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Abstract

An important problem in wireless networks, such as
wireless ad hoc and sensor networks, is to select a few
nodes to form a virtual backbone that supports routing and
other tasks such as area monitoring. Previous work in this
area has focused on selecting a small virtual backbone
for high efficiency. We propose to construct a k-connected
k-dominating set (k-CDS) as a backbone to balance effi-
ciency and fault tolerance. Three localized k-CDS construc-
tion protocols are proposed. The first protocol randomly se-
lects virtual backbone nodes with a given probability pk,
where pk depends on network condition and the value of k.
The second protocol is a deterministic approach. It extends
Wu and Dai’s coverage condition, which is originally de-
signed for 1-CDS construction, to ensure the formation of
a k-CDS. The last protocol is a hybrid of probabilistic and
deterministic approaches. It provides a generic framework
that can convert many existing CDS algorithms into k-CDS
algorithms. These protocols are evaluated via a simulation
study.

Keywords: Connected dominating set (CDS), k-vertex con-
nectivity, localized algorithms, simulation, wireless net-
works.

1. Introduction

In wireless ad hoc and sensor networks, autonomous
nodes form self-organized networks without centralized
control or infrastructure. These networks can be modelled
as unit disk graphs [9], where two nodes are neighbors if
they are within each other’s transmission range. To sup-
port various network functions such as multi-hop commu-
nication and area monitoring, some wireless nodes are se-
lected to form a virtual backbone. In many existing schemes
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[1, 2, 4, 8, 11, 16, 26, 30, 31], virtual backbone nodes form
a connected dominating set (CDS) of the wireless network.
A set of nodes is a dominating set if all nodes in the network
are either in this set or have a neighbor in this set. A domi-
nating set is a CDS if the subgraph induced from this domi-
nating set is connected. For example, both node sets {8} in
Figure 1 (a) and {5, 6, 7, 8} in Figure 1 (b) are connected
dominating sets in their corresponding networks. Applica-
tions of a CDS in wireless networks include:

• Reducing routing overhead [31]. By removing all links
between non-backbone nodes, the size and mainte-
nance cost of routing tables can be reduced. By using
only backbone nodes to forward broadcast packets, the
excessive broadcast redundancy can be avoided.

• Energy-efficient routing [8]. By putting non-backbone
nodes into periodical sleep mode, the energy consump-
tion is greatly reduced while network connectivity is
still maintained by backbone nodes.

• Area coverage [7]. In densely deployed sensor net-
works, the node coverage of a CDS is a good approxi-
mation of area coverage. That is, the deployment area
is within the sensing range of backbone nodes with
high probability.

Previous study in this area has focused on finding a
minimal CDS for higher efficiency. However, recent study
[3, 5, 17, 21, 22] suggested that it is equally important to
maintain a certain degree of redundancy in the virtual back-
bone for fault tolerance and routing flexibility. In wireless
ad hoc networks, a node may fail due to accidental dam-
age or energy depletion; a wireless link may fade away dur-
ing node movement. In a wireless sensor network, it is de-
sirable to have several sensors monitor the same target, and
let each sensor report via different routes to avoid losing an
important event.

We propose to construct a k-connected k-dominating set
(or simply k-CDS) as a backbone of wireless networks. A
node set is k-dominating if every node is either in the set or
has k neighbors in the set. A k-dominating set is a k-CDS
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if its induced subgraph is k-vertex connected. A graph is k-
vertex connected if removing any k − 1 nodes from it does
not cause a partition. For example, backbone nodes 5, 6, 7,
and 8 in Figure 1 (b) form a 2-CDS. Every non-backbone
node has at least two neighboring backbone nodes, and the
subgraph consisting of all backbone nodes is 2-vertex con-
nected. Similarly, node set {2, 4, 5, 6, 7, 8} in Figure 1 (c) is
a 3-CDS. Removing any k− 1 nodes from a k-CDS, the re-
maining nodes still form a CDS (i.e., 1-CDS). Therefore, a
k-CDS as a virtual backbone can survive failures of at least
k − 1 nodes.

Three k-CDS construction protocols are proposed in this
paper. All those protocols are localized algorithms that rely
on only neighborhood information. In dynamic wireless
networks, a localized algorithm has many desirable prop-
erties such as low cost and fast convergency. The first pro-
tocol, called k-Gossip, is a simple extension of an exiting
probabilistic algorithm [16], where each node becomes a
backbone node with a given probability pk. This algorithm
has very low overhead, but the implementation parameter
pk that maintains a k-CDS with high probability depends on
network size and density. In addition, the randomized back-
bone node selection process usually produces a large back-
bone. The second protocol extends our early deterministic
CDS algorithm [30], where each node has a backbone sta-
tus by default and becomes a non-backbone node if a cov-
erage condition is satisfied. The proposed k-coverage con-
dition guarantees all backbone nodes form a k-CDS but
has relatively high computation overhead. We further intro-
duce a hybrid paradigm to extend many existing CDS algo-
rithms for k-CDS formation. In this scheme, a wireless net-
work is randomly partitioned into k subgraphs consisting of
nodes with different colors (the probabilistic part). A col-
ored virtual backbone is constructed for each subgraph us-
ing a traditional CDS algorithm (the deterministic part). We
prove that in dense wireless networks, the union of all col-
ored backbones is a k-CDS with high probability. Simula-
tion study is conducted to compare performances of these
protocols.

The remainder of this paper is organized as follows.
Section 2 reviews existing virtual backbone construction
protocols, including both probabilistic and deterministic
schemes, and introduces the concept of k-CDS. In Sec-
tion 3, we propose extensions of two virtual backbone pro-
tocols for k-CDS construction. Section 4 presents the color-
based k-CDS formation paradigm. Section 5 gives simula-
tion results, and Section 6 concludes this paper.

2. Background and Related Work

In this section, we first introduce two existing local-
ized virtual backbone formation algorithms, one probabilis-
tic and another deterministic, that will be extended for k-
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Figure 1. k-connected k-dominating sets constructed
by applying k-coverage conditions with k = 1, 2, and
3. Virtual backbone nodes are represented by double
circles.

CDS construction in the next section. Then we review con-
cepts of k-connectivity and k-CDS, and algorithms that ver-
ify k-connectivity and form a k-CDS.

2.1. Virtual backbone construction

A wireless network is usually modelled as a unit disk
graph [9] G = (V, E), where V is the set of wireless nodes
and E the set of wireless links. Each node in V is associated
with a coordination in 2-D or 3-D Euclidean space. A wire-
less link (u, v) ∈ E if and only if the Euclidean distance be-
tween nodes u and v is smaller than a uniform transmission
range R. In real wireless networks, the transmission range
of each node may not be a perfect disk. In this case, the net-
work is a quasi-unit disk graph [19], where a bidirectional
link (u, v) definitely exists if the distance between u and v
is less than a certain value d < R, and may or may not ex-
ist when the distance is larger than d but smaller than R.

Many schemes have been proposed to construct a con-
nected dominating set (CDS) as a virtual backbone to sup-
port routing activities in wireless networks. A set V

′ ⊆ V is
a CDS of network G, if all nodes in V −V

′
are neighbors of

(i.e., dominated by) a node in V
′

and, in addition, the sub-
graph G[V

′
] induced from V

′
is connected. The problem

of finding a minimum CDS is NP-complete. Centralized
[11] and cluster-based [2, 4] CDS algorithms provide hard
performance guarantees (i.e., upper bounds on CDS size)
in wireless networks. However, those schemes require ei-
ther global information or global coordination, which limit
their applications to static or almost static networks. In dy-
namic networks, most existing CDS formation algorithms
are localized; that is, the status of each node, backbone
or non-backbone, depends on its h-hop neighborhood in-
formation only with a small h. By eliminating those long
distance information propagations in centralized or cluster-
based schemes, a localized algorithm can achieve fast con-
vergence (O(1) rounds) with low maintenance cost (O(1)
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messages per node).

Localized CDS algorithms are either probabilistic or de-
terministic. A typical probabilistic scheme is the gossip-
based algorithm [14, 16].

Gossip [16]: Each node v has a backbone status with prob-
ability p.

The selection of backbone nodes in Gossip is purely ran-
dom without using any neighborhood information. Simu-
lation results show that when p is larger than a threshold,
these backbone nodes form a CDS with very high probabil-
ity. This threshold depends on network size and density and
is determined based on experimental data. To maintain high
success ratio (i.e, the probability of constructing a CDS)
under unpredictable network conditions, the selection of p
is usually conservative, which produces a large backbone.
In wireless networks with a non-uniform node distribution,
grid-based [6, 24] algorithms can be used to control back-
bone node density. These schemes are originally proposed
as topology control schemes, but can be modified for vir-
tual backbone construction. The basic idea is that if every
node has B backbone neighbors, then all backbone nodes
form a CDS with high probability. The value of B is also
determined based on experimental data.

Deterministic algorithms [1, 8, 26, 31] guarantee a CDS
in connected networks. They usually select fewer backbone
nodes than probabilistic schemes, because their selections
are “smarter” using 2-hop neighborhood information (or
simply 2-hop information). For each node v, its 2-hop in-
formation consists of its neighbor set N(v) and neighbor
sets N(u) of all neighbors u ∈ N(v), and is collected via
2 rounds of “Hello” exchanges among neighbors. The com-
plete 2-hop information of v is a subgraph of G, includ-
ing v’s entire 2-hop neighbor set, and all adjacent links of
v’s 1-hop neighbors. Some algorithms use v’s restricted 2-
hop information, which is the subgraph G([N(v)] induced
from v’s 1-hop neighbor set. One reason to use restricted 2-
hop information is that, in quasi-unit disk graphs, a bidirec-
tional link (u,w) between a 1-hop neighbor u and a 2-hop
neighbor w cannot be confirmed via 2 rounds of “Hello”
exchanges. Another reason is that applying a localized al-
gorithm on a smaller subgraph can reduce the computation
cost.

In [31], Wu and Li proposed a deterministic CDS algo-
rithm called marking process and two backbone node prun-
ing rules called Rules 1 and 2, which were later replaced by
an enhanced rule called Rule k [10]. Chen et al [8] designed
a backbone formation protocol called Span, which is simi-
lar to the combination of the marking process and Rules 1
and 2. Qayyum et al [26] provided another backbone for-
mation scheme called MPR, and Adjih et al [1] enhanced
this scheme to construct a smaller CDS. In [30], Wu and
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Figure 2. Replacement paths between two neighbors
u and w of node v. Gray nodes have higher priorities
than that of v.

Dai showed that all above algorithms are special cases of
the following coverage condition.

Coverage Condition [30]: Node v has a non-backbone sta-
tus if for any two neighbors u and w, a replacement path ex-
ists that connects u and w via several intermediate nodes (if
any) with higher priorities than v.

When applying the coverage condition, each node tries
to find a replacement path between every pair of its neigh-
bors. Figure 2 (a) shows a sample replacement path
(u, x1, x2, . . . , xm, w) that connects two neighbors of the
current node v. Since node v knows only its 2-hop infor-
mation, all intermediate nodes x1, x2, . . . , xm are within
2 hops of v. In addition, all intermediate nodes must have
a higher priority than node v. A priority is a unique at-
tribute of a node, such as node ID or the combination
of node degree (i.e., |N(v)|) and node ID. Node priori-
ties establish a total order among nodes to avoid simulta-
neous withdrawals that may cause a partition in the virtual
backbone. If every node pair of v’s neighbors are con-
nected via high priority nodes, then v can be safely re-
moved from the backbone while the remaining nodes still
form a CDS.

In Figure 1 (a), node 1 is a non-backbone node based
on the coverage condition, because its neighbors 2, 5, and
8 are directly connected. Node 2 has two neighbors 1 and 6
that are not directly connected. However, nodes 1 and 6 are
connected via a replacement path (1, 5, 6). Here we assume
node ID is used as priority, and node 5 has a higher prior-
ity than 2. Therefore, node 2 is a non-backbone node. Sim-
ilarly, nodes 3, 4, 5, 6, and 7 are also non-backbone nodes.
The resultant backbone, consisting of node 8 only, is a CDS
of the network.

2.2. k-connectivity and k-domination

Many existing works [3, 5, 17, 21, 22] suggested to
maintain k-vertex connectivity (or simply k-connectivity)
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in wireless networks for fault tolerance and/or high through-
put.

Definition 1 (k-Vertex Connectivity) A network G is
k-vertex connected if it is connected and removing any
1, 2, . . . , k − 1 nodes from G will not cause parti-
tion in G.

An equivalent definition is that a network is k-vertex
connected if any two nodes in the network are connected
via k node disjoint paths (Menger’s theorem [25]). The
network in Figure 1 is 3-connected, since any two nodes
are connected via three node disjoint paths. For exam-
ple, nodes 1 and 3 are connected via node disjoint paths
(1, 8, 3), (1, 5, 7, 3), and (1, 2, 6, 4, 3). Maximal flow (min-
imal cut) algorithms [13] are usually employed to discover
all node disjoint paths between a pair of source/sink nodes.
A general purpose maximum flow algorithm has a compu-
tation complexity of O(|V ||E|). If one only needs to verify
whether there are k node disjoint paths between two nodes,
a variation of Edmonds and Karp’s flow augmentation algo-
rithm [12] can do the job in O(k|E|) time. This is because
each augmentation (i.e., the process of finding a new path)
is a breadth-first search in G, which takes O(|E|) time, and
it takes at most k augmentations to find (or verify the non-
existence of) k node disjoint paths.

Definition 2 (k-Connected k-Dominating Set) A node set
V

′ ⊆ V is a k-dominating set (or simply k-DS) of G if ev-
ery node not in V

′
has at least k neighboring nodes in V

′
. A

k-DS is a k-connected k-dominating set (or simply k-CDS)
of G if the subgraph G[V

′
] induced from V

′
is k-vertex con-

nected.

The previous definition of CDS (also called 1-CDS) is
a special case of k-CDS with k = 1. Several schemes [3,
21, 22] have been proposed to maintain the k-connectivity
in topology control. Basu and Redi [5] designed a central-
ized algorithm for achieving 2-connectivity in wireless net-
works using mobile nodes. Jorgic, Nayak, and Stojmenovic
[17] suggested to use local k-connectivity to approximate
global k-connectivity based on neighborhood information.
The problems of constructing double dominating sets and
k-dominating sets in general graphs have been studied in
[15, 23]. In [18], three heuristic algorithms are provided to
construct a double dominating set. Localized double domi-
nating set algorithms were discussed in [27]. The localized
construction of a k-CDS has not been discussed.

3. k-Extensions of Existing CDS Algorithms

In this section, we extend both probabilistic and deter-
ministic localized CDS algorithms (Gossip and the Wu and
Dai’s coverage condition) to construct k-CDS in wireless
networks, and show limits of these extensions. In the next

Guarantee Backbone Comm. Msg. Comp.
Algorithm k-CDS Size (exp.) Rnds Size Cost

k-Gossip No npk 0 N/A O(1)
k-Coverage Yes unknown 2 O(∆) O(k∆4)
CBCC No O(1)OPT 2 O(∆) O(∆3)

Table 1. k-CDS algorithms.

section, we will introduce a new approach, color-based cov-
erage condition (CBCC), to overcome those limits. These
three localized K-CDS algorithms are compared in Table 1.

3.1. Probabilistic approach

The gossip-based algorithm can be easily extended to
construct a k-CDS with high probability. The extended rule
for selecting backbone nodes is as follows:

k-Gossip: Each node v has a backbone status with proba-
bility pk.

Note that the above rule is almost identical to its 1-CDS
version. The difference is that the probability pk that any
node becomes a backbone node is now a function of k. In k-
Gossip, the perfect value of pk, which constructs a small vir-
tual backbone while maintaining a k-CDS with high prob-
ability, depends not only on k, but also on total node num-
ber n, deploy area A, and transmission range R. Some an-
alytical study has provided an upper bound of pk that al-
most always achieves k coverage in a network [20]. How-
ever, these upper bounds are conservative estimations of the
perfect pk, which usually need adjustments based on ex-
perimental data. Figure 3 shows our experiment results in a
sample network, where 200 nodes with transmission range
250m are randomly deployed in a 1000m× 1000m region.
For each k, there exists a pk that almost always (i.e., with
a probability very close to 1) selects a k-CDS. For exam-
ple, when k = 2, using pk = 50% constructs a 2-CDS with
probability 98.2%. When k = 3, using pk = 60% achieves
a success ratio of 97.4%.

As in its 1-CDS counterpart, k-Gossip incurs very low
overhead at each node. It requires no information exchange
among neighbors and very low (O(1)) computation cost.
Therefore, the backbone construction process completes al-
most instantaneously. The major drawback is that it requires
some global information, such as network size and density,
to be effective. The expected number of backbone nodes in
k-Gossip is npk. If different values of pk are used under dif-
ferent circumstances, global network information, such as
node number n and deployment area A, must be collected
and broadcast to each node. If the above global informa-
tion is unknown and a single pk is used for different net-
work situations, the selection of pk must be very conserva-
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Figure 3. Success ratio of k-CDS construction under
different gossip probability pk.

tive to maintain a k-CDS in the worst case scenario, which
yields a larger backbone size of O(n).

3.2. Deterministic approach

The original coverage condition [30] that constructs a 1-
CDS can be extended as follows to construct a k-CDS.

k-Coverage Condition: Node v has a non-backbone status
if for any two neighbors u and w, k node disjoint replace-
ment paths exist that connect u and w via several interme-
diate nodes (if any) with higher ID’s than v.

In the original coverage condition, a node can be re-
moved from a CDS if all its neighbors are inter-connected
via a replacement path. In the k-coverage condition, the cri-
terion is more strict: if a node is to be removed from a k-
CDS, all its neighbors must be k-connected with each other
via higher priority nodes. This criterion is shown by Fig-
ure 2 (b), where two neighbors u and w of the current node
v are connected via node disjoint paths P1, P2, . . . , Pk con-
sisting of high priority (gray) nodes. The following theorem
shows that k-coverage condition guarantees a k-CDS in a
k-connected network.

Lemma 1 A node set V
′

is a k-CDS of network G if after
removing any k − 1 nodes from V

′
, the remaining part of

V
′

is a CDS of the remaining part of G.

Proof: First, V
′

is a k-dominating set of G. Because other-
wise, there exists a node v in G with less than k neighbors
in V

′
. After removing all those neighbors from V ′, node

v is no longer dominated by V
′
, which contradicts the as-

sumption that the remainder of V
′

dominates the remain-
der of G. Second, G[V

′
] is still connected after removing

any k − 1 nodes; that is, V
′

is k-connected. �

Theorem 1 If the k-coverage condition is applied to a k-
connected network G, the resultant virtual backbone V

′

forms a k-CDS of G.

Proof: Let V be the set of all nodes and X be the set of any
k − 1 nodes from V

′
. Since G is k-connected, its subgraph

G
′

induced from V −X is also connected. Let v be any non-
backbone node in V − V

′
. Based on the k-coverage condi-

tion, any two neighbors u and w of v are connected via k
node disjoint replacement paths. After removing k−1 nodes
from G, u and w are still connected via at least one replace-
ment path in G

′
. Since all non-backbone nodes in G

′
sat-

isfy the original coverage condition, the remaining nodes in
V − V

′
form a CDS of G

′
[30]. From Lemma 1, V

′
is a

k-CDS of G. �

When k = 1, the k-coverage condition is equivalent to
the original coverage condition. Figure 1 (b) shows a 2-CDS
constructed by the k-coverage condition with k = 2. Here
node 5 becomes a backbone node, because two of its neigh-
bors, nodes 1 and 6, are connected by only one replace-
ment path. On the other hand, nodes 1, 2, 3, and 4 are non-
backbone nodes, because all their neighbors are connected
via 2 node disjoint replacement paths. The resultant virtual
backbone, containing nodes 5, 6, 7, and 8, is a 2-CDS of the
network. Similarly, nodes 2, 4, 5, 6, 7, and 8 in Figure 1 (c)
are selected as backbone nodes when k = 3. Here we as-
sume each node uses complete 2-hop information; other-
wise, both nodes 1 and 3 will be backbone nodes. When
node 1 uses restricted 2-hop information, it can only find
two replacement paths between neighbors 2 and 8: (2, 8)
and (2, 5, 8). The third node disjoint path (2, 6, 8) is invisi-
ble in restricted 2-hop information.

It has been proved in [10] that the expected size of the re-
sultant CDS derived from the original coverage condition is
O(1) times the size of a minimal CDS in an optimal so-
lution. Unfortunately, we cannot prove a similar bound for
k-CDS with k > 2. Another extension of the coverage con-
dition that holds this bound will be discussed in the next
section.

The k-coverage condition depends on local information
only. No global information such as network size is re-
quired. The size of the resultant virtual backbone is barely
affected by the network density. The k-coverage condition
has the same message size and rounds of information ex-
change as the original coverage condition. When 2-hop in-
formation is collected, each node sends two messages with
size O(∆), where ∆ is the maximal node degree. However,
the k-coverage condition is more complex than the original
condition. Each node needs to compute the vertex connec-
tivity among O(∆2) pairs of neighbors using the maximal
flow algorithm with time complexity O(k|E|) as discussed
in Section 3.1. When the algorithm uses restricted 2-hop in-
formation, |E| = O(∆2) and it takes O(k∆2) time to verify
whether two neighbors are k-connected. The overall com-
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Figure 4. Color-based coverage condition. (a) Nodes with odd ID numbers are of color 1 (gray), and nodes with even
ID’s are of color 2 (white). (b-c) Two colored virtual backbones (represented by double circles) are constructed using
the coverage condition. Nodes with different colors and their adjacent links (represented by dotted circles and lines)
are not considered by CBCC-II. (d) The final 2-CDS consists of all backbone nodes. (e) CBCC-II fails when a colored
backbone does not form a CDS of the entire network.

putation cost at each node is O(k∆4), which is higher than
that of the original coverage condition (O(∆3)). Although
some density reduction methods [29] can be employed to
reduce ∆ in very dense networks, these methods also intro-
duce extra overhead and slower convergency.

4. Color-Based k-CDS Construction

This section introduces a hybrid paradigm that enables
1-CDS algorithms to construct a k-CDS with high proba-
bility in relatively dense networks. Unlike pure probabilistic
schemes, this approach does not depend on any network pa-
rameter. This approach is also easier to implement and has
lower overhead than the deterministic algorithm discussed
in the previous section. We use Wu and Dai’s coverage con-
dition [30] as an example to show how to convert a CDS al-
gorithm using this paradigm.

4.1. A hybrid paradigm

As shown in the last section, when extending an existing
CDS algorithm to construct k-CDS, the original algorithm
needs to be modified, and usually becomes more complex
in concepts and implementation techniques. In this section,
we propose a hybrid paradigm, called color-based k-CDS
construction (CBKC), to make the migration process sim-
pler. The basic idea is to randomly partition the network
into several subnetworks with different colors, and apply
a traditional CDS algorithm to each subnetwork. The first
step is probabilistic; when the network is sufficiently dense,
colored nodes in each partition almost always form a CDS
of the original network. The second step is deterministic;
each colored backbone constructed within a subnetwork by
a CDS algorithm is still a CDS of the entire network. To-
gether, k colored backbones form a k-CDS. Since any CDS

algorithm A can be used in constructions of colored back-
bones, our color-based scheme provides a general frame-
work for extending a wide range of existing CDS algorithms
to construct k-CDS in relatively dense wireless networks.

Color-Based k-CDS Construction (CBKC)

1. Each node v selects a random color cv (1 ≤ cv ≤ k)
for itself. As a result, the node set V is divided into
k disjoint subsets V1, V2, . . . , Vk, with each subset Vc

containing nodes with color c.

2. For each color c, a localized CDS algorithm A is ap-
plied to construct a virtual backbone V

′
c ⊂ Vc that cov-

ers the original network.

3. The final k-CDS is the union
⋃k

c=1 V ′
c of all colored

virtual backbones.

Figure 4 illustrates the color-based k-CDS construction
process. In Figure 4 (a), all nodes are randomly assigned
color (1) gray and (2) white. In Figure 4 (b), two gray nodes
5 and 7 are selected to form a CDS of the entire network. In
Figure 4 (c), a single node 8 is selected from white nodes to
form a CDS. The set of all backbone nodes {5, 7, 8} forms
a 2-CDS of the network, as shown by Figure 4 (d). The fol-
lowing theorem shows that the above generic scheme al-
most always construct a k-CDS in dense networks.

Theorem 2 If all nodes in the network are randomly placed
in a finite square region, then CBKC almost always con-
structs a k-CDS when the node number exceeds a constant
nk.

Proof: We first show that each node set Vc formed at step 1
is a CDS of the network G with high probability when node
number is sufficiently large. It has been proved in [20] that
given a probability p and a radius r, there exists a n(p, r)
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such that when n ≥ n(p, r) nodes are randomly deployed
in a unit square, and each node is marked a color c with
probability p, then the entire region is almost always cov-
ered by those marked nodes (i.e., every point in this region
is within distance r of a marked node). Suppose both the
actual square area A and the actual transmission range R
are fixed. Let nk = n( 1

k , R
2
√

A
). It is easy to see that when

n ≥ nk nodes are randomly and uniformly divided into
k sets V1, V2, . . . , Vk, each set set Vc almost always cov-
ers the region under transmission range R/2. It has been
proved in [28] that a set achieving area coverage with cov-
ering radius R/2 is connected under transmission range R.
Therefore, each Vc is a CDS of G.

When each set Vc is a CDS of G, the virtual backbone
V ′

c selected by algorithm A in step 2 is also a CDS of G.
Let V ′ =

⋃k
c=1 V ′

c be the union of k node disjoint CDS’s
of G. After removing k−1 from V

′
, there is at least one V

′
c

untouched. Therefore, the remaining nodes in V
′

still form
a CDS of G. From Lemma 1, V

′
is a k-CDS of G. �

4.2. Color-based coverage condition

We use the coverage condition as an example to illus-
trate the effectiveness of the color-based paradigm. When
the original coverage condition is extended using the CBKC
framework, only one modification is needed in the follow-
ing revised rule:

Color-Based Coverage Condition (CBCC): Node v has a
non-backbone status if for any two neighbors u and w, a re-
placement path exists that connects u and w via several in-
termediate nodes (if any) with the same color and higher
priorities than that of v.

Figure 4 (a-d) shows an example of CBCC. Note that
with the color-based coverage condition, the search for a
replacement path is now restricted to nodes with the same
color. This modification actually reduces the average com-
putation cost, but the worst case computation complexity
is still the same (O(∆3)). Color-based coverage condition
also inherits the constant probabilistic bound of the origi-
nal coverage condition [10].

Theorem 3 The expected number of backbone nodes se-
lected by color-based coverage condition is O(1) times the
optimal value.

Proof: It was shown in [10] that the expected number of
backbone nodes selected by the original coverage condition
is O(A/R2), where A is the area of a rectangular deploy-
ment region and R is the transmission range. Since the vir-
tual backbone constructed by color-based coverage condi-
tion consists of k colored backbones, the total number of
backbone nodes is O(kA/R2). Note that any k-dominating
set needs at least O(kA/R2) nodes to maintain k-coverage.

Therefore, the expected backbone size of CBCC is O(1)
times the minimal k-dominating set, which is no larger than
a minimal k-CDS. �

To further reduce the message and computation cost, we
consider a more aggressive variation of CBCC. The original
color based coverage condition (called CBCC-I) covers all
neighbors regardless of their colors; that is, any two neigh-
bors of a non-backbone node must be connected via a re-
placement place. For example, node 3 in Figure 4 (e) is a
backbone node in CBCC-I, because it has two neighbors 2
and 7 that are not connected via a gray replacement path. In
the more aggressive variation (called CBCC-II), only neigh-
bors with the same color are considered. As shown in Fig-
ure 4 (b), when a gray node is applying CBCC-II, all white
nodes are excluded from its 2-hop information. The same
rule also applies in white backbone construction, as shown
in Figure 4 (c).

Compared to CBCC-I, CBCC-II uses smaller “Hello”
messages to collect 2-hop information, has lower compu-
tation cost, and constructs a smaller backbone. However,
the worst case performance and overhead of both varia-
tions are the same. Since CBCC-II is more aggressive than
CBCC-I, its probability of constructing a k-CDS is lower
than CBCC-I. As shown in Figure 4 (e), when node 3 uses
CBCC-II to determine its status, it becomes a non-backbone
node because it has only one visible neighbor 7. However,
the resultant gray backbone {5, 7} is not a CDS of the entire
network, and union of all backbone nodes {5, 7, 8} is not 2-
dominating. The failure of node 8 will leave node 2 uncov-
ered. Note that, however, when the network is very dense
and node coverage is a good approximation of area cover-
age, the probability is high that CBCC-II selects a CDS of
the entire network for each color, and the final backbone is
a k-CDS.

5. Simulation

We conduct simulation study to evaluate the perfor-
mance of three proposed k-CDS construction algorithms.
Simulation results show that a small k-CDS can be formed
with high probability and relatively low overhead in those
schemes.

5.1. Implementation

All proposed protocols have been implemented on a cus-
tom simulator ds1. All simulations are conducted in ran-
domly generated static networks. To generate a network, n
nodes are randomly placed in a 1000m × 1000m region.
The transmission range R is 250m. Any two nodes with

1 Check http://sourceforge.net/projects/wrss/ for more details of the
simulator.
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