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We propose the enhanced Fibonacci cube (EFC) structure for parallel systems. It is defined based on the
sequence F, = 2F, , + 2F,_,. We show that the enhanced Fibonacci cube contains the Fibonacci cube
(FC) as a subgraph and maintains virtually all the desirable properties of the Fibonacci cube. In addition,
it is a Hamiltonian graph. We can embed complete binary trees into enhanced Fibonacci cubes with
dilation one and with a relatively small expansion. We also propose a series of enhanced Fibonacci cubes
EFC ("), where k is a series number. Each EFC®) contains an FC of the same order as a subcube.
Moreover, each EFC (%) in the series contains any other cube that precedes it as subcubes and the last one
in the series is a hypercube of the corresponding order. This series of EFC®)s provides us with more
options for selecting cubes with various sizes. Because EFC is a subgraph of the hypercube, it may find
applications in fault-tolerant computing for degraded hypercube computer systems. As an application of
EFC, we show that the parallel prefix sum computation can be efficiently implemented on enhanced
Fibonacci cubes.
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1. INTRODUCTION

Parallel processing seeks to improve the speed with
which a computation can be done by breaking it into
subcomputation and executing them concurrently on
different processors. It is important the way these
processors are connected. Among many interconnection
networks, hypercube [1] (HC) is one of the widely used
networks. The hypercube provides a rich interconnection
structure which permits many other topologies to be
efficiently emulated. Numerous research projects have
been undertaken related to hypercube design aspects and
hypercube applications [2]. These have resulted in several
research prototypes and commercial products [3, 4, 5].

Unfortunately, the number of nodes 2" in an n-
dimensional hypercube grows rapidly as n increases. This
considerably limits the choice of the number of nodes in
the network. For example, when the dimension is
increased by one, the total number of nodes is doubled
and the total number of edges is more than doubled.
Also, the larger the size of a system is, the higher the
probability of some processors or links failure. The
hypercube may not work properly even if only one fault
occurs. Effort has been made to the study of subcubes (or
subgraphs) of hypercube to circumvent the above
drawbacks. These include several incomplete hyper-
cube-like architectures [6,7]. The Fibonacci cube (FC)
[8] is a special subcube of a hypercube based on the
Fibonacci number F, = F,_; + F,_,. It has been shown
that the Fibonacci cube can efficiently simulate many
hypercube algorithms. The Fibonacci cube uses about
one-fifth fewer links than the comparable hypercube and
its size does not increase as fast as the hypercube. A
Fibonacci cube can also be viewed as a hypercube with
faulty nodes. With Fibonacci cubes, more choices of
network size are available.

The enhanced Fibonacci cube proposed in this paper
provides even more choices of network size to the
family of cube-based structures. The enhanced Fibonacci
cube (EFC) is defined based on the sequence F, =
2F, , +2F,_, and it maintains virtually all of the
desirable properties of the Fibonacci cube. What is
more, it has some desirable network topological proper-
ties such as Hamiltonian property that the Fibonacci
cube does not have. We also propose a series of enhanced
Fibonacci cubes EFC(k)s, where k is a series number,
each of which contains an FC of the same order as a
subcube. An EFC® contains other EFCs as subcubes
that precede it in the series. A hypercube of the
corresponding order is the last one in the series. Briefly,
we show that: (1) all algorithms of FCs can be run on
EFC of the same order; (2) all EFCs are Hamiltonian
while more than two-thirds of FCs are not; (3) EFC
can embed the tree network with dilation 1, while no
dilation 1 embedding of a tree into an FC with
comparable expansion is known; and (4) hypercubes
and Fibonacci cubes are special cases of enhanced
Fibonacci cubes EFC®).

There are two major applications of the EFC structure
and these are also the objectives of our study:

e EFC can be used as a special type of incomplete
hypercubes. Normally, a faulty hypercube can be
reconfigured into a smaller sized system, which can be
either a subcube or a subgraph (which is not a cube
structure). EFC provides more options of incomplete
hypercubes to which a faulty hypercube can be
reconfigured. Therefore, EFC may find applications
in fault-tolerant computing for degraded hypercube
computer systems.

e EFC can be used as a new cube-based architecture.
We show that the number of nodes in the series
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EFC®s are all different. Therefore, our study
provides more options for selecting cubes with various
sizes.

The rest of the paper is organized as follows. In
Section 2 we give the definition of EFC, discuss its
properties including Hamiltonian property and present
results of its diameter, node degree, and node and link
complexities of EFC. In Section 3 the embedding of trees
and hypercubes into EFCs are studied. In Section 4 we
define the enhanced Fibonacci tree, and present an
algorithm for parallel prefix sum computation on EFC.
In Section 5 we propose a series of enhanced Fibonacci
cubes EFC(k), where k is the series number, and study the
relationships among EFC(k), EFC, FC and HC. This
paper is concluded in Section 6.

2. PRELIMINARIES

We first define Fibonacci cubes and enhanced Fibonacci
cubes. In the following definitions, | denotes the
concatenation operation, e.g. 10[{0,1} = {100, 101}
and 00||{} = 00. Sometimes we may leave out “||” for
simplicity.

DeriNiTiON 1. [8] Let FC, = (V,, E,) denote the
Fibonacci cube of the order n, then V,=0|V,_uU
10||V,—,, where V3 = {1,0} and ¥, = {01,00,10}. Two
nodes in an FC, are connected by an edge in E, if
and only if their labels differ in exactly one bit
position.

DeriNiTION 2. Let  EFC, = (V,,E,) denote the
enhanced Fibonacci cube of the order n, then
V, = 00]|V,_2 U 10||V,_, U0100|| V,_4 U 0101||V,,_4."
Two nodes in an EFC,, are connected by an edge in E,, if
and only if their labels differ in exactly one bit position.
As initial conditions for recursion, V3= {l1,0},
v, ={01,00,10}, ¥5={001,101,100,000,010} and
Ve = {0001,0101, 0100, 0000,0010, 1010, 1000, 1001}.

Note that in an FC, or EFC,, nodes are ordered in a
Gray code sequence, and n — 2 bits are used in a node
address. Figure 1 shows the EFCs with the order of 3, 4,
5, 6,7 and 8.

THEOREM 1.  An FC, is a subgraph of an EFC,.

Proof. Because in both EFCs and FCs, nodes are
connected if their labels differ in exactly one bit position,
it suffices to show that ¥, C V,, where V,, and V, are
node sets of FC, and EFC,, respectively. Clearly
Vo=V, for n<6. Assume V, C V, for all n<k
(k>6). When n=k, based on the definition of
Vs = 0||Vx_1 U 10||V4_,, we have,

" There are other coding methods which also ensure the derived
Fibonacci cube to be Hamiltonian,; they are: ¥, = 00| V,_, UO01||V,_,U
1000(|¥,_4 U 1001||V,_4 and ¥, = 00||V,_, U 10||V,_, U0100||V,_sU
0110(|V,_4. The selection of this coding is purely for the comparison
with FCs.

Vi =0Vi_ U0V},
=0(0V;_, U10V,_3) U10V;_,
=00V;_, U10V;_, U010(0V;_4 U 10V} _s)
=00V;_, U10V;_, U0100¥;_4 UOI010V}_s
C00V;_, U10V;_, U0100V;_4 UO101V;_,
C 00V, UL0V;_, U0100V,_4 U001V, _,
=V a

Cong, Zheng and Sharma [9] showed that less
than one-third of Fibonacci cubes are Hamiltonian.
The following result shows that all the EFCs are
Hamiltonian.

ProPERTY 2.1. For any n > 6, an EFC, is a Hamilto-
nian graph.

Proof. We prove this theorem by induction on n. We
show that, for each EFC,, n > 6, we can construct a
Hamiltonian cycle of type {000*1,010*1, G}, where G is a
Gray code sequence whose first and last nodes are
adjacent to 010*1 and 000*1, respectively, and 0* is a
sequence of 0. For n =6, 8, there exist Hamiltonian
cycles of the specified type in EFCq and EFCsy.

n = 6,{0001,0101, 0100, 0000, 0010, 1010, 1000, 1001}

n = 8,{000001,010001,010000,010010,010110, 010100,
010101,000101, 100101, 100001, 101001, 101000,
101010, 100010, 100000, 100100, 000100, 000000,
000010,001010,001000,001001}

Assume that this claim holds for all even EFC,,s, such
that n» < k for kK > 3. Based on induction, we have a
Hamiltonian cycle {000*1,010"1,G,} for an EFCy_,
and a Hamiltonian cycle {0*1,G,} for an EFCy_,
(note that the latter expression is a special case of the
former one). Let G™' denote the reversed sequence of
G, we construct a Hamiltonian cycle for EFC,, as
follows:

{00//000*1,0100]|0*1,0100||G5, 0101/|G5",0101||0*1,
00[/010%1,00]|G,, 10/|G; ™, 10[]010*1, 10]|000* 1}

It is easy to verify that an EFC; and an EFCy also have
Hamiltonian cycles of the specified type, then the above
proof also applies to odd EFC,,_;s. O

The Hamiltonian property ensures that the ring
network can be emulated by the enhanced Fibonacci
cube of the same size efficiently.

By the recurrence V, = 00|V,_,U10|V,_,U
0100||V,,_4 U0101||¥,_4, an EFC, can be decomposed
into 00EFC,_,, 10EFC,_,, 0100EFC,_,, 0101EFC,_,
(Figure 2). 00EFC,_, can be further divided into
0000EFC,_4, 0010EFC,_4, 000100EFC,_¢, 000101
EFC,_¢. 10EFC,_, has one-to-one node connections
with 00EFC,_,, i.e. each node is connected by a link to its
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FIGURE 1. The EFC,s for 3 <n < 8.

correspondent node, but it has no connections with
0100EFC,_4 and 0101EFC,_4. 0100EFC,_4 has one-to-
one node connections with both 0000EFC,_, and
0101EFC,_4. The coincidence here is that the way
0000EFC,_4 is connected to 000100EFC,_¢ and

EFCn_;

Un—4
r--00| EFc,,_4 —10| EFC,,_,

00y -

000101EFC,_g¢ is isomorphic to the way 0101 EFC,,_, is
to those two EFC,_¢s. These observations are illustrated
in Figure 2 and concluded in Lemma 1 and Property 2.2.

In Figure 2, each expression associated with a line
indicates the number of links (this will be used in the

EFCn_2

Un-2

=20

Un—6 \

0100 |EFcC,,_¢ —0101|EFC,, _¢

Tpno2 —Upn_yqg — Unp_-
L n—2 n—4 n—6

P R

Un—4
1----0100 EFCp_y4 F==-==-=-~- 0101 EFCp_4

EFCx

FIGURE 2. The decomposition of an EFC,.
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proof of Property 2.2). Lemma 1 is helpful to find the
number of links connecting those four disjoint EFCs of
an EFC,, which is the key to obtain the recursive
expression of the number of links in the EFC,,.

LeEmMMA 1. In an EFC, (see Figure 2), the subgraph
00EFC,_, is isomorphic to another subgraph EFC*
induced by the node set V*=000100V,_sU
000101V,_s U0100V,_, UO101V,_,.

Proof. 1t suffices to show that the connections
between 0000EFC,_, and O000100EFC,_¢ and
000101EFC,_¢ are isomorphic to those connections
between O0101EFC,_, and 000100EFC,_¢ and
000101EFC,_¢. We map node 0000a in 0000EFC,_4 to
010la in O101EFC,_4 (a € V,_4), then 0000a is con-
nected to node 0001006 in 000100EFC,_¢ (b € V,_s,
a = 00b) if and only if 01014 is connected to this node
0001005, thus the connections between 0000EFC,_, and
000100EFC,_¢ are isomorphic to those between
0101EFC,_4 and 000100EFC,_¢. Similarly, it is also true
for these two EFC,_4s relating to 000101 EFC,_g. O

Let e, and v, denote the number of nodes and links in
an EFC,, respectively.

PrOPERTY 2.2. An EFC, can be decomposed into two
EFC,_,s and EFC,_ 4, these four subgraghs are disjoint
and are connected by 1 320, + vy_g + —5] links.

Proof. The first claim is obvious. Let x,, denote the
number of links connecting these four EFCs. By Lemma

l, Xy =02+ Vpa+vpqt (xn—2 — Un—q — Un—6) (see
Figure 2). Then x, = x,_; + v,_» + v,_4 — v,_¢. Based
on the initial conditions, we can solve for x,,:

n is even

_J U 4+Z(n2/2vzk+2
Xn = n—1)/2 .
Up_g + Z vy_1+1 nisodd

By the recursion v, = 2v,_ + 2v,_4 and initial con-
ditions, we have,

(n=2)/2 1
Vog = g(vn +2v,_5 = 5)
=
(n-1)/2
Vok_1 3(vn+2vn 2—3)
=
Then, x, = 1[2v, + v,_4 + I+ 1)"] O

The Hamming distance between two nodes is the
number of bits in which the two node addresses differ. It
is the lower bound of the distance between two nodes. A
Hamming distance path is a path between two nodes with
length equal to the Hamming distance of these two
nodes. The following theorem shows that there exists a
shortest path between any two nodes in an EFC,,.

PRrOPERTY 2.3. There exists a Hamming distance path
for any two nodes in an EFC,,.

Proof. We prove this theorem by induction on n.
Obviously, The theorem is true for n = 3, 4, 5, 6. Suppose

the theorem is true for all n < k (k > 6). By Theorem 3,
an EFC, can be decomposed into four disjoint EFCs (see
Figure 2). There are three cases for any two nodes in the
EFC,.

1. Two nodes are within one of the four subcubes:
00EFC,_,, 10EFC,_,, 0100EFC,_4, 0101 EFC,_4.

2. Two nodes are in 00EFC,_, and 10EFC,_, (or
0100EFC,_,4 and 0101 EFC,_,), respectively.

3. One node is in 00EFC,_, or 10EFC,_,, the other is in
0100EFC,_,4 or 0101EFC,_4.

Note that the second case becomes the first case after
one hop. The theorem is true for the first two cases by the
induction assumption. The third case can be further
divided into subcases. Let «—— denote one hop between
two EFC;s which have one-to-one node connections,
<= a Hamming distance path, and ps (s is a node in
EFC;) a node in pEFC;, where p and s represent binary
strings. The Hamming distance path between two nodes
in Case 3 can be described as below.

3.1 One node is in 0010EFC,_4 (or 0000EFC,_,), the
other in 0101 EFC,_4 (or 0100EFC,_4).
— 0010s<—0000s——0100s—01015<=0101d.
3.2 One node is in 000100EFC,_g, the other is in
0100EFC,_4 or 0101EFC,_,4.
— 0001005—0000005+——0100005<=>01004d.
— 000100s—010100s<=-01014d.
3.3 One node is in 000101EFC,_¢, the other is in
0100EFC,_4 or 0101EFC,_,.
—000101105s<—000100105s—01010010s
«<—=01014d.
- 00010100s«——010101005s<=-01014d.
—000101015+—010101015<=01014d.
- 0001015<=0101d—0100d.
3.4 Onenodeisin 10EFC,_,, the other in 0100EFC,,_,4
(or 0101EFC,_4).
— 105——00s<=-0100d (or 01014). |

The distance between two nodes is defined as the
length (in terms of the number of links) of the shortest
path between them. The diameter is the maximum
distance between any two nodes in a network.

PrOPERTY 2.4. The diameter of an EFC,, is n — 2.

Proof. A nodeofan EFC, hasn — 2 bits, by Property
2.3, the maximum distance between any two nodes is
n — 2. Because an EFC, contains an FC, whose diameter
is n — 2, the theorem follows. O

The node degree is the number of connections at a
node. It reflects the number of I/O ports required per
node, and hence the cost of a node.

PROPERTY 2.5. The node degree of a node in an EFC,
is between [§] and n — 2.

Proof. The maximum node degree n — 2 is because
n — 2 bits are used in an EFC, and EFC, has a subgraph
of FC, which has the maximum node degree n — 2.

THE COMPUTER JOURNAL,

VoLr. 39, No. 4, 1996




ENHANCED FiBoNAccl CUBEs 335

Let 7, denote the minimum node degree in an EFC,.
We show 7, = 7,_4 + 1, which implies 7, = [4] (n # 5)
based on initial conditions 74 = 1, 7 = 2, 77 = 2, 79 = 3.
We prove 7, = 7,,_4 + | for n = 4k (k > 2), the proof for
n=4k+1,n=4k + 2, and n = 4k + 3 is similar.

We claim that (0101)*10 in an EFCy is of the
lowest degree. It is true for k = 2. Suppose the claim is
true for all k < i (l > 2) As V4,~ = 00V4,‘_2 (@] 10V4i_2U
0100V4;_4 U 0101V;_4, each node in the four EFCy;_,s
and EFC,;_4s has increased its node degree by at least
one. The (0101)*10 in the EFCy4;_4 concatenated with
0101 has increased its node degree by exactly one, since it
is added to only one new link connecting to its
corresponding node in the EFC,;_, prefixed with 0100.
Then the node (0101)(0101)*10 in the EFC,; has the
lowest degree by the induction and 74;_4 < 74;_,, thus
Tak = Tap—4 + 1. a

From Property 2.2, we have the link recursion in the
following theorem.

ProPERTY 2.6. For any EFC, withn > 6,
® v, =2v, 5+ 2u,_4, where v3 =2, v4 =3, v5s =5 and

’U6 = 8.

en =26, 3+ 2e, 4+ 120, + v,_4 + HE,
e3-1e4 2e5_5(1nde6 10.

where

By generating functionology [10], we can obtain the
explicit formulas for v, and e,. However, we verify these
formulas by induction on #.

ProPERTY 2.7 Forn > 2,
=381+ V3 + 3£ - V3.
o vy =5(1+V3)"+ +30 —\/5)"‘

® Uy,

o ey =31 43) - 5461 - 3
+4\/—( +\/_)n+%( —\/5)"}1—%.
o e =-BR(1+ V) + 3L (1- V3

%@(1 + \/§)”n+5;—§/§(1 —V3)"n.

Proof. We prove the formula for v,, by induction on
n, the proof for other formulas is similar.

For n=2, 3, v, =3, vg¢ =8, the formula is correct.
Assume the formula is true for n < k (k > 2), then,

Vok =20 + 2Up_4

3+\/_

=2| +V3) ‘+3_12‘/§(1—\/§)"‘l
+3J;2‘/_ 1+v3)k? 12‘6(1—\/3)"‘2]
_234;2f 1+ V3)2(2+V3)
+23“/§(1—\/§)"—2(z—\/§)
3J;2f( 1+ V3)*+ \/_1—\/_)" O

3. EMBEDDING OTHER NETWORKS

In this section we study embedding of rings, hypercubes
and trees into enhanced Fibonacci cubes. Once these
networks can be embedded into EFCs, they can be
emulated on the enhanced Fibonacci cubes. The
efficiency of the emulation depends on the quality of
embedding. There are several embedding criteria that are
used to evaluate an embedding.

DerINITION 3. An embedding of a guest graph G into
a host graph H is a mapping f of the nodes of G to
the nodes of H together with a mapping P, which
assigns each edge (u,v) of G to a path between f(u) and

f(v)in H.

The dilation is defined as the maximum distance
between the images of the adjacent nodes in G. The
congestion is the maximum number of edges in G mapped
to those paths including a same edge in H. The load is the
maximum number of nodes of G that are mapped to a
single node of H. And the expansion is the ratio of the
number of nodes of G to that of H.

These measures are related to communication delay,
traffic density, parallelism and processor utilization,
respectively. They bound the speed and efficiency with
which a host network can simulate the guest network.
Therefore, an embedding is good when these measures
are all small. By Property 2.1 the following theorem is
apparent.

THEOREM 2. An EFC, (n>6) can embed a ring
network of the same size with dilation, congestion, load
and expansion all one.

Proof. This is a result from Property 2.1. The
embedding can be constructed based on the proof to
Property 2.1. O

Let HC, denote an n-dimensional hypercube.

THEOREM 3. An EFC, is a subgraph of HC,_,, and an
HC, is a subgraph of EFC,,_,.

Proof. The first statement is true because the node set
of the EFC, which contains the codes of n — 2 bits is a
subset of that of HC,_, and the link conditions are same
for these two cubes. The second one follows from the fact
that HC, is a subgraph of FC,,,; which is a subgraph of
EFCyyy. (]

From the embedding point of view, Theorem 3 can be
restated as:

e EFC, can be embedded into HC, -2 w1th dilation 1,
congestion 1, load 1 and expansion =—

e HC, can be embedded into HC2,,+1 ‘With dilation 1,
congestion 1, load 1 and expansion %

where v, and v,,,, are the numbers of nodes of EFC, and

EFC,, ., respectively.

A conclusion from the above theorem is that the
hypercube and the enhanced Fibonacci cube can emulate
each other.
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FIGURE 3. The embedding of 15- and 31-node trees in an EFCy and an EFC), respectively.

THEOREM 4. For n >4, the (2" — 1)-node complete
binary tree can be embedded into EFC,, with dilation 1,
congestion 1, load 1 and expansion 55, where v,, is the
number of nodes of EFC,,, i.e. the (2" — 1)-node tree is a
subgraph of EFC,,.

Proof. We prove this theorem by induction on n. In
addition we show that the (2" — 1)-node tree can be
embedded in EFC,, in two ways, the embedded tree can
be rooted at 0% or at 0*"%10° in EFC,,, where ok
represents a sequence of Os with length £ (k > 0).

For n = 4, 5, the claim is true. Let T'(h, 1) and T'(h, 2)
represent the embedded trees with height 4 in an EFC,;,
where root nodes are 0%~2 and 0%7810°, respectively.
The two-way embedding of 15-node and 31-node trees
into an EFCg and an EFC,, are shown in Figure 3, where
some links are omitted for simplicity.

Assume that for all n» < k (k > 4) the claim is true.
Then (2"_1 — 1)-node and (2"‘2 — 1)-node trees can be
embedded in an EFCy,_, and an EFC,;_,, respectively,
in two ways. Figure 4 shows the embedding of a (2¥ — 1)-
node tree into an EFC,, with the specified root
locations. O

The embedding of trees into odd EFC,,_;s can be
performed in a similar way. The key is to find the basis
for embedding which determines the expansion.

4. THE ENHANCED FIBONACCI TREE AND
ITS APPLICATIONS

In hypercubes many applications such as broadcasting,
prefix sum computing and load balancing can be solved
with the aid of binomial trees (special spanning trees of
hypercube). Fibonacci trees which are corresponding to
binomial trees have been used to compute prefix sums on
Fibonacci cubes [11]. Similarly, we have enhanced
Fibonacci trees which can be used to solve some problems
like broadcasting and prefix sum computing on enhanced
Fibonacci cubes.

Recall that a binomial tree of order n (BT,) is formed
by two binomial trees BT,_;s, where the root of one
BT, _, becomes the root of BT,, and the root of the other
BT,_, becomes the child of the root of the former BT,,_,.
A Fibonacci tree of order n (FT,) is a graph that consists
of an FT,_; and an FT,_,, where the root of FT,_,
becomes a child of the root of FT,_;. As the initial
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FIGURE 4. The embedding of a (2* — 1)-node tree in an EFCy.

conditions, FT, is an empty graph and FT, is a
single node. Similarly, we can define an enhanced FT
as below.

DEFINITION 4. An enhanced Fibonacci tree of order n,
denoted by EFT,, comprises two EFT, ,s and two
EFT,_4s, where the root of 00EFT,_, is selected as the
root of EFT,, the roots of 0100EFT,_, and 10EFT,_,
become the children of the root of 00EFT,_,, and the
root of 0101EFT,_, becomes the child of the root of
0100EFT,_4. As the basis, EFT,, EFT,, EFTs and EFT,
are the same as those FT of the same order, respectively.

Figure 5 shows the examples of BTs, FTs and EFTs.

As with EFCs, we first analyse topological properties
of the enhanced Fibonacci tree. The proofs to some
properties can be found in [12].

ProOPERTY 4.1. An EFT, is a spanning tree of EFC,,.

PROPERTY 4.2. An EFT, can be decomposed into two
EFT,_,s and two EFT,_,s, the four subtrees are disjoint.

The span of a tree is the maximum node degree of the
tree. The height of a tree is the distance between the root
and the furthermost leaf. The heights of a BT, and an
FT, are n and [%5%] [11] respectively.

PRrROPERTY 4.3.  The span of an EFT, is n — 2.
PROPERTY 4.4.  The height of an EFT, is ["52].

As mentioned earlier, an EFC, is a su?graph of a
n—

——
(n — 2)-dimensional hypercube. Node 00---0 of EFC,
has n — 2 neighbours along n — 2 dimensions. In the EFT
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FIGURE 5. Binomial, Fibonacci and enhanced Fibonacci trees.

of order n, these n — 2 neighbours are children of the root

n-2
00---0 and are ordered such that the ith child (the
leftmost child is the first child) is the neighbour on the ith
dimension. For example, in an EFT; of Figure 5, the Sth
child 010000 of the root is its neighbour on the Sth
dimension.

PrOPERTY 4.5. In an EFT,, the children of the root are
dimension ordered, i.e. the ith child of the root is the
neighbour of the root on the ith dimension.

The pre-order of a tree is an order such that the root is
the first, then the nodes from the first subtree of the root
in pre-order, then the nodes from the second subtree in
pre-order, and so on.

PROPERTY 4.6. The pre-order of an EFT, is the same
as the order by the binary values of node addresses.

The EFTs have the same relation with BTs and FTs as
EFCs with HCs and FCs.

ProPerTY 4.7.  An EFT, is a supergraph of an FT, and
an EFT, is a subgraph of an BT,_,.

There is an interesting property regarding the relations
between the addresses of parents and children in the
EFT,. Let a be an address of a node, a(i) be the value of
ith bit in a, and &' be the address such that ¢ and o’ differ
only in bit 7, i.e. @’ denotes the neighbour of node a along
dimension i.

ProOPERTY 4.8. Let a € V(EFC,), and i be the right-
most bit of a that has value 1, then:

o The parent of node a is a'.
o The children of node a form the set Children_set, where

Children_set = {d' | d € V(EFC,) for 0 <j < i}

o d'(i) =0anda(i) = 1.

For example, in an EFTg (Figure 5), the rightmost bit
of 010100 that has value 1 is bit 3, then the parent is
010000 and the children are 010110 and 010101. Based
on this property, each node of an EFC,, can easily find its
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FIGURE 6. Ascending: dimensions 1, 2, 3.

parent and children in the EFT, without information
exchange with other processors.

DEerFINITION 5. Let + denote an associative binary
operator on a semigroup (G, +). Let S : ag,ay,...,a,_,
denote a sequence of n elements from G. The ith prefix
sum P(i) of S, where 0 < i < n— 1, is defined to be the
sum ag + a; + - - - + a;_,. The parallel prefix sum problem
is to compute all n prefix sums in parallel.

Assume that each node in an EFT, is labelled
according to the pre-order of the EFT,, and initially
node i has data element g¢;, 0 < i < v, — 1, where v, is the
number of nodes of the EFC,,.

After prefix sum computation,
P(i) = };(') a; is stored in node i.

In the algorithm PrefixSum (in the Appendix), a stack
is used in each node i to store the local prefix sums of
subtrees under the node i (including node i). Initially, the
stack contains only data element a;. There are ascending
and descending phases. In the ascending phase, data are
added bottom up each time along one dimension
(starting from dimension 1 to dimension n —2). At

the prefix sum

each node i, the local prefix sums of its subtrees are
pushed in its stack in the order of these subtrees (the
leftmost subtree is the first), when it receives data from its
children. The sum of the subtree rooted at node i is
popped from its stack when it sends the sum to its parent.
This sum is no longer kept in the stack since it is not
needed in the descending phase. This is why there is a
step to remove the top data from the stack of the root
after the ascending phase ends. However, each stack
always keeps a copy of the initial data element at its
bottom. In the descending phase, prefix sums are
transmitted down and are added to local prefix sums
each time along one dimension (starting from dimension
n — 2 to dimension 1). When a node sends data to one of
its children along a certain dimension, it pops the top
data from its stack and sends it to this child. If the stack
is empty it makes a copy of the data to keep its own prefix
sum. When a node receives data from its parent, it adds
the data to each element in the stack to update local
prefix sums to prefix sums.

On a SIMD machine where instructions executed at
different nodes are synchronized by a system clock, the

THE COMPUTER JOURNAL,

Vor. 39, No. 4, 1996




340 H. Qian aNnD J. WU

FIGURE 7. Ascending: dimensions 5, 6.

transmission of data dimension by dimension in the
PrefixSum algorithm is automatically synchronized.
Figures 6, 7, 8, 9 show an example of computing prefix
sums on EFC,.

As we know, it takes logarithmic steps to compute 2"
data item prefix sums on an n-dimensional hypercube
(HC,) [13] and O(n) time to compute f, (nth Fibonacci
number) data element prefix sums on FC, [11]. For the
EFC, we have the following result.

THEOREM 5. The prefix sum of v, data items can be
computed on an EFC, in O(n) time.

Proof. This is evident since 2-(n—2) steps are
needed in the ascending and descending phases. O

The efficiency of the prefix sum computation on the
EFC is between those of computations on the HC and
FC. Because time complexities for both cases are O(n)
and the problem size varies: 2" for HC,, f, for FC, and
v, for EFC,. When n is large enough, f, — —\}; (1—“?5—)” [10]
which is 0(1.62"), and v, — O(1.65"). The problem size

of EFC, is larger than that of FC,, but smaller than that
of HC,.

Note that studying properties and applications of
individual networks is time consuming and offers little
insight about the interrelations of different interconnec-
tion schemes. In the next section, we present and study a
large family of enhanced FCs.

5. EXTENSION OF THE ENHANCED
FIBONACCI CUBE

We can create a series of enhanced Fibonacci cubes
EFCPs by varying the initial values of the enhanced
Fibonacci cube. EFC®s contain EFC, (the enhanced
Fibonacci cube we have discussed so far) as a subcube
and maintain all its properties. EFC,({’) also contains
EFCYs that precede (g < p) it in the series. All EFC®)s
are subcubes of hypercube HC,_,. With the introduction
of the series of the enhanced Fibonacci cubes, there
are even more options for selecting cubes with various
sizes.
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FIGURE 8. Descending: dimensions 5, 4, 3.

The series of extended Fibonacci cubes proposed by
Wu [14] and enhanced Fibonacci cubes are defined as
follows.

Definition 6. [14]: A series of extended Fibonacci
cubes is defined as {XFC,(,k) | k>0, n>k+2}, where
XFC,(,") = X V,(,k), XE,(,")) denotes the kth extended
Fibonacci cube of order n, and XV = ][D¢ V,EI?IU
10(| X V,(,'i)z. Two nodes in XFC{® are connected by an
edge in XE® if and only if their labels differ in exactly
one bit position. As initial conditions for recursion,
we have: XV,Ek) = i(‘)ik—ldk—z ---dy | d; € {0,1},0<i<

+2 =
k—1} and XV, = {dd_,---dy | d; € {0,1},0 <
i <k}

Notice that XFC,(,O) is actually FC,. Those two initial
cubeskof XFC,(,") are two complete HCs: XFC,(:ZZ = HC,,
XFCY, = HC,.,.

Definition 7. A series of EFCs is defined as EFC® |
k>0, n>k+3, where EFCJ) = (V¥ E) denotes
the kth EFC of order n, and V. = 0]/, U Lo}
0100 V¥, uo101||¥™,. Two nodes in EFC® " are

connected by an edge in E,(,k) if and only if their labels
differ in exactly one bit position. As initial conditions for
recursion, we have: V,f% =X V,E’ig, V,E’i)4 =X V,E’&,
V,Ei)s = X V,E'i)s, and V,EQG =X V,gi)& where X V,.(k)
(k + 3 <i < k+ 6) is the number of nodes of XFC,(k).

EFCY is the original EFC we studied earlier. Table 1
shows the sizes of FC, and EFC,(,k) for 0 <k <6 and
2 < n < 14. The boxed numbers are the initial values for
cubes. The four initial values for EFC,(,k) (0 <k <6)are
borrowed from XF C,(,k).

In the notations EFC®) and XFC®), we call k a serial
number and n an order. Now we study the properties of
the series of EFC,(,k)s. We show that the series of EFC,(,k)s
maintain all the properties of EFCO.

First we discuss the subcube relationships between the
series of the EFCs and the series of extended Fibonacci
cubes, between two cubes in the series, and between the
series of the EFCs cubes and HCs.

ProPERTY 5.1. XFC,(,") is a subcube of EFC,(,") for
n>k+3.
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FIGURE 9. Descending: dimensions 2, 1.

PrOPERTY 5.2. EFC( ) is a subgraph of EF if ProPERTY 5.5. EFC(k) can be decomposed into
n< m (2n>k+3) and EFC2 b s a subgraph of two EFC( )zs and two EFC 4s and these four subgraphs
EFC2m 11fn<m(2n—1>k+3) aredzs10mt

PrOPERTY 5.3. Forn >p+3andn>q+3, EFC? is
a subgraph of EFC ifp<gq. The diameter of any EFC,(,k) keeps n — 2, since it

contains FC, whose diameter is n — 2 as a subcube, while
it is contained in HC,,_,. So the diameter is a function of

PROPERTY 5.4. All EFCPs are Hamiltonian (n > 6 only n. The range of node degree of EFCX) does depend
fork=0andn>k+3fork>1). on both n and &.

The relation in Property 5.3 is shown in Figure 10.

TABLE 1. Sizes of FC,s and EFCPsfor0 <k <6and2<n< 14

2 3 4 5 6 7 8 9 10 11 12 13 14
FC, 1 2 3 5 8 13 21 34 55 89 144 233 377
EFC® - 2 3 5 8 14 22 38 60 104 164 284 448
EFC) - - 4 6 10 16 28 44 76 120 208 328 568
EFCY® - - - 8 12 20 32 56 88 152 240 416 656
EFCY® - - - - 16 24 40 64 112 176 304 480 832
EFC® - - - - - 32 48 80 128 224 352 608 960
EFCY) - - - - - - 64 96 160 256 448 704 1216
EFC® - - - - - - - 128 192 320 512 896 1408
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FIGURE 10. Relationship among FC,, EFC¥s and HC,_,.
PROPERTY 5.6. The diameter of EFC,(,k) isn—2.

PROPERTY 5.7. The node degree of a node in EFC,(,k) is
between ["X] + k and n — 2.

PROPERTY 5.8.  There exists a Hamming distance path
between any two nodes in EFC,(,k).

PrOPERTY 5.9. EFC,(,k) is a subgraph of HC,_, and
HC, is a subgraph of EFCg;Ll.

Similarly, since EFCE(,? is a subgraph of EFC;?, by
Theorem 4, we have the following result.

PROPERTY 5.10. A (2" — 1)-node tree is a subgraph of
(k)
EFC,,).

We can define the EFT for EFC® exactly as we did for
EFC,(,O) and show that the desirable properties of the
enhanced Fibonacci tree of EFC,(,O) are maintained.

We have computed the sizes of some HCs, EFCs and
XFCs through a program and converted results to
curves. Figure 11 displays the plot of the size of the
cubes versus order for HC,, EFC,(,k) and XFC,(,k)
(0 <k <5, 30 <n<80). We can see that, for the same
order n, HC, has the largest size, the size of EFC® is
next, then XFC®. Also for EFC® and XFC®), the
larger k or n, the larger the size of cube. These
observations are compatible with our results in Proper-
ties 5.1-5.3.

Another simulation program has been developed and
run to obtain information on sizes (between 2 and 2°°) of
FC,, XFC,(,"), EFC,(,k) and HC,. Results are summarized
in Table 2, which shows the total number of each kind of
cubes and the number of collisions with other cubes of
the same or different kind, for all cubes of sizes between 2
and 2%,

TABLE 2. Cube size collision between 2 and 2°°

Total number Collide with Collide with
between 2 and 2°° same kind different kind
FC 41 0 1
XFC 575 0 51
EFC 507 22 24
HC 30 0 30

From simulation results we have the following
observations: (1) out of 507 EFCs with sizes between 2
and 2%, only 46 of them have the same sizes as other
cubes, i.e. 91% EFCs bring new sizes that are different
from those of existing cubes; (2) in each gap (2°, 2'*1)
(1 <i< 30), there are less than 3 or constant 3 size
collisions. In particular, in each of following three pairs,
two cubes have the same size; HC, , and XFC'™9,
EFC{™ and XFC"Y, EFC!™" and EFC,'"?). If the
number of size collisions keeps constant 3 for any gap,
when i becomes large, the number of collisions can be
ignored compared with the gap size 2’ which is very large.

6. CONCLUSION

We have shown that the proposed EFC has some
desirable properties. The network contains the FC as
its subnetwork and maintains virtually all the properties
of the FC. In addition, the EFC is a Hamiltonian graph.
The unit dilation and low expansion embedding of rings
and trees allow EFC to simulate ring and tree networks
with high efficiency. Many HC algorithms can also be
effectively simulated on EFC. We have studied the
properties of EFTs, and have shown that they can be
used to compute parallel prefix sum on the enhanced
Fibonacci cube in O(n) time. With the introduction of
the enhanced Fibonacci cube into the cube family, there
are more choices in selecting cubes with various sizes. We
also have presented a series of enhanced Fibonacci cubes.
This series also provides more options of network sizes
and more incomplete hypercubes that faulty hypercubes
can be reconfigured to. The hypercube and Fibonacci
cube are special cases in the series of enhanced Fibonacci
cubes, which also provides a clearer view of generali-
zation and interrelations of a subset of cubes in the
hypercube family.

Efficient routing and broadcasting algorithms are
critical to the performance of the parallel and distributed
systems. In a parallel scientific computing, data com-
munication among processors is very common. It may be
specified by parallel programs; or be required by load
redistribution to keep each processor busy, and so on.
This data communication significantly affects the
efficiency of parallel programs because of communi-
cation delay. There are a few commonly used communi-
cation primitives such as unicast (one-to-one), multicast
(one-to-many) and broadcast (one-to-all). Proper imple-
mentation of these basic communication operations is a
key to the efficient execution of a parallel algorithm that
uses them. In a separate paper [15], we have discussed the
efficient implementation of these three primitives. Our
result shows that unicast on EFC, can be time and traffic
optimal, where time is measured by the number of time
steps used to complete a communication and traffic is
measured by the number of total links visited in a
communication. Broadcast on EFC, is traffic optimal for
any dimension », and it is time optimal when 7 is even or
one step more than the optimal case when 7 is odd.
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Size of cubes
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FIGURE 11. Size of cube versus order for HC,, EFC) and XFC® (0 < k < 5,30 < n < 80).

Our future research will include the identification of
more applications that are suitable to run on the
enhanced Fibonacci cube and VLSI/WSI layout of the
enhanced Fibonacci cube.
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APPENDIX

PrefixSum algorithm
For each node a in EFT,, do:
e Boolean seen = FALSE
efori=1ton—2
<& If not seen and a(i) = 1 then
— pop up the top data from its stack;
if the stack is empty then push back a copy of the

data; '
— send the data to its parent a’;
— seen = TRUE;,

— rightmost_bit = i.
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<& If node a receives data from its child then & If i < rightmost_bit and a' € V(EFC,) then
— sum < data on top of the stack + data received; — pop up the top data from its stack;
— Push sum in the stack. — if the stack is empty then push back a copy of the
e Ifa=00---0 then data;
< pop up the top data from the stack; — send the data to the child 4.
<& rightmost_bit = n — 1. < If node a receives data from its parent then
e fori=n—-2tol — add the data to the only element in its stack.
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