SOFTWARE FAULT TOLERANCE USING
HIERARCHICAL N-VERSION PROGRAMMING

Jie Wu

Department of Computer Engineering
Florida Atlantic University
Boca Raton, FL 33431

ABSTRACT

Techniques for software fault tolerance are based on
design diversity and employ different software versions for the
same problem. One of the most commonly used techniques is
N-version programming. In this paper, an extension to N-
version programming is proposed, where a problem is viewed
as a set of objects which can be hierarchically organized into
several levels. N-version programming is then applied to
objects at different levels. The concept of recovery
metaprogram (RMP) is used to provide the needed support and
the Ada language is used to make this scheme more concrete.

INTRODUCTION

Fault tolerance is a feature of computing systems that
serves to assure the continued delivery of required services in
the presence of faults which cause errors within the system.
Techniques for software fault tolerance are based on design
diversity and employ different software versions for the same
program [1]. N-version programming is one of the techniques
used to provide fault tolerance in software. This approach
requires the independent preparation of several versions of a
program. These versions receive identical inputs and each
version produces its separate result. These outputs are
collected by a voter and the results of the majority (assuming
there is one) are assumed to be the correct output.

Software fault tolerance by N-version programming was
proposed by Avizienis [2], who defined replication in three
domains:

[] time replication

L] space replication

(] information replication

The notation xT/yH/zS means x-fold execution time, y-
fold hardware and z-fold software. Three commonly used N-
version programming structures are: 1T/nH/nS, IT/nH/1S,
and 1T/1H/nS. Since the efficiency of N-version programming
is dependent on the independent failures of different versions,
several approaches have been adopted to achieve this objective
such as:

. Independent programming teams [3]
e Different languages [4].

In general, N-version programming can be applied to a
part of the problem or to the whole problem. The size of the
piece selected is important, and might affect the reliability
improvement as well as the costs of developing N different
versions. A simple extension to N-version programming is to
partition a problem into a sequence of subproblems, and N-
version programming is then applied to each subproblem.
This method is suitable for a restricted set of problems which
are sequential in nature.

In this paper we propose another extension to N-version
programming which we call hierarchical N-version

programming. In this method a problem is viewed as a set of
objects which can be hierarchically organized into several
levels. N-version programming is then applied to objects at
different levels. This approach is motivated by the fact that
the reliability of the whole system depends on the reliability of
the subsystems at each level. Reliable subsystems can
enhance the reliability of the whole system. For concreteness,
the Ada language is used to describe the proposed scheme.
Four levels could be considered in the design:

level 1 the whole program

level 2 module (Ada package)
level 3 procedure (Ada procedure)
level 4 data structure

The problem of implementing a support system for N-
version execution is also addressed in this paper and is based
on the concept of recovery metaprogram (RMP) [5], which
consists of a set of primitives supported by the kernel. The
RMP is a recovery software which provides syntax and run
time support to implement fault tolerant mechanisms. The
use of the RMP is to hide the fault tolerance related
implementation details from the programmer. Specific
support mechanisms can be classified as either application
specific or generic. Generic mechanisms such as assigning
each different version to a different processor are supported by
the RMP. The application specific mechanism are defined by
the user, e.g., voting method.

This paper-is organized as follows: in Section 2 the
hierartic N-version programming scheme is proposed and
some implementation issues are addressed. Section 3 focuses
on N-version programming at the subprogram level. Section 4
discusses N-version programming applied to the data
structure level, and we provide conclusions in Section 5.

HIERARCHICAL N-VERSION PROGRAMMING

Our method is to apply N-version programming scheme
to four different design levels:

level 1 - complete system
level 2 - module

level 3 - procedure

level 4 - data structure

Ada [6] is a suitable language to represent this scheme
where the concepts of generic package, package, and task can
be used to support objects at different levels. However Ada
does not provide the user the necessary features to distribute
objects in to processing elements (distribution semantics [7])
and when special fault-tolerant techniques (recovery block [8],
[9], N-version programming [2], and resilient procedures [10],

[11]) are used Ada lacks direct support in the embedded
system. Two possible approaches can be adopted:

CH2998-3/91/0000-0243$01.00019911EEE

RMP
package RMP
proc.1T/1H/nS | proc.1T/nH/1S |proc.1T/nH/nS
T1|T2 | T3[T4 [T1[T2 [T3 [T4 |T1|T2 | T3 T4
where
T1: task user-interface

Receives messages from the user. No entries.
T2: task type proc-caller
Calls the critical procedure and sends data to task voter.
No entries.

T3: task voter
Votes the data from N different procedures and sends an

error message to task reconfiguration. One entry data-
to-be-voted.

T4: task reconfiguration
Isolates the procedures where errors have occurred based

on messages sent from voter. One entry: error message.
Of these four tasks T2 and T3 are essential while T1 and

T4 are optional. The above structure is just a skeleton,
implementation details need further study.

main-program

Proc.two

a

Proc. three

caller

user i
]

!
I i
| i

L

procedure level

main-program level RMP level

Figure 2. A detailed RMP implementation.
The the Ada program structure for N-version
programming applied at the procedure level using 1T/nH/18S is
as follows:

AT MAIN-PROGRAM LEVEL

proc. main-program

packége RMP__inst__one is new
RMP__one (vote-method-one, Aj);
package RMP__inst_ two is new
RMP__one (vote-method-two, Ag);
begiri

RMP._inst__one. 1T/nH/1S

B;

244

RMP__inst_ two. 1T/nH/1S

end main-program

AT PROCEDURE LEVEL

Since the method 1T/nH/1S is used, nothing needs to be
changed.

RMP
generic
version integer;
vote-method: (first, majority, . .
with procedure A
package RMP
procedure 1T/nH/nS is separate;
procedure 1T/nH/1S is separate;
procedure 1T/1H/nS is separate;
end RMP.
separate (RMP);
procedure 1T/nH/1S is
task user-interface;
task body user-interface is separate;
task reconfiguration;
entry error-message
end reconfiguration;
task body reconfiguration is separate;
task voter
entry data__to__be_ voted
end voter;
task body voter is separate;
task type proc-caller;
task body proc-caller;
A.

J;

vote.data
end proc-caller;
proc: array (1..version) of proc-caller;
begin
null;
end

N-VERSION PROGRAMMING AT THE DATA
STRUCTURE LEVEL

As discussed earlier the reliability of a software system
depends on the design of the system at different levels. In this
section, we discuss N-version programming at the data
structure level. Several papers have discussed redundancy in
data structures [14], but they concentrate on robust data
structures. Here we use diversity of data structures, that is,
several different data structures are used to implement the
same algorithm.

Note that Ada allows great flexibility in defining
different types of data structures. It is sometimes difficult to
visualize and use safely these structures in a program. For
example Ada allows the user to do the declarations shown in
Example 1:

type item;
type pointer is access item;
type item is

record
component component-type
pointer-one pointer:
pointer-two pointer;

end record;

This structure has two different meanings. It can be a
binary tree as shown in Figure 3 (a) or it can be a double
linked list as in Figure 3 (b).

Extend Ada [12] using special commands are used for
specific fault tolerance methods (such as N-version
programming). For example, special commands
embedded in the program can specify different voting
methods in N-version programming. General commands
can be used to support distribution semantics and failure
semantics. One possible form to provide task
distribution can be [7}:

pragma (distribution),
which distributes tasks to different processing elements.

Two approaches are usually adopted for task
distribution. One approach requires the application
programmer to consider the hardware configuration very
early in the development process. The other approach
requires an Ada program to be written using the normal
features of the Ada language. After its design, the program is
partitioned for execution on different processing elements.
The problem with this approach is its cost - both the Ada
syntax and the run-time system have to be extended.

(2) Make full use of Ada facilities.

The former method suffers from the cost to expand Ada.
A better method does not require to change Ada and the
special commands can be implemented in a special layer (the
RMP layer). Normally software fault-tolerance techniques do
not need to know details of hardware aspects. For the N-
version programming approach only one general commands
will be used which assigns each version to different processing
elements. It is safe to assume that the run-time system or the
operating system will assign each different version
(implemented as tasks) to different processing elements.

The tatter approach will be used in the paper. One more
issue that needs to be addressed is to what degree should
application programmers know the details of implementation
of the N-version programming. Ancona et al. (12} discuss two
methodologies: application-embedded and application-
transparent. In application-embedded implementation, the
whole application is designed and developed so as to include
special commands for N-version programming. In application
transparent implementation system behavior in case of faults
is specified without modifying actual application software.
Strict application-embedded methods suffer from overhead at
the application level, and programmers need to know all the
details of N-version programming, therefore greatly
complicating the program implementation, readability, and
maintenance. Strict application-transparent is also
impractical, since the run-time system might not be so
intelligent as to identify the critical parts of the program. In
this paper, we adopt a method which falls between the
application-embedded and application-transparent methods.
The basic idea is to make recovery transparent to the
programmer without considerably increasing the overhead on
the RMP or the run-time supporting system.

The Recovery Metaprogram (RMP), acts like a
programmer who monitors and modifies the execution of the

application program. Figure 1 shows a general hierarchical
N-version system using RMP. The implementation of
hierarchical N-version programming using Ada at the
procedure level and at the data structure level is discussed in
the following two sections.

N-VERSION PROGRAMMING AT THE PROCEDURE
LEVEL

N-version programming at the procedure level can be
expressed as: when executing a main program (module,
subprogram) one or more procedures are called by the main
program. These procedures are classified into critical or non-
critical. Non-critical procedures are conventional procedures
(one version for each) while procedures in the critical sections
require different versions.

245

main program (or subprogram)

level 1,2
/ 4 /

/
/

/

S

level 3

L

level 4

. A < T P , 7
RMP’ ;F&H,/ds// yf/ H}n/S (,,.//IT'/?H//n,S/ /
4 S s/ g //

- ! /’

SN
L / / s V

f

procedure

Py P // // yavi /-" /
Y P A ,/ /" / 4 /" /
LS LSS

data structure

Figure 1: An implementation of hierarchical n-version

programming using RMP

The general structure of an Ada program is then as
follows:

proc.main__program proc. Aj proc. By
begin begin begin
body A3 body B}
A; end end
B; . .
. proc.An proc.Bm
begin begin
Ay body Ay body By
end end
end

critical units non-critical units

main-program level procedure level

_To apply N-version programming we try to modify the
application program as little as possible, and all the fault
tolerance related details are put into the RMP. A detailed
system structure is shown in Figure 2.

At the main-program level only the calls to critical
procedures need to be changed. Instead of calling these
procedures directly, the main program calls them via the
RMP. The necessary information to be sent from the main
program to the RMP is listed below:

] The adopted method, such as 1T/nH/1S or 1T/1H/nS.

L] The selected voting method to be used, such as by first or
by majority [10].

°

The name of the called procedure.

At the procedure level the programmer only needs to
provide N different versions (procedures) of the modules which
are critical. Note that when 1T/nH/1S is used, nothing needs
to be changed at the procedure level.

) The RMP is implemented as a generic package and
includes three procedures which correspond to three different
N-version programming structures. Each structure has four
tasks, with each representing a primitive in the RMP.

TREE
\?lpointer-one l

/

y 4 i
/ Ny

\

Figure 3 (a) A TREE data structure

item ! pointerttwo‘

[\

SEQ

pointer-two

-

pointer-one , item

\

\

Figure 3 (b) A SEQ data structure

and .;I‘he acces‘sI t}fbpe deﬁneg helre is also a low-level feature
nd 1t may easily be misused, although TREE and SE
here intend to be higher level structur%s. Q used

We propose below a high level data representation that
can express a large variety of data structures.

data : = {{<item>}, <item_ number>}

item = <homo__item> | <heter item>

homo_}tem = <component> <component_number >

heter__item = <component> | <component>,
<heter__item >

component = {<item>} | <name> : <name type >

item_ number : : = integer ! unlimited

component_ number : : = integer ! unlimited

. <name> in the above representation could be an
1dentlﬁqr and <name__type> could be different data types
defined in the implementation language.

) With this high level data representation, the structure
in Example 2 can be expressed as:

{{component : component,__type}, unlimited}
Example 2: A data structure in Ada is defined as follows:

type grades__on__course is array (1..M) of integer;
type personal _record is

record
my__name string (1. .80);
my__grade grades__on__course;
end record;

typeclass__record is array (1..N) of personal__record;

With the above high level data representation, this data
structure can be expressed as:

{my__name: string (1. .80), {single__grade: integer), M}}, N}

The high level data representation can be thought ofasa
hierarchical structure:

item level 1
component level 2
level 3

component’s component

Between every two adjacent levels there can exist a set of
different structure representations (array, list, tree, heap, .. .,
etc). The number of levels can be derived directly from the
high level structure by counting the number of pairs of { }.

There are two options that can be used to implement the
high level data representation:

(1) In the application software (data structure level) M
different data structures are defined. The selection of
these data structures is transparent to the programmer,
and the RMP is in charge of the selection.

(2) The programmer does not need to supply different kinds

of data structures. Some general-purpose generic data
structures are predefined in the RMP. The RMP is
responsible to instantiate M different data structures
based on the messages (in the high level data
representation) sent to the procedure level.

Option one is similar to the approach in N-version
programming at the procedure level; therefore we focus here
on option two.

The generic structure in Ada can be used to send a high
level data structure from the procedure level to the RMP level.

procedure user generic

list ofmessages needed to

package inst is new
instantiate a data structure

in the RMP
RMP .
(list__of _messages) .
package RMP
end user. end RMP

The list of messages includes:

(1) item number
(2) number of levels
(3) components at each level

In the RMP there are a set of predefined data structures
(Figure 5). The selection of data structure is based on the type
of message passed to the RMP.

select
i \,
generic } ! generic ? |generic ’
SR : |
package tree | package list \ package array
set of op. setofop. | set of op.
end i end

| end |

Figure 4. Selection of data structures.

246

The main difference between the method used here and the
one in the previous section is that here the N different data
structures are ‘automatically’ defined, while in the previous

method N different versions are defined by the programmer.

CONCLUSION

The concept of hierarchical N-version programming has
been proposed. Some implementation structures at the
procedure level and at the data structure level are studied and
compared, Ada examples are used for concreteness. The
concept of RMP is used to implement the proposed scheme but
implementation details need further study.

REFERENCES

{11 Hecht, H. and M. Hecht, “Fault-tolerant software,” in
Fault-tolerant computing theory and techniques, Vol. 2,
D.J. Pradhan, Ed., NJ, Prentice-Hall, Englewood Cliffs,
1986, pp 658-696.

[2] Avizienis, A., “The N-version approach to fault-tolerant
software,” IEEE Trans. on Software Engineering, 11,12,
Dec. 1985, pp 1491-1501.

[3] Knight, J. C., and N. Leveson, “An experimental
evaluation of the assumption of independence in
multiversion programming,” IEEE Trans. on Software
Engineering, 12,1, Jan. 1986, pp 96-109.

[4] Purtilo, J. M. and P. Jalote, “A system for supporting
multi-language versions for software fault tolerance,”
Proc. of FTCS 19,1989, pp 268-274.

(5] Ancona, M., G. Dodero, V. Gianuzzi, A, Clematis, and E.
B. Fernandez, “A system architecture for fault tolerance
in concurrent software,” [EEE Computer, 23, 10, Oct.
1990, pp 23-32,

[6] U.S. Dept. of Defense, Reference manual for the Ada
programming language, MIL-STD 1815A, Feb. 1983.

[7] Knight,J. C.and S. T. Gregory, “On the implementation
and use of Ada on fault-tolerant distributed systems”,
IEEE Trans on Software Engineering, 13, 5, May 1987,

[8] Randell, B., “System structure for software fault
tolerance,” IEEE Trans. on Software Engineering, 1, 6,
June 1975, pp 220-232.

[9] Kim, K. H., “Approaches to mechanization of the
conversation scheme based on monitors,” IEEE Trans.
on Software Engineering, 8, 5, May 1982, 1pp 89-197.

[10] Lin, K. J., “Resilient procedures -- an approach to highly
available systems”, Proc. Intl. Conf. on Computer
Languages, 1986.

[11] Svobodova, L., “Resilient distributed computing,” IEEE
Trans. on Software Engineering, 10, 5, May 1984.

[12] Jha, R., J. M. Kamrad II, and D. T. Cornhill, “*Ada
program partitioning language: a notation for
distributed Ada programmers,” IEEE Trans. on
Software Engineer, 15, 3, March 1989.

[13] Ancona, M., A. Clematis, G. Dodero, E. B. Fernandez,
and V. Gianuzzi, “Using different Language levels for
implementing fault tolerant programs,” Micro
processing and Microprogramming, 20, 1987, pp 33-38.

[14] Taylor, D. J., D. E. Morgan, and J. P. Black,
“Redundancy in data structures: improving software
fault tolerance, IEEE Trans. on Software. Engineering,
6, 6, Nov. 1980, pp 585-594.

247

