 5.
b) Otherwise, go to step 1 to process other shots.

3) Iteratively execute step 1 and 2 until all shots are parsed

successfully.

The definitions of CR;, CL;, R(4) are given in (7)—(11)

CL; = Mazx {StSim(S;, S;_1), StSim(S;, S;—2)} (7)
OR; = Maz {StSim(Si, Si11), StSim(Si, Siya)} (8)
CL;11 = Max {StSim(S;+1,5i-1),
StSim(Sit1,Si—2)} )
CR;+1 = Mazx {StSim(Si+1,Si+2),
StSim(Sis1, Siza)}
(CR; + CRiy1)
(CL; + CL;11)"

(10)

R(i) = (11)

Since closed captions and speech information are not avail-
able in our strategy, the visual features such as color and tex-
ture play an essential role in determining the shots in one group.
Hence, to calculate the similarity between S; and S; with (35),
we set Wg, Wiy, W and Wi, equal to 0.5, 0.0, 0.5, and 0.0,
respectively; that is, we use only the visual features for simi-
larity evaluation. Meanwhile, to evaluate the similarity between
key-frames K; and K; with (29), we set W, W equal to 0.7
and 0.3 respectively.

Using the shot grouping strategy above, two kinds of shots are
absorbed into a given group (as shown in Fig. 8): 1) shots related
in temporal series, where similar shots are shown back and forth.
Shots in this group are femporally related and 2) shots similar
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in visual perception, where all shots in the group are similar in
visual features. Shots in this group are spatially related.

1) Group Classification and Representative Shot Selection:
Given any group GG;, we assign it to one of two categories: tem-
porally vs spatially related group. Assuming there are 1" shots
(S;, ¢ = 1,...,T) contained in G, the group classification

strategy is described below.

Input: Video group G;, and shots S; (i = 1,...,T) in
G;. Output: Clusters (Cne, N. = 1,...,U) of shots in
G;.

Procedure:

1) Initially, set variant N. = 1, cluster C'y. has no members.

2) Select the shot (S) in G; with the smallest shot number
as the seed for cluster Cy., and subtract S}, from G;. If
there are no more shots contained in G;, go to step 5.

3) Calculate the similarity between Sy and other shot .S; in
G, If StSim(Sk, S;) is larger than threshold T}, absorb
shot S; in cluster C'n.. Subtract S; from Gj;.

4) Tteratively execute step 3, until there are no more shots
that can be absorbed in current cluster C'y.. Increase N,
by 1 and go to step 2.

5) If N, is larger than 1, we claim G; is a temporally related
group, otherwise, it is a spatially related group.

After the video group has been classified, the representative
shot(s) of each group are selected to represent and visualize the
content information in G;. We denote this procedure as Selec-
tRepShot(). The key-frames of all representative shot(s) are se-
lected as representative frames for the video group.

[SelectRepShot]

The representative shot of group G, is defined as the shot
that represents the most content in GG;. As semantic content is
not available in our system, visual features information is used
to select representative shots. We have merged all shots in G;
into N, clusters, and these clusters help us select the represen-
tative shots. Given group G; with N.. clusters (C;), we denote
by ST(C;) the number of shots contained in cluster C;. The
representative shot of G; is selected as follows.

1) Given N, clusters C; (¢ = 1,..., N.) in G, use steps 2,
3, and 4 to extract one representative shot for each cluster
C;.Inall, N, representative shots will be selected for each
G;.

2) Given any cluster C; with more than two shots, the repre-
sentative shot of C;(Rgs(C;)) is obtained from (12)

ST(C:)

S StSim(S;, Sk); Sic C;
ST(C) ; (85, k)

1<j<ST(C;); S;CC;

R,(C;) =arg maxg,

(12)

3) If there are two shots contained in C;, the shot that has

more key-frames usually has more content information,

and hence is selected as the representative shot for C;. If

all shots in C; have the same key-frame numbers, the shot

with larger time duration is selected as the representative
shot.

If there is only one shot contained in cluster Cj, it is selected as
the representative shot for C;.



ZHU et al.: INSIGHTVIDEO: TOWARDS HIERARCHICAL VIDEO CONTENT ORGANIZATION

-- &
aaan.a;m

Fig. 8.  Examples of detected video groups.

B. Group Merging for Scene Detection

Since our shot grouping strategy places more emphasis on
the details of the scene, one scene may be grouped into several
groups, as shown in Fig. 8. However, groups in the same scene
usually have higher correlation with each other when compared
with other groups in different scenes. Hence, a group merging
method is introduced to merge adjacent groups with higher cor-
relation into one scene.

Input: Video groups (G;, ¢ = 1, ..., M) Output: Video
scenes (SE;,7=1,...,N).
Procedure:

1) Given groups G;, i = 1,..., M, calculate similarities
between all neighboring groups (SG;,i =1,...,M —1)
using (13), where GpSim(G;, G;) denotes the similarity
between group G; and G; (defined in (37))

SG; = GpSim(Gi, Gipr) i=1,...,M—1 (13)

2) Use the automatic threshold detection strategy in Sec-
tion IV-D to find the best group merging threshold (7¢)
for SG;,i=1,...,M — 1, with Tg = ATD(SG;).

3) Adjacent groups with similarity larger than Tz are merged
into a new group. If there are more than two sequentially

4)
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adjacent groups with larger similarity than T, all are
merged into a new group.

The reserved and newly generated groups are formed as a
video scene. Scenes containing only two shots are elim-
inated, since they usually convey less semantic informa-
tion than scenes with more shots. The SelectRepGroup()
strategy is used to select the representative group for each
scene.

[SelectRepGroup]

For any scene SE;, the representative group is the group in
S E; that contains the most content information for SFE;. As
noted previously, we use the low-level features associated with
each group in our strategy.

1)

2)

For any scene SFE; that contains three or more groups
Gj(j = 1,...,N;), the representative group of
SE;(R,(SE;)) is given by (14), as shown at the bottom
of the page. Thatis, R,(SE;) is the group in SE; which
has the largest average similarity with all other groups.

If there are only two groups in SFE;, we use the average
motion information and the time duration of the group
as the measurement. Usually, a group containing more
motion will have more key-frames. Hence, we calculate
the ratio between the sum of key-frame numbers and
shot numbers in each group, and choose the one with the
highest ratio as the representative group. If both groups

N.
LN
R,(SE;) = arg maxg, {ﬁ > GpSim(G;, Gr); Gy, C SE;, G C SEi} : (14)
Y k=1

1<G<N;
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have the same ratio, the group with longer time duration
is selected as the representative group.
3) If there is only one group in S E;, this group is selected as
the representative group of SFE;.
In the sections below, the selected representative group
R,(SE;) is also taken as the centroid of SE;.

C. Video Scene Clustering

Using the results of group merging, video scene information
can be constructed. However, in most situations, many similar
scenes would appear several times in the video. Clustering those
similar scenes into one unit can eliminate redundancy and pro-
duce a more concise video content summary. Since the general
K -meaning cluster algorithm needs to seed the initial cluster
center, and the initial guess of cluster centroids and the order in
which feature vectors are classified can affect the clustering re-
sult, we introduce a seedless pairwise cluster scheme (PCS) for
video scene clustering.

Input: Video scenes (SE;, j =
member groups (G;,i =1,..., NG).
Output: Clustered scene structure (SEy, k= 1,..., N).
Procedure:

1) Given video groups G;, ¢ = 1,..., NG, we first calcu-
late the similarities between any group G; and G; (¢ =
1,...,NG—1;5=1,..., NG — 1). The similarity ma-
trix (SM;;) for all groups is computed using (15)

SM;;(Gy,Gj) = GpSim(G;, G,),
i=1,...,NG—1:j=1,...,NG—1

1,...,M) and all

5)

where GpSim(G;, Gj) denotes the similarity between G;
and G; given by (37). For any scene SEj, it consists of
either one or several groups. Hence, the similarity matrix
of all scenes (SM;;) can be derived from the group simi-
larity matrix (SM;;) with (16)

SM;;(SE;, SE;) = GpSim (R,(SE;), Ry(SE;));

i=1,...,M;j=1,...,M. (16)

2) Find the largest value in matrix SM;;, and merge the cor-
responding scenes into a new scene, and use SelectRep-
Group() to find the representative group (scene centroid)
for a newly generated scene.

3) After we have obtained the desired number of clusters, go
to the end; if not, go to step 4.

4) Based on the group similarity matrix SM;; and the up-
dated centroid of the newly generated scene, update the
scene similarity matrix SM/ ; with (16) directly, then go
to step 2.

In order to determine the end of the scene clustering at step 3,
the number of clusters N needs to be explicitly specified. Our
experimental results have shown that for a great deal of inter-
esting videos, if we have M video scenes, then using a clus-
tering algorithm to reduce the number of scenes by 40% pro-
duces a relatively good result with respect to eliminating the
redundancy and reserving important video scenes. However, a
fixed threshold often loses the adaptive ability of the algorithm.
Hence, to find an optimal number of clusters, we have employed
the cluster validity analysis [49]. The intuitive approach is to

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 4, AUGUST 2005

find cluster numbers that minimize intra-cluster distance while
maximizing the inter-cluster distance. Assume that IV indicates
the number of clusters. Then the optimal cluster would result in
measurement p(N) with the smallest value, where p(N) is de-
fined in (17)

N
1 +
=y = 121%XN{ &ij } an
1 N;
L _ i J o))
Si N, ; (1 GpSim (C’,L ,u])) ;
fij =1- GpSim(ui7uj) (18)

and N; is the number of scenes in cluster j, u; is the centroid of
the cluster j. ¢; is the intra-cluster distance of the cluster 7, &;; is
the inter-cluster distance of clusters 7 and 7, and C\yip, Cryax are
the range of the cluster number we seek for optimal values. We
set these two numbers Cp,ip = [M - 0.5] and Chyax = [M -0.7],
where the operator [z] indicates the maximal integer which is
not larger than z. That is, we seek an optimal cluster number by
clustering 30% to 50% of the original scenes (M). Hence, the
optimal number of cluster N is selected as

N=_ Min_ (o(N))

19
Crmin SN<Crax (19)

D. Automatic Threshold Detection (ATD)

As we have discussed in sections above, thresholds T'H,
TH,, and T are the key elements for group and scene detec-
tion. An entropic threshold technique is applied in this section
to select the optimal thresholds for these three factors. A fast
entropy calculation method is also presented. To illustrate, as-
sume the maximal difference of R(7) in (11) is in the range
[0, M]. In an input MPEG video, assume there are f; shots
whose R(7) has the value i (i € [0, M]). Given a threshold, say
T, the probability for the nongroup-boundary shots P, (i) and
group-boundary shots P,(7) can be defined as (20) and (21),
respectively

(20)
1)

where Zf:o fn gives the total number of shots with ratio R(z)
in the range 0 < R(¢) < T. The entropies for these two classes
are then given by

H,(T)= — Z P, (i) log Py (i);

M

HA(T)=— Y P.(i)log P.(i).
1=T—+1

(22)

The optimal threshold vector T for classification has to satisfy
the following criterion function [52]:

H<Tc> = max {Hgig) "']_MHE(T)} :

(23)
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To find the global maximum of (23), the computational
burden is bounded by O(M?). To reduce the search burden, a
fast search algorithm is proposed which exploits the recursive
iterations for the probability calculations for P,(7), Pe(i)
and the entropies H,(T), H.(T), where the computational
burden is induced by calculating the re-normalized part re-
peatedly. We first define the total number of the pairs in the
nongroup-boundary and group-boundary classes [the re-nor-
malized parts used in (20) and (21)] when the threshold is set
to T

M
> hn

h=T+1

(24)

T)=Y fui P(T)=

The corresponding total number of pairs at global threshold 7"+
1 can be calculated as

T4+1
Po(T +1) th—th+fT+1
= PO( )+ fT+1
M M
Z fo= Z o — frea
h=T+2 h=T+1
=P(T) = fry1- (25)

The recursive iteration property of the two corresponding en-
tropies can then be exploited as denoted by (26).

The recursive iteration is reduced by adding only the
incremental part, and the search burden is reduced to
O(M). We denote the above automatic threshold selec-
tion strategy as ATD. The optimal threshold for Thp is
determined with Thy = ATD(R(:)). The same strategy
can be applied to find the optimal threshold for 7Thy and
Ta, with The = Min(ATD(CR;), ATD(CL;)) and
Te = ATD(SG;).

Figs. 8 and 9 present the experimental results for video group
and scene detection. By utilizing the automatic threshold detec-
tion, most groups and scenes are correctly detected

H,(T+1)

T+1

_ ] fi
= ZPOT—I— ® (T + 1)

<« fi fi  Po(T)
- PoT—i-l ZPO { ()PO(OT+1)}

__R(T) (T) — fron o Jra
Po(T+1) " Po(T+1) B Py(T+1)
_ B P(T)
Po(T+1) BP(T+1)
H.(T+1)
M f f
- _LZT;ZH(T—i-l)l SPUT +1)

P(T) }

fi
P1 T+1 Z P1 {P1(T)P1(T+l)

=T+2
(T fT+1 Jr+
= mr D Er e BT
Py(T) - Py(T)
TR+ BP(Tt ) (26)

E. Scene Detection Experimental Results

Table II presents the experimental results and comparisons
between our scene detection algorithm and other strategies [36],
[37]. The scene detection is executed among two medical videos
and four news programs. As scene is a semantic level concept,
an absolute scene boundary cannot be concretely defined in
common videos (especially in medical videos, where the story
unit boundary is not distinct). However, we believe that in se-
mantic unit detection, it is often worse to fail to segment distinct
boundaries than to oversegment a scene. Hence, to judge the
quality of the detected results, the following rule is applied: the
scene is judged to be correctly detected if and only if all shots in
the current scene belong to the same semantic unit (scene), oth-
erwise the current scene is judged to be falsely detected. Thus,
the scene detection precision (P) in (27) is utilized for perfor-
mance evaluation
# of correctly detected scenes

# of detected scenes

Clearly, without any scene detection (treating each shot as one
scene), the scene detection precision would be 100%, and hence
another compression rate factor (CRF) is defined in (28)

# of detected scene

# of shot in the video

To distinguish our method with others, we denote our method
as A, the other two methods in [36] and [37] as B and C, re-
spectively. From the results in Table II, some observations can
be made: 1) our scene detection algorithm achieves the best pre-
cision among all three methods, about 67% shots are assigned
in the right semantic unit; 2) method C' [36] achieves the highest
compression rate, unfortunately the precision of this method is
also the lowest. On the other hand, this strategy is a threshold
based method, and hence there is no doubt that some scenes are
over segmented or missed; and 3) as a tradeoff with the preci-
sion, the compression ratio of our method is the lowest (8.6%)
(each scene consists of about 11 shots). However, as previously
mentioned, during video browsing or retrieval, it is worse to
fail to segment distinct boundaries than to oversegment a scene.
From this point of view, our method is better than the other two
methods.

P =

27)

CRF = (28)

V. VIDEO SIMILARITY ASSESSMENT

In measuring the similarity between videos, Dimitrova et
al. [44] regarded the average distance of corresponding frames
between two videos as the similarity measure, and took the
temporal order of the frames into account. Lienhart et al. [45]
considered the video similarity from different hierarchies, and
defined the measure by different degrees of aggregation based
on either a set or a sequence representation. Adjeroh et al.
[43] formulated the problem of video sequence-to-sequence
matching as a pattern matching problem and introduced new
“string edit” operations required for the special characteristics
of video sequences. Zhao et al. [46] presented a method to use
feature lines [47] to evaluate the distances between the query
image and video shot. To consider the influencing factors of the
subjectivity of humans, Liu et al. [48] presents a video retrieval
system to simulate the visual judgment of a human.
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Fig. 9. Examples of detected video scenes.

TABLE 1I
VIDEO SCENE DETECTION RESULTS
Movie Method A Method B Method C
Shots

content Scenes P CRF Scenes P CRF Scenes P CRF
Medical 1 265 29 0.69 0.23 23 0.63 0.13 21 0.52 0.098
Medical 2 221 26 0.54 0.32 21 0.57 0.17 17 0.50 0.081

News 1 189 25 0.71 0.31 22 0.76 0.12 16 0.64 0.074

News 2 178 19 0.65 0.26 13 0.68 0.15 14 0.60 0.101

News 3 214 36 0.72 0.27 24 0.63 0.11 17 0.55 0.107

News 4 190 27 0.68 0.31 21 0.59 0.14 14 0.57 0.100
Average 1889 162 0.665 0.086 124 0.643 0.0656 99 0.563 0.052

Unfortunately, all these methods ignore the fact that video
not only consists of shots and frames, it is also constructed with
video groups and scenes that vary in semantic content and visual
features. Hence, the video similarity evaluation should consider
the similarity between groups and scenes.

A. Frame Level Similarity Evaluation

At the frame level, two types of visual features are extracted:
256-bin dimensional H.SV color histogram and 10-bin dimen-
sional tamura coarseness texture. Given frame F;, we denote
its normalized color histogram and texture as H L » Tllﬁi , where
l € ]0,255], k € [0,9]. Then the similarity between F; and F)
is given by (29)

255

FmSim(F;, Fy) = W, - Y Min (H}i,H%J)
1=0

9
+Wr- (1| (Tﬁ_ - le'zj)2 (29)
k=0

B. Shot-Level Similarity Evaluation

At the shot level, four kinds of low-level features were ex-
tracted: average color histogram, camera motion, key-frame in-
formation, and shot length. Given shot S; and S;, while cal-
culating their similarity, both features match degree and match
order are taken into account.

1) Average Color Histogram Matching: An average color
histogram Fsi (in HSV space) defined by (30) is used to
describe the average color information of S;, where M is the
number of frames in S; and H}k is the color histogram of

frame F}, in S;. The average color histogram matching degree,
H(S;,S;), between S; and S; is determined by (31)

A l
k—1; s M,
Hs, :#; 1=0,...,255 (30)
255 . .
H(S:.8;) =Y Min (Fsi,ﬁsj) . 31)
=0

2) Shot-Length Matching: To measure the differences be-
tween the longer or shorter edition of similar shots, the length
of the shot is considered as one feature. Length matching degree
between S; and S; is determined by (32)

0 s) =1 - s~ Esl

Max (LS“LS]-)

where Ls, and Ls; are the frame numbers of the S; and Sj,
respectively.

3) Camera Motion Matching: Since the camera motion in a
shot may imply some semantic information (especially within
specific domains, such as sports videos [56]), a video shot simi-
larity evaluation scheme based on camera motion will help con-
struct a motion based video index structure [51] or retrieval
system. In [53], various motion matching strategies have been
proposed, where the motion activities from the global or small
regions of each frame are used to facilitate content-based re-
trieval. However, these mechanisms only support the retrieval
at the frame level, i.e., the query motions are from each single
frame. To support motion retrieval at the shot (or even higher)
level, we need to explore a new motion matching strategy. In
MPEG-7 [59], the amount of camera motion in each frame has

(32)
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TABLE III
CAMERA MOTION MATCHING DEGREE (R_C AND R_AC DENOTE ROLL_CLOCKWISE AND ROLL_ANTICLOCKWISE, RESPECTIVELY)

) Panning  Panning Tilting Tilting ) .
Camera Motion ) Zoomin  Zoom out R C R_AC Still Irregular
left right up down
Panning left 1 0 0.2 0.2 0.5 0.5 0 0 0 0.1
Panning right 0 1 0.2 0.2 0.5 0.5 0 0 0 0.1
Tilting up 0.2 0.2 1 0 0.5 0.5 0 0 0 0.1
Tilting down 0.2 0.2 0 1 0.5 0.5 0 0 0 0.1
Zoom in 0.5 0.5 0.5 0.5 1 0 0 0 0 0.1
Zoom out 0.5 0.5 0.5 0.5 0 1 0 0 0 0.1
R C 0 0 0 0 0 0 1 0 0.8 0.1
R_AC 0 0 0 0 0 0 0 1 0.8 0.1
Still 0 0 0 0 0 0 0.8 0.8 1 0.1
Irregular 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1
Keyframes...
Still ZOOM_IN Still
>
Shot S;
/II Shot S;
1.0 0 1/’ 0.5 1.0
’/ Keyframes
Still IRREGULAR PAN_RIGHT Still
— > 0 1 2 3 4 5
Shot S; »
Shot S
Fig. 10. Camera motion matching. Fig. 11. Key-frame matching.

also been characterized, however, we believe when compared
with quantitative motion matching, naive users may be more
concerned about qualitative matching (finding similar types of
camera motions); therefore, we adopt a shot-level qualitative
motion matching scheme.

Given shot S; and S}, if M, is the number of camera motion
types in S; from start frame to end frame, we denote the shot
with a fewer number of camera motion types by SM and the

i,5°
other shot is denoted by S . As Fig. 10 illustrates, 5’% =9,
SM = S;. We then w111 use SM as the benchmark to find

camera motion matching in §f‘§

«  For each camera motion in 5/ %, use Table III to find the
closest matching motion in S ]‘/JI

+ If there is a motion in SM that exactly matches the cur-
rent camera motion in S M ; (the matching degree is 1), the
current matching process w111 stop.

o If there is no exact match for the current motion in S%,
the camera motion in SM which has the largest matching
degree is treated as the match

+ If any motion in SM has been exactly matched with the

motion in S’%, any other matching operation will start

from the next motion in S%

* For any motion in SM start from the last exactly matched

i
camera motion in S MJ ;to seek the next match. If there is no
more camera motlon in S%, the algorithm is terminated.

After the matching process, (33) is used to get the uniform
camera motion matching degree. L+ and L~ are the number of
camera motions matched “in order” and “in reverse order”, as

shown in Fig. 10:

Lt
S D(k) E D(k)
l+ay——F———-(1-an) —F——
Min(Ms, ,Msj) A[m(]\[s M. )
M(S;, SJ) = 9

(33)
where D(k) denotes the matching degree between matched
camera motions in S; and S; (according to Table III), ap; de-
notes the weight of the matching order in similarity evaluation,
we set apr = 0.7 in our system.

4) Key-Frame Matching: The key-frame matching degree
between shots S; and S;. is given by (34), where N Ks, is the
key-frame number in shot S; and Min(NKs,, NKs,) is the
minimal key-frame number in S; and S;. ar denotes the weight
of the matching order in similarity evaluation, we set ap =
0.8 in our system. We denote the shot with minimal key-frame
number as S’ZF s and the other shot is denoted as SLF I As shown

in Fig. 11, S’ZF] =5, §ZF] = 5j, F* and F~ are the numbers
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Fig. 12. Group similarity evaluation (the arrows indicate the most similar shots between G; and G2).

of key-frames matched in order and reverse order respectively.
FmSim(k) is the similarity between matched key-frames in \S;
and S; which is given in (29). Then, the key-frame matching
strategy can be expressed as follows.
* For each key-frame in S’ZF ;» the most similar key-frame in
§f ; 1s selected as the matched frame.
e If any key-frame in Sf ; has been matched, it will never
be used to match with another key-frame.
e After all key-frames in S’ZF ; have been matched, (34) is
used to get the matching degree

F(S;, Sj)
Ft F—
> FmSim(k) > FmSim(k)
k=1 k=1
Itap Min(NKs, ,NKs)) —(1-ap)- Min(NKs, ,NKs))
— 5 .

(34)

Based on the four types of shot features and their matching
degrees, the similarity between S; and S; is computed as the
weighted sum of the four matching degrees, as shown in (35),
where Wy, Wg, Wg, Wi, are the user-specified weights for
each of the features

StSim(S;, S;) = Wg - H(S;, S;) + War - M(S;, S5)
C. Group-Level Similarity Evaluation

Based on (35), given a shot S; and a group G;, the similarity
between them is defined with (36)

StGpSim(S;, G;) = Max {StSim(S;,S;)}.
S,eG;

(36)

This implies that the similarity between S; and G is the sim-
ilarity between S; and the most similar shot in G;.

In general, when we compare similarity between two groups
using the human eye, we usually take the group with fewer
shot numbers as the benchmark, and then find whether there are
any shots in the other group similar enough to shots in bench-
mark group. If most shots in the benchmark group were similar
enough to the other group, they are treated as similar, as shown
in Fig. 12. Therefore, given group G; and G, assume CA?” in-
dicates the group with fewer shot numbers, and G; ; denotes
the other group. Suppose NT'(z) denotes the number of shot in

group z, then, the similarity between G; and G ; is given by (37)

1 NT(G; ;)
GpSim(Gi,Gj)=——— Y StGpSim(S;, G ;).
NT(Gi’j) i=1;5,€G;

(37

Hence, the similarity between group G'; and G is the average

similarity between shots in the benchmark group and their most
similar shots in the other group.

D. Scene-Level Similarity Evaluation

A video scene consists of visually similar groups, so given
two scenes S E; and S E;, the similarity between them is derived
from the similarity among the groups they contain. Assume G;
and G; are the representative groups in scenes SF; and SEj,
then the similarity between SE; and SF; is given by (38)
SeSim(SE;, SE;)

= GpSzm(GZ,GJ)
Gi=SelectRepGroup(SE;);Gj=SelectRepGroup(SE;)

That is, the similarity between two scenes is the similarity

between their representative groups.

(38)

E. Video Level Similarity Evaluation

Assuming N S(z) indicates the number of scenes in video .
Then, based on video similarity evaluation at the scene level,
(39), is used to evaluate the distance between two videos V; and
Vi
VdSim(V;,V;) = Maz {SeSim(SEy, SE)}
SE,€eV;,k=1,...,NS(V;);SE €V;,l=1,...,NS(V;)

(39

That is, the distance between V; and V; is the distance be-
tween the most similar scenes among them. Hence, if videos V;
and V; were very similar to each other, the similarity evaluated
from (39) would be large; however, if V; and V; are not similar
to each other, their similarity may also be relatively large, since
they may contain just one similar scene. Hence, (39) is utilized
as the first step for video similarity evaluation to find those rela-
tively similar videos, and then the similarity evaluation strategy
at the scene, group and shot levels is utilized to refine the re-
trieval results.

VI. JOINT CONTENT HIERARCHY FOR
PROGRESSIVE VIDEO ACCESS

With the constructed video content hierarchy and the video
similarity assessment at various levels, our video browsing
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Fig. 13. Hierarchical video content browsing.

and retrieval can be integrated with great benefit to both. The
user can also refine his query by progressively executing the
browsing and retrieval process. For example, the user executes
the retrieval at the video level, and then adopts (39) to find
similar video sequences. Since semantic and low-level features
in the query video sequence may vary, it is difficult to tell which
part the user is mostly interested in. Hence, by hierarchically
browsing the content of the retrieved video sequences, the user
can refine his query by selecting a scene (or a group) as the
query. Iterative execution operations guide the user in finding
the unit he/she is most interested in. In general, the progressive
video content access strategy of InsightVideo is executed as
follows.

1) A hierarchical video browsing interface is first utilized
to help the user gain an overview of the video or video
database, as shown in Fig. 13. During video browsing, the
user may select any video unit as the query to retrieve from
the database. That is, either the key-frame, group, scene,
or even the whole video may be selected as the query.

2) The user can also submit an example that is not in the data-
base as the query. In that case, the video analysis strate-
gies are used to construct its content hierarchy. The hi-
erarchical browsing interface is utilized to help the user
browse the content table of the query example and refine
the query.

3) After the user has selected the query example, the system
will utilize the similarity evaluation scheme that corre-
sponds to the same level as the query instance to find sim-
ilar instances, and present the results to the user, as shown
in Fig. 14. Users can click the “Up” or “Down” buttons to
view other retrieved units.

4) The user may also browse the content hierarchy of the
retrieved video unit by double clicking. Then, Fig. 15
will show the hierarchical content structure of the selected
video unit. The first row shows the summary of the cur-
rent video, and all other rows illustrate the scene informa-
tion in the video (each row represents one scene). The row
with the magnifier icon image on the left indicates that it

/ Insiht¥ideo: Content based vadeo processing and retreval alolx
SN esdneseahy
=10
(2 vikeny
O Terp
[ reamomws
f r f
= I - Play - an2
uery Example Retrieval Result
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Fig. 14. Video retrieval interface.

--- -

Fig. 15. Content hierarchy of the retrieved result.

TABLE 1V
SYSTEM RETRIEVAL PERFORMANCE AT SHOT LEVEL (FROM TOP 20 RESULTS)

Content of the
Shots in the video Recall Precision

video database
Film Abstracts 526 0.62 0.65
News Programs 771 0.85 0.78
Medical Videos 1286 0.81 0.74

Average
2583 0.768 0.726
Performance

was ranked as one of the retrieved results. The user can
click the magnifier icon image to browse more details in
the unit. Then, the user may select any unit in the current
interface as the new query. In this way, the retrieval and
hierarchical browsing capabilities are integrated to benefit
each other in helping the user accessing the video content
and refining his/her query efficiently.
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TABLE V
SYSTEM RETRIEVAL PERFORMANCE AT VIDEO LEVEL

Videos Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Query7 Query8
Medical videos 2 1 3 2 3 1 4 2 1 3 1 4 6 8 1 3
News program 6 7 5 3 7 11 8 3 7 2 4 7 8 13 4 12

Film Abstract 4 3 2 6 1 5 4 1 6 2 3 1 6 4 3 2
Average 427

5) Iteratively execute steps 3 and 4 until the user finds the
satisfactory results or halts the current retrieval operation
at any time.

A. System Performance

Two types of video retrieval results, retrieval at the shot level
and video level, are executed in our system. The experimental
results are shown in Table IV and Table V, respectively. Our
video database consists of 16 videos (about 6 h) from various
sources (five film abstracts, four news, and seven medical
videos). All videos were processed with the techniques de-
scribed above to extract their feature and content table. Then,
InsightVideo was used to hierarchical browse and progressively
retrieve videos from the database.

While executing video retrieval at the shot level, two factors,
precision and recall are defined to evaluate the efficiency of the
system. Precision specifies the ratio of the number of relevant
shots to the total number of returned shots. Recall specifies the
ratio of the number of relevant video sequences found to the
total number of relevant video sequences in the database. While
evaluating the similarity between shots, we set W, Wy, W,
and Wy, equal to 0.5, 0.1, 0.3, and 0.1 respectively. That is, we
put heavy emphasis on the matching of visual features. During
the retrieval process, the relevant shots retrieved in the top 20
are returned as the results. Performance is measured by com-
paring results produced by the assessment strategy on the five
queries for each type of video against human relevance judg-
ment. From Table IV, we can see that our system achieved rather
good performance (76.8% in recall and 72.6% in precision) on
different kinds of video. However, as content and background
of film abstracts are more complex than other videos in terms
of camera motion and content changes, the performance results
of the film abstracts are somewhat worse. A more reliable and
efficient method may be needed for film evaluation.

Another experiment is executed to evaluate the efficiency of
the video similarity evaluation model at the video level. In this
experiment, each of 16 videos in the database is first manually
separated into three nearly equal clips (the entire video database
contains 16 x 3 = 48 clips, no scene overlaps with the manu-
ally segmented boundaries). Then, one clip is randomly selected
from the database as the query, and results are retrieved from the
database. The ranks of the other two clips that are in the same
video as the query are used to evaluate the system performance.

We randomly select 24 retrieval results (with eight for each),
and show them in Table IV. To evaluate the similarity between

the videos, we set Wg, Wi, Wy, and Wi, equal to 0.4, 0.0, 0.5,
and 0.1, respectively. From Table V, we see that our retrieval
strategy achieved relatively good results, the average location
of the retrieved clips that are in the same video as the query
is 4.27 (out of 47 clips, since the query clip is excluded from
the database). However, we find the retrieval results for News
are worse than for the other two types of video. This is because
News programs are usually different from general video data:
in common videos, a similar scene may be shown repetitively
in the video, however, in a news program, most story units are
reported only once, hence, the three clips of the same News
video may have large variety in content and visual features. This
can cause our system to falsely locate the related clips with the
query example.

VII. CONCLUSION

In this paper, we have presented the InsightVideo system,
which constructs the video content hierarchy for efficient video
content access. A progressive video retrieval scheme was pro-
posed which seamlessly integrates hierarchical video browsing
and retrieval. To create the video content table, several video
analysis techniques were introduced: 1) a statistical information
based camera motion classification method; 2) a compressed do-
main key-frame extraction method which is based on detected
camera motions in each shot; and 3) video group and scene de-
tection and scene clustering strategies which organize the video
content hierarchy. Video similarity assessment at different levels
(frame, shot, group, scene, video) was addressed. Based on con-
structed video content hierarchy and the video similarity evalu-
ation strategy, the hierarchical video browsing and retrieval are
seamlessly integrated together.

Unlike most other video retrieval systems that execute video
retrieval at the shot level, the retrieval results of the InsightVideo
are the units likely related to the query example in both low-level
features and semantics. In contrast to other video browsing sys-
tems, we joined the hierarchical video browsing with video re-
trieval. This benefits both processes, and produces progressive
video retrieval system. The features that distinguish our system
from others are the following: 1) the integration of several novel
video processing techniques which improve existing algorithms
in important ways; 2) the construction of a video content hi-
erarchy which allows the hierarchical video content browsing
and summarization to be executed directly; 3) address of the
video similarity at different granularities to support the retrieval
at various content levels; and 4) a progressive retrieval which
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integrates the video browsing and retrieval processes, and al-
lowsusers to shrink and refine queries efficiently.
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