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We consider the classical polling model: queues served in cyclic order with either exhaustive or gated service, each with its own
distinct Poisson arrival stream, service-time distribution, and switchover-time (the server’s travel time from that queue to the next)
distribution. Traditionally, models with zero switchover times (the server travels at infinite speed) and nonzero switchover times have
been considered separately because of technical difficulties reflecting the fact that in the latter case the mean cycle time approaches
zero as the travel speed approaches infinity. We argue that the zero-switchover-times model is the more fundamental model: the
mean waiting times in the nonzero-switchover-times model decompose (reminiscent of vacation models) into a sum of two terms, one
being a simple function of the sum of the mean switchover times, and the other the mean waiting time in a “corresponding” model
obtained from the original by setting the switchover times to zero and moditying the service-time variances. This generalizes a recent
result of S. W. Fuhrmann for the case of constant switchover times, where no variance modification is necessary. The effect of these
studies is to reduce computation and to improve theoretical understanding of polling models.

A polling model is used to represent a system of multi-
ple queues that are attended by a single server that
travels from queue to queue in some prescribed manner.
These models have many important applications (comput-
er networks, telephone switching systems, materials han-
dling, etc.), and in general, they are extremely
complicated. Consequently, there has developed a huge
literature dealing with various versions of these models
and their numerical analysis. In this paper we consider two
of the most basic polling models: queues served in cyclic
order, with exhaustive service or gated service in which the
switchover times are random variables with arbitrarily pre-
scribed distributions. We show that the mean waiting times
in these models enjoy a decomposition into a sum of two
terms: (1) the mean waiting time in a “corresponding”
model in which the switchover times are zero, and (2) a
simple term that relates only to the mean switchover times.
This decomposition, which is reminiscent of a similar re-
sult for vacation models (and, indeed, is closely related to
it), greatly reduces computational difficulties and gives the-
oretical insight that should prove useful in the analysis
(mathematical and numerical) of other polling models.

In Section 1 we define the model and state our decom-
position theorem; in Section 2 we describe the background
and motivation behind the theorem; and in Section 3 we
give the proof.

1. THE MODEL AND THE DECOMPOSITION
THEOREM

A single server serves in cyclic order a sequence of N
infinite-capacity queues. Queue i (i = 1, 2,..., N) re-
ceives Poisson arrivals at rate A; has a service-time distri-
bution with mean service time b; and second moment b{?;
and has a switchover-time (the time required for the server
to travel from queue i to queue i + 1) distribution with
mean r, and variance &7. The arrival times, service times,
and switchover times are all mutually independent, and the
queue discipline is nonbiased (i.e., at each queue, the next
customer selected for service does not depend on that
customer’s service time).

We consider two different polling disciplines: exhaustive
service and gated service. With exhaustive service, the
server switches from queue i to queue i + 1 only when
there are no customers remaining in queue i; and with
gated service, the server closes a “gate” behind the waiting
customers when it arrives at queue i and switches to queue
i + 1 upon completion of service of all the customers in
front of the gate.

Letp,=Ab,p=p, +...tpy,andR=r +...+ry
Let W, be the waiting time (from arrival epoch to start of
service) of a customer in queue i, and let W? be the cor-
responding variable in the “corresponding” O-switchover-
times model; this is defined to be the model that differs
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from the original only in that (1) r = (ry, ..., ry) = 0 (and
thus 8 = (8%, ..., 8%) = 0), where 0 denotes a vector of
zeros, and (2) b@ = (b, ..., b?) is replaced by a vector
of correspondence parameters X® = (x?, ..., x?), as de-
fined in (2) or (4) below. (This paper restricts its attention
to the expected values of the waiting times; consequently,
the service-time and switchover-time moments higher than
second order are irrelevant.) Finally, assume that p < 1
(which guarantees stability) and that the system is in statis-
tical equilibrium. Then we have the following theorem.

Theorem. (1) If the polling discipline is exhaustive service,
then

E[Wi]=E[W?]+§11:’: , (1)

where W? is the waiting time in the “corresponding”
exhaustive-service model with zero switchover times and cor-
respondence parameters

Ai.R =1
-t o
(2) If the polling discipline is gated service, then

R1+p;

W)= W + 5 0 (3)

where W? is the waiting time in the “corresponding” gated-
service model with zero switchover times and correspondence
parameters

AR\
x,.<2>=b,.<2>+s,.2(-1—'_—p) . 4)

The theorem says that in each case, the expected waiting
time in the general-switchover-times model equals the sum
of the expected waiting time in the “corresponding”
0-switchover-times model plus a simple term that depends
only on the server utilization and the sum (but not the
individual values) of the mean switchover times.

In the important special case when the switchover times
are (not necessarily equal) constants (i.e., when 8 = 0),
then, from (2) and (4), x® = b{® and the “corresponding”
O-switchover-times model is the “true” corresponding
0-switchover-times model; that is, the effect of the switch-
over times is truly additive. During the course of our work,
we learned via a preprint of Fuhrmann (1992) that this
special case of the theorem was about to be published
(and, in fact, had been discovered in 1986). Fuhrmann’s
argument uses the concept of “ancestor” and “ancestral
lines” in the same way as used in Fuhrmann and Cooper
(1985) in the analysis of decomposition in the M/G/1
generalized-vacations model. Fuhrmann shows that, for
constant switchover times, the population of customers
present in the system (represented by a vector whose com-
ponents are the numbers of customers present at each
queue) at a polling epoch enjoys a stochastic decomposi-
tion. In contrast, our proof (for the exhaustive-service
case) begins with the vacation decomposition result itself,
in its mean-value form. Our argument, which is completely

different from and independent of Fuhrmann’s, not only
provides some additional insight for the analysis of other
polling models, but it also leads to a surprising generaliza-
tion (for mean values) relative to Fuhrmann’s statement.
That is, the decomposition theorem retains its form even
when the switchover times are random variables.

When the switchover-time variances are nonzero, (2)
suggests that the variance of the switchover time from
queue i — 1 to i can be effectively “absorbed” into the
service-time variance at queue i, as follows: It is well
known that when R > 0, the expected number of custom-
ers served at queue i per cycle is equal to AR/(1 — p) (see,
e.g., Kuehn 1979). Thus, the second term in (2) can be
interpreted as the fraction of the switchover-time variance
apportioned to each customer served during that visit, and
hence the “new” service-time variance is the sum of the
original service-time variance and the apportioned
switchover-time variance. A similar interpretation applies
to (4). This notion of variance absorption is, in fact, closely
related to observations made previously by Ferguson and
Aminetzah (1985) and Sarkar and Zangwill (1991).

2. BACKGROUND AND MOTIVATION

Cooper and Murray (1969) studied a polling model of N = 2
MJ/G/1 queues served in cyclic order. The application that
motivated that paper was the electronic telephone-
switching system; there the switchover times are negligible
in comparison with the service times, so it was natural to
direct attention to the O-switchover-times model. This
work was continued in Cooper (1970), where a general
“vacation” model was defined; the key idea was that, in the
polling model, from the viewpoint of a particular queue,
the time spent serving the other queues can be interpreted
as a vacation. Therefore, the FIFO waiting times “decom-
pose” into a sum of two terms, one of which corresponds
to the same model but without vacations (i.e., the ordinary
M|G/1 queue), with the other term relating only to the
lengths of the vacations. (See, e.g., Fuhrmann and Cooper,
Doshi 1990, and Takagi 1991b.) The existence of decom-
position often simplifies the analysis of vacation models in
general, and polling models in particular. (See, e.g., Takagi
1986 and 1990, whose notation we adopt.) In the present
paper, we show that in certain polling models with general
switchover times, an analogous decomposition (relative to
switchover times) occurs, even though the well-known suf-
ficient conditions for decomposition (as stated, e.g., in
Fuhrmann and Cooper) are not met.

The first natural generalization of the O-switchover-
times model is to let the switchover times be nonnegative
random variables; landmark papers in this direction in-
clude Hashida and Nakamura (1969), Eisenberg (1972),
Hashida (1972), Aminetzah (1975), Humblet (1978),
Ferguson and Aminetzah (1985), and Sarkar and Zangwill
(1989), and also (in discrete time) Konheim and Meister
(1974) and Swartz (1980). With the availability of results



for the general-switchover-times models, the 0-switchover-
times models seemed less important, for two reasons: (1)
in principle, the 0-switchover-times model is subsumed as
a special case of the general-switchover-times model, and
(2) many of the motivating applications, such as com-
puter networks (see, e.g., Takagi 1991a) and transporta-
tion and traffic-control systems (see, e.g., Daganzo 1990)
have switchover times that cannot be neglected. Conse-
quently, only a few papers have been published that
restrict their attention to 0-switchover-times models (we
mention Blanc 1990, Fuhrmann and Moon 1990, and
Takagi 1987, 1989).

Interestingly, the analysis of Cooper and Murray of the
O-switchover-times models is conceptually more difficult
than that of their general-switchover-times counterparts.
This is because in a “natural” formulation of the
0-switchover-times model, the server will execute an infi-
nite number of cycles during any (finite) period through-
out which the system is empty; as a consequence, the mean
cycle time is zero. This difficulty was first observed by
Eisenberg (1972) (who has recently returned to this ques-
tion; see Eisenberg 1994). Takagi (1990) observes that
when explicit formulas exist for the general case, the cor-
responding results for the 0-switchover-times case can be
obtained by taking the limit R — 0 (and (82 + ... + 83)/R
— 0), but, “Otherwise we need separate analysis for sys-
tems with zero switchover times.” (He provides this analy-
sis in Chapter 7 of Takagi 1986, and in more complete
form in Takagi 1987, which includes a more elegant and
economical version of Cooper and Murray, and Cooper.
Significantly, Takagi 1987 is not officially published, al-
though a shorter version, Takagi 1989, is.) Finally, this
question is at the heart of a recent paper by Levy and
Kleinrock (1991). The results of our paper support the
centrality (and ultimate simplicity) of the O-switchover-
times model.

It would be interesting, and perhaps useful, to see
whether other polling models allow a decomposition of the
form E[W;] = E[W?] + f(R). For example, consider
the polling model in which the queues are classified into
two sets: those belonging to set E are served exhaustively,
while those belonging to set G are gated (see Takagi
1989). Then, the results of Srinivasan (1991) imply that,
for constant switchover times, the mean waiting time for
queue I is given by (1) if queue i is in E, and by (3) if
queue i is in G, where E[W}] describes the corresponding
mixed polling model with zero switchover times. We in-
tend also to investigate other variations and extensions
(e.g., the models considered in Baker and Rubin 1987,
Choudhury 1990, Eisenberg 1972, Konheim et al. 1994,
Levy and Sidi 1991, and Takagi 1990) in subsequent work.

3. PROOF

In the interest of brevity, we will only outline our argu-
ments here (for details, see Cooper et al. 1993, which we
refer to hereafter as CNS). We first give the proof for the
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exhaustive-service case, which begins with an expected-
value version of the decomposition theorem for M/G/1
queues with generalized vacations (Fuhrmann and Cooper,
Proposition 3 and Equation (5), p. 1125) for exhaustive
service:

A:b?
2(1 = pi)
where the first term on the right-hand side of (5) is the
Pollaczek-Khintchine formula for the mean waiting time in
an ordinary M/G/1 queue, and ¥, is the forward-recurrence
time of a “vacation” V; from queue i. If we define an
intervisit time /; as the time interval from an instant at
which the server begins its switchover time from queue i
until the instant at which it next completes its switchover
time from queue i — 1, then V; = [; and

_ E[Itz] _ 1 V[Iz]
_MZE[I,-]_EE[I"]JrzE[Ii] ; (6)

where V[ - | denotes a variance. Substituting (6) into (5)
gives

E[W;]= + E[V.], (5)

E[Vi]

E[W.(b(2) R 82)] — L‘(Z)
! Y 2(1 = py)

VII;(b@, R, 8%)]

2E[I;(b® R, 8%)]°

+ %E[ll (b(2)’ R’ 82)]

(7

where, for clarity, we have explicitly denoted the depen-
dencies on b®, R, and 82

We now temporarily restrict our attention to the case of
constant switchover times, i.e., 8 = 0. In CNS, we derive
(beginning with Equations (3.20) and (3.21a, b, ¢) in
Takagi 1990, which are due originally to Ferguson and
Aminetzah, Aminetzah, and Humblet) the following inter-
esting result: For any R > 0,

V[Ii(b(Z), R7 0)] —

(bh @)y .
2EL,bO, R, 0] P ®)

that is, with constant switchover times, the intervisit-time
variance-to-mean ratio is, for every i, independent of the
individual switchover times.

It is well known (see, e.g., Takagi 1990, Equation (3.3))
that for R > 0,

1 - p,
EU(®, R, 831 = 7O R. )
Substitution of (9) and (8) into (7) yields
A b3 R1-p;
(p@ = U A3 ! A(p?
E[Wl(b 7R7 0)] 2(1_pl) 2 1_ +cl(b )'
(10)

Moreover, by letting R — 0 in (10) (see Takagi 1990,
p. 294), we have

X b®
2(1 = pi)
Comparison of (10) and (11) shows that

E(W;(6?, 0, 0)] = +¢;(b?). (11)
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Rl=p;
21-p"°

Elw;(0?, R, 0)] = E[W;(6?, 0, 0)] + (12)
and this proves (1) for the case of constant switchover
times.

To complete the proof of the theorem for exhaustive
service, we now drop the assumption that 8 = 0. In CNS,
we show (using (7) and Equations (28) and (29) in
Ferguson and Aminetzah) that, with x® defined according
to (2),

E(W;® R, 8)] = E[W,;(x?, R, 0)]; (13)

and this, together with (12) (with x® replacing b‘®),
proves (1).

Also, as observed by a referee, the first part of the the-
orem can be proved using results in Sarkar and Zangwill
(1989, 1991). Define a cycle time C; as the time between
two successive instants at which the server switches from,
or leaves, queue i. Then (Takagi 1986),

E[W;(b?, R, 87)]

~ pi VIC}b®@, R, 82
=L7ﬂ{EKxN%R,NM+ Ler )q,

E[Ct (b(Z)’ Ra 82)]

(14)
where (Kuehn)
@ a1 R
Sarkar and Zangwill (1991) state (Equation (2.2.7))
VICI(b?, R, 3%)]
N R
= Ehtj(Pu ,pN)l:/\jb;2)m+6j2«l] > (16)
j=1 1-p

where the functions /; can be obtained from Equations
(4.6)—~(4.12) in Sarkar and Zangwill (1989), and can be
shown to depend only on the server utilizations. Substitut-
ing (15) and (16) into (14) gives

E[Wz’(b(Z)) R, 82)]

= —+ 2 h(py, ..,
2 1-p jgl i(P1 PN)

| Mbﬁ»+aﬁﬂ(1{§;)—ﬂ}. (17)

It follows easily from (17) that both (12) and (13) hold;
and this again proves (1). (Also, Sarkar and Zangwill 1991,
p. 450, Section 4.1, discuss “variance interchange,” which is
related to our (13).)

The argument for the second part of the theorem, for
gated service, is similar. Now define a cycle time C, as the
time between two successive instants at which the server
polls, or arrives at, queue i. Takagi (1990) gives (Equation
(3.27b), which is due originally to Aminetzah)

E[C}Db™, R, 3]
2E[C;(®?, R, 8]

(18)
Using (18) and formulas for E[C*(b®, R, 3%)] given in
Appendix B in Ferguson and Aminetzah (with corrections
in Choudhury and Takagi 1990), we show in CNS that

E[Wi(b(2)a Ra 62)] = (1 + Pz)

Rltp
21-p°
and moreover, with x® defined by (4), (13) holds for gated
service also (again, these could be proved using results in
Sarkar and Zangwill 1989). Comparison of (13) and (19)
(with x*? replacing b®) proves (3).

Note added in proof: In a subsequent paper (Srinivasan
et al. 1995), we have, among other things, extended the
results of the present paper to describe the relationship
between the waiting-time distributions (as opposed to only
the expected values) in the zero- and the nonzero-
switchover-times models; this relationship can be used to
give a different proof of the present paper’s theorem.

E[W;(0%, R, 0)] = E[W;(b?,0,0)] +

(19)
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