Reliable Communication in Cube-Based Multicomputers Using
Safety Vectors

Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

jie@cse.fau.edu

Abstract

Reliable communication in cube-based multicompui-
ers (including disconnected ones) using the safety vec-
tor concept is studied in this paper. In the proposed
approach each node in a cube-based multicomputer of
dimension n is associated with a safety vector of n bi-
nary numbers which is an approrimated measure of the
number and distribution of faults in the neighborhood.
The safety vector of each node in an n-dimensional hy-
percube can be easily calculated through n—1 rounds of
information exchange among neighboring nodes. Op-
timal unicasting between two nodes is guaranteed if the
kth bit of the safety vector of the source node is one,
where k is the Hamming distance between the source
and the destination. An extended deadlock-free uni-
casting using virtual channels is also introduced.

1 Introduction

With its numerous attractive features, the binary
hypercube has been one of the topological structures
for multicomputers. Efficient interprocessor commu-
nication is a key to the performance of a cube-based
multicomputer. Unicasting is a one-to-one communi-
cation between a source and a destination. Unicasting
in fault-free hypercubes and its variations has been
extensively studied ([8], [9]). As the number of pro-
cessors in a cube-based multicomputer increases, the
probability of processors failure also increases. There
has been a number of fault-tolerant unicasting schemes
proposed in previous work ([2], [3], [4], [7]). Most
existing models assume that each node knows either
only the neighbors’ status (local-information-based) or
the status of all the nodes (global-information-based).
The main challenge is to devise a simple and effec-
tive way of representing fault information such that
an optimal (or sub-optimal) and adaptive routing can

1063-6927/96 $5.00 © 1996 IEEE
Proceedings of the 16th ICDCS

166

be designed based on such information. An optimal
routing is also called minimal routing that forwards a
message to the destination through a shortest path.
A routing is adaptive if it can use alternative paths
between the source and the destination, making more
efficient use of network bandwidth and providing re-
silience to failure.

Normally, a global-information-based model can
obtain an optimal or suboptimal result; however, it
requires a complex process to collect global infor-
mation. Such global information is presented in a
tabular format and it is not easy to use. Local-
information-based models use a weaker but a more
reasonable assumption; however, local information
can only be used to achieve local optimization and
most of approaches based on this model are heuris-
tic in nature. Therefore, the length of a routing
path is unpredictable in general and global optimiza-
tion, such as time and traffic in routing, is impos-
sible. Limited-global-information-based routing is a
compromise between local-information- and global-
information-based approaches. A routing algorithm
of this type normally obtains an optimal or subopti-
mal solution and requires a relatively simple process
to collect and maintain fault information in the neigh-
borhood.

Lee and Hayes [4] proposed the concept of safe node
to capture limited global information where nonfaulty
nodes are classified into safe and unsafe. A nonfaulty
node is unsafe if and only if there are at least two
unsafe or faulty neighbors. A routing algorithm was
proposed based on the status of each node and can
route a message via a path of length no larger than
two plus the Hamming distance between the source
and the destination as long as the hypercube is not
fully unsafe. A similar safety node concept has been
used recently to represent convex-type fault blocks in
a 2-dimensional mesh [1]. Wu and Fernandez [13] ex-

tended the Lee and Hayes’ safe node concept by re-
laxing certain conditions and hence increased the size
of the safe nodes set and the degree of fault tolerance.
A nonfaulty node is unsafe if and only if there are two
faulty neighbors or there are at least three unsafe or
faulty neighbors.

The safety level concept [12] is one further step to
extend the safe node concept in an n-cube. In this
model, each node is assigned a safety level k£, 0 < k <
n. A node with a safety level £ = n is called safe and
a faulty node is assigned the lowest level 0. If a node
has a safety level k, there is at least one Hamming
distance path from this node to any node within k
Hamming distance. When a faulty n-cube has fewer
than n faulty nodes, the unicasting algorithm based on
safety level ensures an optimal unicasting (generating
an optimal path) or suboptimal unicasting (generating
a path with a length of Hamming distance between
the source and the destination plus two). However,
the safety level concept has the following two pitfalls:
(1) Suppose the safety level of a node is k, it only
tells that there exists a Hamming distance path to
any node within k& Hamming distance. There is no
information about the existence of Hamming distance
path to nodes that are more than k distance away. (2)
The safety level concept applies to hypercubes with
faulty nodes but it is rather inefficient to cover link
faults.

The safety vector concept proposed in this paper
can effectively include fauity links information and
provide more accurate information about number and
distribution of faults in the system. Basically, each
node in an n-dimensional hypercube is associated with
a binary vector called safety vector which can be eas-
ily calculated through n — 1 rounds of information ex-
change among neighboring nodes. An optimal one-to-
one routing between two nodes is guaranteed if the kth
bit of the safety vector of the source node is one, where
k is the Hamming distance between the source and the
destination. Routing based on safety vector can also
be used in disconnected hypercubes, where nodes in a
hypercube are disjointed (into two or more parts). In
[11], we also show that the safety vector concept can
be extended to other cube-based multicomputers such
as generalized hypercubes.

Deadlock may happen when multiple nodes send
their unicast messages simultaneously. In order to
maintain dynamic adaptivity while ensure deadlock
freeness, we propose two extensions: one uses n + 1
virtual channels and other one adapts from any ex-
isting fully adaptive minimal routing for fault-free n-
cube that uses k(n) virtual channels by adding one
extra virtual channel.

167

We make the following assumptions for the tech-
niques used in this paper: (1) All faults are fail-stop,
i.e., there are no malicious faults. (2) Fault detec-
tion and diagnosis algorithms exist, but we do not re-
quire such an algorithm to be perfect. We do assume
that each node knows exactly the safety status of all
its neighbors and can distinguish a faulty link from a
faulty node.

2 Notation and Preliminaries

The n-dimensional hypercube (or n-cube) @, is a
graph having 2" nodes labeled from 0 to 2" — 1. Two
nodes are joined by an edge if their addresses, as bi-
nary numbers, differ in exactly one bit position. More
specifically, every node a has an address anan—; - - ay
with a; € {0,1}, 1 €< i < n, and q; is called the
ith bit (also called the ith dimension) of the address.
We denote node o’ the neighbor of a along dimension
i. Symbol @ denotes the bitwise exclusive-or opera-
tion on binary addresses of two nodes. For example,
1101 @ 0110 = 1011. a @ € represents setting or re-
setting the 7th bit of node a. For example, 1101 @
€2 = 1001. The distance between two nodes s and d is
equal to the Hamming distance between their binary
addresses, denoted by H(s,d).

A path connecting two nodes s and d is termed opti-
mal pathif its length is equal to the Hamming distance
between these two nodes. Clearly, s @ d has value 1
at H(s,d) bit positions corresponding to H(s,d) dis-
tinct dimensions. These H (s, d) dimensions are called
preferred dimensions and the corresponding nodes are
termed preferred neighbors. The remaining n— H(s, d)
dimensions are called spare dimensions and the corre-
sponding nodes are spare neighbors. An optimal path
can be obtained by using links at each of these H(s, d)
preferred dimensions in some order.

The challenge of designing a routing algorithm in a
faulty hypercube is to find a feasible routing without
sacrificing adaptivity. In the 4-cube shown in Figure
1, suppose that node 1111 is the source and 0010 is
the destination. In the absence of fault, the maxi-
mum adaptivity at source 1111 is H(1111,0010) = 3.
However, node 1011 cannot be used as an intermediate
node in this case. Therefore, the maximum adaptively
at source 1111 with respect to the destination 0010 is
2. That is, the message can be forwarded to either
1110 or 1011. To find maximum adaptivity, we need a
simple but effective way of representing fault distribu-
tion in the neighborhood. The safety vector concept
provides such a mechanism.

arn aLen ©00m [IREY

Figure 1: A 4-cube with four faulty nodes

3 The Safety Vector and its Properties

In the proposed approach, fault information is
captured in a safety vector of n binary numbers,
(a1, a2, ...,a,), associated with each node @ in an n-
cube. The safety vector associated with a node is an
approximated measure of the number and distribu-
tion of faults in the neighborhood, rather than just
the number of faults. The safety degree of node a is
strictly higher than the safety degree of node b if and
only if (a1, as,...,an) > (b1,b2,...,b,) and there exists
a k such that a; > by. Note that strictly higher is a
partial order, not all the pairs of safety vectors can be
ordered. A faulty node is associated with (0,0,...,0)
which corresponds to the lowest degree of safety, while
a node with (1,1,...,1) as its safety vector has the
highest safety degree and is called safe node.
Definition 1: The safety wector of a faulty
node is (0,0,...,0). For a nonfaulty node a, as-

sume that (ai,as,....,a,) is a’s safety vector and
(a(lz), ag‘), ey aff)) is the safety vector of node a’s neigh-

bor along dimension i. If node a is an end node of a
faulty link, the other end node will be registered with a
safety vector of (0,0, ...,0) at node a, and

if node a is an end-node of a faulty link

0
a] =
1 otherwise

and)
0 if > icicn 0521 <n-—k
ar = -
1 otherwise

The safety vector defined in Definition 1 ensures the
following property: if the kth bit of the safety vector
of a node is one, then randomly select k neighbors,
there exists at least one neighbor which has 1 in the
(k — 1)th bit of its safety vector. This property will
be used as a basis of the proposed routing algorithm.

Note that there are different views of the safety sta-
tus of an end node of a faulty link. Two end nodes of

Algorithm global status (G'S)
begin
forall ¢ € Q,
if @ is an end node of a faulty link
then a; =0 else a1 =1;
for k=2steplton
begin
forall a € Qn
collects all the (k — 1)th bits, a{”,,
of neighbors safety vectors
£ cicn ‘1521 <n-k
then mark ax as 0
else mark ax as 1
end
end.

a faulty link cannot reach each other and cannot de-
termine the actual safety vector of the other. There-
fore, each is assumed to have a safety vector (0,0, ..., 0)
by another. However, other neighbors treat these two
nodes as regular nodes by obtaining their actual safety
vectors.

Theorem 1: For any given faulty hypercube, there is
one and only one way to assign safety vectors to nodes
that satisfies the safety vector definition.

Proof Note that the first bit of each safety vector is
predetermined. That is, it is 0 if the corresponding
node is faulty or it is an end node of a faulty link;
otherwise, it is 1. Based on the definition of a safety
vector, the ith bit depends on all the (i — 1)th bits
of neighbors’ safety vectors. Clearly, all the ith bits
can be fixed once all the (¢ — 1)th bits are determined.
Because all the 1st bits are fixed, there is one possible
assignment of all the other bits.]

The proof of Theorem 1 also suggests a simple way
to identify the safety vector of each node in a given
faulty hypercube. The global_status (G.S) algorithm
calculates the safety vector of each node in an n-cube.
Instead of updating all the bits in a safety vector at
each round of information exchange, we only need to
update the ith bit at the (¢ — 1)th round. We assume
that all nonfaulty nodes without adjacent faulty links
have (1,1,1,...,1) and nonfaulty nodes with adjacent
faulty links have (0,1,1,...,1) as their initial safety
vectors. All faulty nodes have (0,0,0,...,0) as their
safety vector. In the absence of faults, the safety vec-
tor associated each node is (1,1,1,..,1), i.e., there is no
need to calculate the safety vector in this case.

Figure 1 also shows the safety vectors obtained by
applying GS to the 4-cube. In this case, 3 rounds
are used. The safety vector (1,1,0,1) associated with

link has a safe neighbor.

Proof: Based on the definition of safety vector, each
nonfaulty node that has a faulty adjacent link is as-
signed a vector (0,1,1,...,1). If we strengthen the
condition by treating such a node faulty, i.e., it has
(0,0,0,...,0) as its safety vector, then the system is
converted to the one with faulty nodes only. Be-
cause each faulty link has only two end nodes and
W 4+ 2V < n, the converted hypercube has fewer
than n faulty nodes. Based on Property 2 of safety
level, each nonfaulty node has at least one safe neigh-
bor. Since & < min{jlaj4+1 = 0} based on Theo-
rem 4, where (a1, as, ...,a,) is the safety vector in the
converted hypercube, when k = n, (a1,as,...,a,) is
clearly (1,1,...,1), i.e., safe. Again, because the safety
vector (0,1,1,..,1) is strictly higher (in terms of de-
gree of safety) than the safety vector (0,0,0, ..., 0), any
safe node in the converted hypercube must be safe in
the original hypercube. 0
Corollary: In an n-dimensional hypercube without
link faull, assume that W is the number of faulty
nodes. If W < n then each nonfaulty node has a safe
netghbor.

4 Routing Using Safety Vectors

The basic idea used in the optimal routing is as
follows: suppose that the source s, with safety vec-
tor (s1,$2,...,54), intends to forward a message to a
node which is # Hamming distance away. The opti-
mality is guaranteed if the kth bit of its safety vec-
tor is 1 (s, = 1) or one of its preferred neighbors’
(along dimension 7) (k — 1)th bit is 1, i.e., 35:21 =1,
i€ {L,2,...,n}. Routing starts by forwarding the mes-
sage to a preferred neighbor where the (k — 1)th bit
of its safety vector is one, and this node in turn for-
wards the message to one of its neighbors which has
Lin the (k — 2)th bit of its safety vector, and so on.
If the optimality condition fails but there exists spare
neighbor which has one in the (k+1)th bit of its safety
vector, the message is first forwarded to this neighbor
and then the optimal routing algorithm is followed. In
this case, the length of the resultant path is Hamming
distance plus two. We call this result suboptimal. The
selection of the optimal and the suboptimal algorithms
can be decided locally at the source node, using the
following information: (1) The Hamming distance of
the source (s) and the destination (d). This can be
done by computing H(s,d) = |s & d|. The preferred
neighbor sets and the spare neighbor sets are obtained
based on s@d. (2) The safety vector of the source node
(51,82, .-, 8n). (3) The safety vectors of the neighbor-

ing nodes of the source node (s(f), sg’), . sgf')) along
dimension .

A navigation vector, N = s@®d is used which is the
relative address between the source and the destina-
tion. This vector can be determined at the source node
and it is passed to a selected neighbor after resetting
or setting the corresponding bit of N. At each inter-
mediate node, a preferred neighbor which is k distance
away from the destination and which has 1 in the kth
bit of its safety vector is selected. Each intermedi-
ate node calculates its preferred and spare neighbors
upon receiving the unicast message with a navigation
vector. A unicasting completes when N in the navi-
gation vector becomes zero; that is, each bit is zero.
Note that, at the source node, if both conditions for
optimal and suboptimal unicasting fail, the proposed
algorithm cannot be applied. This failure state can be
easily detected at the source node.

The routing algorithm consists of two parts: one
for the source node (unicasting.at-source_node) and
the other one for each intermediate node (uni-
casting_at.intermediate.node). We use the follow-
ing notation: source node is denoted as s with
safety vector (si, 89, ..., 5n), neighbors’ safety vectors
(S(i) BORNO!

0 191 »22 >

sage m, and destination d. s

...,sg)) along dimension ¢, routing mes-

i)
¢ is ar
duced to simplify the algorithm. sg’) = 1 except for
the case that nodes s and s* are two end nodes of a
faulty link.

is an extra bit intro-

Algorithm unicasting_at_source_node
begin
N=s®d; H=|sdd|
sy =1v3isl) | = 1AN@G) =1)
then optimal unicasting:
send (m, N @ e') to s', where S =1
else if 3 (s}, = L AN() =0)
then suboptimal_unicasting:
send (m, N @ ¢') to s*, where s(;{)_H =1
else failure
end.

Algorithm unicasting.-at-intermediate_node
begin
{at any intermediate node ¢ with unicast message m,
navigation vector N, and relative distance H}
if N = 0 then stop
else send (m, N @ ¢') to af,
where “Er:r)u =1land N(z) =1
end.

Theorem 6: Suppose that the Hamming distance be-
tween the source and the destination is k for a given
unicasting. When the kth bit of the safety vector of

node 0000 indicates the existence of an optimal path
to any other node, except nodes that are 3 Hamming
distance away.

Theorem 2: Given any faulty n-cube (including dis-
connected one) the safety vector of each node can be
determined through n — 1 rounds of information ez-
change between neighboring nodes.

Theorem 2 can be easily derived from Theorem 1
and the GS algorithm. The following theorem serves
as a basis of the proposed routing algorithm to be
discussed in the next section.

Theorem 3: Assume that (a1,az,...,a,) is the safety
vector associated with node a in any faulty n-cube. If
a; = 1 then there exists at least one Hamming dis-
tance path from node a to any node which is exactly
Hammung distance away from node a.

Proof: We prove this theorem by induction on 7. If
ay = 1 (where ¢ = 1) there is no adjacent faulty link.
Clearly node a can reach any neighboring nodes, faulty
and nonfaulty. Assume that this theorem holds for
i =k, i.e., if ap = 1 there exists at least one Hamming
distance path from node a to any node which is exactly
k Hamming distance away. When ¢t =k + 1, if a; = 1
then 37 ¢icn agj) > n ~ (k + 1), which means that
there are at most k neighbors which have 0 at the kth
bit of their safety vectors. Therefore, among & + 1
preferred neighbors, there is at least one neighbor, say
node b where the kth bit of its safety vector is one.
Based on the induction assumption, there is at least
one Hamming distance path from node & to any node
which is ¥ Hamming distance away a. Because we can
always find such a node b, for any given destination
which is £ + 1 Hamming distance away from node a
there exists at least one Hamming distance path from
node a to this destination. O

To relate the safety level concept proposed earlier
to the safety vector concept, we first given the safety
level definition and its relevant properties.
Definition 2 [12]: The safety level of a faulty node
5 0. For a nonfaulty node a, let (Sy, S1, S, ..., Sp=1),
0 < S; < n, be the nondecreasing safety level sequence
of node a’s n neighboring nodes in an n-cube, such that
S; < Siz1, 0 <i< n—1. The safety level of node a s
defined as: if (So,51,52,..,5n-1) > (0,1,2,..,n —
1)1, then S(a) = n else of (S0,51,89,...,5.1) >
(0,1,2,., k= D)A(Sg =k — 1) then S(a) = k.

The safety level of a nonfaulty node is recursively
defined in terms of its neighbors’ safety levels. In a hy-
percube with faulty links, two end nodes of each faulty
link are treated as faulty nodes. An iterative algo-

1seq1 > seqp if and only if each element in seq; is greater or
equal to the corresponding element in segs.

170

rithm similar to G'S can be used to calculate the safety
level of each node in an n-cube. We assume that all
nonfaulty nodes in a @, have n as their initial safety
levels. It has been proved [12] that for any faulty n-
cube, n — 1 rounds of information exchange are suffi-
cient. Figure 1 also shows the safety level of each node.
Based on the safety level definition, the safety levels of
all the nodes that have two (or more) faulty neighbors
will be changed to 1 after the first round, as in the case
for nodes 0001,0010,0111,1011. That is, the effect of
O-safe status of faulty nodes will first propagate to
their neighbors, then neighbors’ neighbors and so on.
Obviously, the safety vector model provides more in-
formation than the safety level model. In Figure 1, the
safety vector associated with node 0000 is (1,1,0,1).
However, node 0000 has a safety level 2 which means
that node 0000 can reach any node within 2 Hamming
distance away through an optimal path and it is not
guaranteed that there exists an optimal path to any
node which is 3 Hamming distance away (otherwise
the safety level would be at least 3). The safety level
2 (of node 0000) does not tell whether there exists an
optimal path from node 0000 to any node which is 4
Hamming distance away. There are several interesting
properties [12] of safety level summerized as follows:
Property 1: In a faully n-cube with no more than
n—1 faulty nodes, each nonfaulty but unsafe node has
a safe neighbor.

Property 2: If the safely level of a node s k (0 <
k < n), then there is ai least one Hamming distance
path from this node to any node within k Hamming
distance.

The following theorem reveals the relationship be-

tween the safety vector and the safety level. The proof
of this theorem is rather involved and can be found in
[11].
Theorem 4: Assume that k is the safety level of node
a in a foulty n-cube and (ay,as,...,a,) is the safely
vector of node a, then k < min{jlaj4+1 = 0}. If node
a is safe then (a1, as,...,a,) = (1,1,...,1).

To show that the safety vector model is more pow-
erful than the safety level model, we need to show
at least one case such that k& < min{jla;41 = 0}.
Let’s consider a 5-cube with seven faulty nodes: 01101,
01110, 10001, 10100, 10101, 11000, 11001. Based on
the safety level definition, we have 3 as node 00000’s
safety level. Applying the GS algorithm, we have
(1,1,1,1,1) as node 00000’s safety vector, i.e., node
00000 1s safe.

Theorem 5: In an n-dimensional hypercube, assume
that W s the number of faully nodes and V is the
number of faulty links. If W + 2V < n then every
nonfaully node that does not have a adjacent faulty

the source node s 1 or there is a preferred neighbor
of the source node which has 1 at the (k — 1)th bit
of its safety vector, optimality is guaranteed using the
proposed unicasting algorithm. When there is a spare
neighbor of the source node which has I at the (k+1)th
bit of the safely vector, then suboptimality is guaran-
teed.

The proof of this theorem is straightforward based
on Theorem 3 and the proposed routing algorithm.
Corollary: In the worst case, the length of any path
generated from the proposed unicasting algorithm is
no more than n + 1, where n is the dimension of the
hypercube.

Consider the example of Figure 1. Suppose that the
source node is 0001 with safety vector (1,0, 1,0), which
means that the Hamming distance path is guaranteed
to any node which is one or three Hamming distance
away. Hamming distance path may or may not exist to
a node two or four distance away depending on neigh-
bors’ safety vectors. For example, if the destination
node is 1100 then H = |1100 @ 0001| = |1101] = 3.
Therefore, a Hamming distance path exists. The
source node adaptively selects a preferred neighbor
which has one at the 2nd bit of its safety vector. In this
case nodes 0101 and 0000 are both eligible. Assume
node 0000 is selected to which the routing message to-
gether with N = 1101 @ 0001 = 1100 are forwarded.
Node 0000 in turn forwards the message to one of it’s
preferred neighbors which has one at the 1st bit of its
safety vector. Clearly, only node 1000 (the neighbor
along dimension 4) is eligible. Once node 1000 receives
the message together with N = 0100, it sends the
message to the destination node (the neighbor along
3) as indicated in N = 0100. The selected path from
s1 = 0001 to d; = 1101 is shown in Figure 1.

Figure 2 shows the assignment of safety vectors and
levels in a faulty 4-cube with two faulty links 110—
(connecting two end nodes 1100 and 1101) and 00— 0
and one faulty node 1011. Note that the safety level of
node 1110 is only 2 in Figure 2 which means that op-
timality is not guaranteed to forward a message from
1110 to a node which is more than 2 Hamming dis-
tance away. Actually, to forward a message from 1110
to 1001 a detour path (with a length of Hamming dis-
tance plus two) has to be used, because all of its pre-
ferred nodes’ safety levels are lower than 2. Using
the safety vector model, node 1110 has a safety vec-
tor (1,1,1,1) indicating a safe node, so there exists a
Hamming distance path to any nodes in the hyper-
cube. For example, if node 1001 is the destination
node, the source sends the message to one of two pre-
ferred neighbors, 1100 or 1010, that has one at the
2nd bit of its safety vector. Assume node 1010 is se-

171

1@.100,1)
o

[XN}

uw oo

me

Figure 2: The safety vector and level assignment of a
faulty 4-cube with faulty links

lected which in turn forwards the message to one of its
preferred neighbor which has one at the lst bit. The
path constructed is 1110 — 1010 — 1000 — 1001 as
shown in Figure 2.

The proposed algorithm can also be used in discon-
nected hypercubes. If a source tries to send a mes-
sage to a k-distance destination which is disconnected
from the source, the source can detects such an in-
feasible routing based on its safety vector and neigh-
bors’. More specifically, a routing is infeasible if the
kth bit of its safety vector is 0, the (k— 1)th bit of the
safety vectors of all its preferred neighbors is 0, and
the (k + 1)th bit of the safety vectors of all its spare
neighbors is 0. Routing between two connected nodes
in a disconnected hypercube will be treated the same
as in a regular connected hypercube.

There are several ways to keep safety vector infor-
mation up-to-date. (1) Demand-driven: the GS algo-
rithm is applied only when a node detects an inaccu-
rate safety vector (caused by occurrence or recovery of
faults in the neighborhood) during a unicasting. (2).
Periodic: each node exchanges safety information pe-
riodically with its neighbors. (3) State-change-driven:
a node initiates the G.S algorithm whenever it detects
that a neighboring node or link fails (or recovers).

Let’s use the demand-driven approach as an exam-
ple. This approach is the most optimistic and there-
fore the least expensive to implement. To simply our
discussion we consider only node faults and use Fig-
ure 1 as our example. When one or more new faults
occur, the message(s) in transit will not be affected
unless one of the new faults is along the selected path
from a source to a destination. Even when one of the
new faults blocks the selected path at an intermedi-
ate node, say a, the current message at node ¢ may
still use other available preferred neighbors. In case
all the preferred neighbors are blocked by faults but
there exists a safe spare neighbor (such a neighbor al-
ways exists provided the number of fault nodes is less

©.1,0.0)

than n in a system with no link fault, see the Corollary
of Theorem 5). In either case, we have two possible
ways to update safety vectors: (a) update after the
completion of transmitting the current message (at
node a), or (b) update immediately by blocking the
current message at node a. In both case, we might
still need to block other messages (include the one at
node a) in transit. Because each message carries only
the relative address (between the current node and the
destination}, the blocked messages can resume imme-
diately after the completion of G\S as new messages to
be routed.

Consider the example of Figure 1 with two mes-
sages in transit: (s1,d;) = (0001,1100) with message
my and (s,,dz) = (1110,0001) with message mo, as-
sume that a new fault 0000 occurs when ms is at in-
termediate node 1101 and my is just about to start.
Node 0001 detects a new fault at neighbor 0000 and
immediately blocks all the messages m; and m, (ap-
proach (b) is used here). After the update algorithm
GS is completed, both my and ms resume at nodes
0001 and 1101, respectively, as two new messages.

To determine the application range of the proposed
method in terms of degree of fault tolerance, we con-
sider two cases: fully applicable under certain fault
distributions and fully applicable under any fault dis-
tribution. Theorem b and its corollary show the upper
bound of faults to ensure fully applicability under any
fault distribution. For example, when the number of
faulty nodes is less than n in an n-cube with no link
fault, the proposed algorithm is fully applicable under
any fault distribution in an n-cube. This is a very
conservative approach, because certain fault distribu-
tions (which make the proposed method inapplicable)
rarely occur. In other words, the proposed method
still works for most cases (of fault distributions) even
when the number of faults exceeds the upper bound
(as in the 4-cube of Figure 1).

Feasibility checking at the source node determines
whether it is applicable to use the proposed uni-
casting method. Actually, based on the unicast-
ing-at_source_node the checking process for a H dis-
tance routing can be simply expressed as:

{at the source node}

if the (H — 1)th bit of a preferred neighbor’s safety
vector is one or the (H + 1)th bit of a spare
neighbor’s safety vector is one

then it is feasible to use the proposed algorithm

else it is unfeasible.

172

B. Deadlock freeness

Deadlock may happen when multiple nodes send
their unicast messages simultaneously. Intuitively,
deadlock occurs when messages traveling in the system
develop dependency loops among themselves that pre-
vent further movement. To avoid deadlock, we need
to prevent the circular waiting situation. Deadlock
avoidance also depends on the switching mechanism
used. Here we use wormhole routing as an example.
With wormbhole routing, a message is decomposed into
flits which are spread out among several channels as
the message moves. Deadlock can be prevented by
restricting the combination in which the input and
output channels are connected.

Restricting the combination of input and output
channels can be done in two ways: (a) restrict the use
of channels in the existing network, and (b) “expand”
the existing network by dividing each physical channel
into multiple wirtual channels [6] and then restrict the
use of virtual channels in the virtual network. Type
(a) approach corresponds to partially adaptive routing
(where certain physical connections cannot be used).
To maintain the degree of adaptivity, virtual chan-
nels are used which expand the existing network. The
expanded network is then restricted to ensure the ab-
sence of dependence circle among virtual channels and
at the same time all the possible physical channel con-
nections are still fully used. In this way, adaptivity is
preserved. The objective of the proposed routing al-
gorithm is to maximize adaptivity in the presence of
faults; therefore, type (b) approach is used.

Based on the Corollary of Theorem 6,. the path
length for the unicast message cannot be longer than
n+1in the proposed algorithm. Therefore, we can di-
vide each physical channel into n + 1 virtual channels
number from 1 to n + 1 in an n-dimensional hyper-
cube. The n + 1 levels of virtual channels are used in
an increasing order in the n-cube. That is, the level-
1 channels are used for the first hop in the routing.
In general the level-k channels are used for the kth
hop in the routing. The proposed routing is obviously
deadlock-free with this implementation.

Because our dynamic adaptive routing uses a subset
or the whole set (when there is no faults in the neigh-
borhood) of the shortest paths used in a fully adaptive
minimal routing. The following theorem shows that
any results on fully adaptive minimal routing can be
used in our case.

Theorem 7: If a fully adaptive minimal routing al-
gorithm for a fault-free n-cube uses k(n) virtual chan-
nels, our proposed rouling algorithm can be adapted
that to ensure deadlock freenes using k(n) + 1 virtual

channels.

Proof: We number virtual channels used in the given
fully adaptive minimal routing algorithm (called A)
from 1 to k(n). Normally k(n) is a function of n, the
dimension of the hypercube. The extra virtual chan-
nel is numbered k(n) + 1. In the suboptimal routing,
the first step is a detour and we use the level-(k(n)+1)
virtual channels. In all the other steps in both opti-
ma)l and suboptimal routing, the selection of virtual
channels will strictly follow the given fully adaptive
minimal routing algorithm. Note that, at each inter-
mediate node our proposed algorithm uses a subset of
preferred neighbors used in algorithm A for the fault-
free case. Because algorithm A is deadlock-free, there
will be no cycle in the channel dependence graph of
the proposed routing algorithm among level-1 to level-
k(n) virtual channels. Also, level-k(n)+1 channels are
only used in the first step of the suboptimal routing.
That is, only level-(k(n) + 1) virtual channels wait for
channels among level-1 to level-k(n). Therefore, there
will still be no dependency loop among all the channels
from level-1 to level-(k(n) + 1). 0

5 Conclusions

We have proposed an adaptive unicasting algorithm
for cube-based multicomputers. The algorithm uses
limited global information captured by a safety vector
of binary numbers associated with each node. The
safety vector can be calculated through a simple (n —
1)-round of information exchanges among neighboring
nodes in an n-cube. A source node can easily decide to
perform either an optimal or a suboptimal unicasting,
based on its safety vector, its neighbors’ safety vectors,
and the Hamming distance between the source and the
destination,

The proposed routing algorithm can be used to-
gether with other heuristic and/or greedy routing al-
gorithms [10], such as randomized routing and depth-
first routing. Such combination is especially efficient
and useful in a system with many faults which result
in a relatively small percentage of safe nodes in the
system. When the source and neighbors’ safety levels
are too low to use the proposed routing algorithm, a
heuristic or greedy routing algorithm is used until an
intermediate node with a sufficiently high safety sta-
tus is reached; then the proposed routing algorithm is
used to guide the message to the destination through
an optimal path. The use of safety vectors to imple-
ment reliable collective communication operations [5]
will be our future work.

173

References

[1] Y. M. Boura and C. R. Das. Fault-tolerant rout-
ing in mesh networks. Proc. of 1995 International
Conferenc on Parallel Processing. 1995, 1106 - I
109.

M. S. Chen and K. G. Shin. Adaptive fault-
tolerant routing in hypercube multicomputers.
IEEE Trans. on Computers. 39, (12), Dec. 1990,
1406-1416.

Y. Lan. A fault-tolerant routing algorithm in hy-
percubes. Proc. of 1994 International Conference
on Parallel Processing. August 1994, IT1 163 - 111
166.

T.C. Lee and J.P. Hayes. A fault-tolerant commu-
nication scheme for hypercube computers. IEEE
Transactions on Computers. 41, (10), Oct. 1992,
1242-1256.

P. K. McKinley, Y. J. Tasi, and D. F. Robin-
son. Collective communication in wormhole-
routed massively parallel computers. Computer.
28, (12), 1995, 39-50.

L. M. Ni and P. K. McKinley. A survey of routing
techniques in wormhole networks. Computer. 26,
(2), Feb. 1993, 62-76.

C. S. Raghavendra, P. J. Yang, and S. B. Tien.
Free dimensions - an effective approach to achiev-
ing fault tolerance in hypercubes. Proc. of the
29nd International Symposium on Faull-Tolerant
Computing. 1992, 170-177.

Y. Saad and M. H. Schultz. Data communication
in hypercubes. Tech. Rep. YALEU/DCS/RR-
4928, Dept. Comput. Sci., Yale Univ., June 1985.

H. Sullivan, T. Bashkow, and D. Klappholz. A
large scale, homogeneous, fully distributed paral-
lel machine. Proc. of 4th Annual Symposium on
Computer Architecture. March 1977, 105-124.

(2

(5]

[10] L. Valiant. A scheme for fast parallel communica-
tion. SIAM Journal on Computing. 34, (1), May

1982, 350-361.

J. Wu. Reliable communication in cube-based
multicomputers using safety vectors. TR-CSE-
05-24, Dept. of Computer Science and Engineer-
ing, FLorida Atlantic University, April 1995.

(1]

J. Wu. Unicasting in faulty hypercubes using
safety levels. Proc. of the 1995 International Con-
ference on Parallel Processing. 1995, 111 133- 111
136.

J. Wu and E. B. Fernandez. Broadcasting in
faulty hypercubes. Proc. of 11th Symposium on
Reliable Distributed Systems. Oct. 1992, 122-129.

