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Reliable Unicasting in Faulty Hypercubes
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Abstract —We propose a unicasting algorithm for faulty hypercubes
(including disconnected hypercubes) using the safety level concept. A
faulty hypercube is a hypercube with faulty nodes and unicasting is a
one-to-one communication between two nodes in the hypercube. Each
node is associated with a safety level which is an approximated
measure of the number and distribution of faulty nodes in the
neighborhood. The safety level of each node in an n-dimensional
hypercube (or n-cube) can be easily calculated through n - 1 rounds of
information exchange among neighboring nodes. Optimal unicasting
between two nodes is guaranteed if the safety level of the source node
is no less than the Hamming distance between the source and the
destination. The proposed unicasting algorithm can also be used in
disconnected hypercubes, where nodes in a hypercube are disjointed
into two or more parts. The feasibility of an optimal or suboptimal
unicasting can by easily determined at the source node by comparing
its safety level, its neighbors’ safety levels, and the Hamming distance
between the source and the destination. The proposed scheme is the
first attempt to address the unicasting problem in disconnected
hypercubes. The safety level concept is also extended to be used in
hypercubes with both faulty nodes and links and in generalized
hypercubes.

Index Terms —Disconnected networks, fault tolerance, hypercubes,
reliable communication, unicast.

————————   ✦   ————————

1 INTRODUCTION

WITH its numerous attractive features, the binary unicasting hyper-
cube has been one of the commonly used topological structures for
distributed-memory systems. Efficient interprocessor communica-
tion is a key to the performance of a hypercube system. Unicast is a
one-to-one communication between a source and a destination, and
it has been extensively studied in fault-free hypercubes.

As the number of processors in a hypercube system increases,
the probability of processor failure also increases. There has been a
number of fault-tolerant unicasting schemes proposed in previous
work [3], [6], [7], [8]. Most of these models assume that each node
knows either only the neighbors’ status or the status of all the
nodes. A model that uses the former assumption is called local-
information-based, while a model that uses the later assumption is
called global-information-based. In general, a global-information-
based model can obtain an optimal or suboptimal result; however,
it requires a complex process that collects global information.
Normally, global information is presented in a tabular format and
it is not easy to use.

Local-information-models use a weaker but a more reasonable
assumption; however, local information can only be used to
achieve local optimization and most of approaches based on this
model are heuristic in nature. Therefore, the length of a routing
path is unpredictable in general, and global optimization, such as
time and traffic in routing, is impossible. For example, in [5], a
sidetracking approach is used to route messages in a faulty hyper-
cube with node faults. A message is rerouted to a randomly cho-
sen fault-free neighboring node when there exists no fault-free

neighbors that are along optimal paths to the destination node. In
[3], Chen and Shin proposed a scheme based on depth-first search
in which backtracking is required when all the forward links are
blocked by faulty components. However, a history of visited nodes
has to be kept as part of message. A simplified version of this ap-
proach that tolerates fewer faults was presented in [2], where rout-
ing is progressive without backtracking. Still routing paths are not
optimal in general. An optimal unicasting using only local informa-
tion was reported in [6] under a restricted model of fault distribution.
Note that most of the existing fault-tolerant unicasting algorithms
cannot be applied in disconnected hypercubes, where nonfaulty nodes in
a faulty hypercube are partitioned into several disjoint parts.

We proposed in [9] a novel concept called safety level which is
an integer associated with each node in the system. Safety level is
a concise representation of the distribution of faulty nodes in the
system. It is also considered as a special type of limited global infor-
mation, a compromise between local-information and global-
information based approaches. Because this type of information is
easy to update and maintain and routing optimality is still pre-
served when this information is used to direct messages in the
unicasting process, it is more cost effective than the others. Basi-
cally, each node in an n-cube is assigned a safety level k, where 0 £
k £ n, and this node is called k-safe. A k-safe node indicates that
there exists at least one Hamming distance path (i.e., the optimal
path) from this node to any node within k distance. The safety
level of each node can be calculated using a simple (n - 1)-round
iterative algorithm which is independent of the number and dis-
tribution of faults in the hypercube.

Among other unicasting schemes based on limited global in-
formation of fault distribution, Lee and Hayes [7] proposed the
concept of safe node which requires a stronger condition than the
one that defines the safety level. Therefore, the safe node set is a
subset of the one based on our definition. The safe node set is de-
cided in O(n2) rounds of information exchange among neighboring
nodes. This algorithm can route a message via a path of length no
longer than two plus the Hamming distance between the source
and the destination as long as the hypercube is not fully unsafe,
which is guaranteed provided that the number of faults is no more
than n

2  in an n-cube.

Wu and Fernandez [10] extended the Lee and Hayes’ safe node
definition by relaxing certain conditions and hence increase the
size of the safe nodes set and the degree of fault tolerance. A proc-
ess that identifies the node status was also proposed in [10] and it
needs fewer rounds than the one in [7] in general. However, it still
requires O(n2) rounds in the worst case. Recently, a unicasting
algorithm based on this enhanced safe node concept was proposed
by Chiu and Wu [4]. They showed that a path of length no more
than the Hamming distance between the source and the destina-
tion plus four can always be established in their algorithm as long
as the hypercube is not fully unsafe.

The safety level concept is one further step to extend the safe
node concept. In this paper, we show that the safety level concept
covers a larger set of safe nodes than both Lee-Hayes’ and Wu-
Fernandez’ definitions and it can be used for unicasting in various
faulty hypercubes (including disconnected hypercubes) more ef-
fectively. We also prove that under both Lee-Hayes’ and Wu-
Fernandez’ safe node definitions, the safe node set is empty for any
disconnected hypercube; that is, the unicasting algorithms proposed
by Lee-Hayes [7] and Chiu-Wu [4] are not applicable to discon-
nected hypercubes. When a faulty n-cube has fewer than n faulty
nodes, the proposed unicasting algorithm ensures an optimal
unicasting (generating an optimal path) or suboptimal unicasting
(generating a path with a length of Hamming distance between
the source and the destination plus two). Unlike most of existing
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algorithms, the proposed algorithm can be used for n-cubes with
more than n - 1 faults without additional cost. Only a simple feasi-
bility check is needed at the source node before using the unicast-
ing algorithm and the result is still optimal or suboptimal. We also
demonstrate that the safety level concept can be used in a general
faulty hypercube with both faulty nodes and links by treating two
end nodes of each faulty link as faulty nodes. The safety level con-
cept can be further extended to the generalized hypercube [1].

We make the following assumptions for the techniques used in
this paper:

1) All the node faults are fault-stop, i.e., there are no malicious
faults.

2) Fault detection and diagnosis algorithms exist, but we do
not require such algorithms to be perfect.

We do assume that each node knows exactly the safety status of all
its neighbors.

2 NOTATION AND PRELIMINARIES

2.1 Hypercubes
The n-dimensional hypercube (or n-cube) Qn is a graph having 2n

nodes labeled from 0 to 2n - 1. Two nodes are joined by an edge if
their addresses, as binary integers, differ in exactly one bit posi-
tion. More specifically, every node a has address an-1an-2 � a0 with
ai Œ {0, 1}, 0 £ i £ n - 1, and ai is called the ith bit (also called the ith
dimension) of the address. We denote node ai the neighbor of a
along dimension i. Symbol ≈ denotes the bitwise exclusive OR
operation on binary addresses of two nodes. Let ek = en-1 en-2 º e0
where ek = 1 and ej = 0, "j π k. For example 1101 ≈ e2 = 1001.
Clearly, a ≈ ei represents setting or resetting the ith bit of a. The
distance between two nodes s and d is equal to the Hamming dis-
tance between their binary addresses, denoted by H(s, d).

A path connecting two nodes s and d is termed an optimal path
(also called Hamming distance path) if its length is equal to the
Hamming distance between these two nodes. A shortest path is a
path of minimal length among all the available paths between
these two nodes. Clearly, s ≈ d has value 1 at H(s, d) bit positions
corresponding to H(s, d) distinct dimensions. These H(s, d) dimen-
sions are called preferred dimensions and the corresponding nodes
are termed preferred neighbors. The remaining n - H(s, d) dimen-
sions are called spare dimensions and the corresponding nodes are
spare neighbors.

2.2 Safety Levels
In a given n-cube, the safety level of each node ranges from 0 to n.
The safety level associated with a node is an approximation of the
number and distribution of faulty nodes in the neighborhood,
rather than just the number of faulty nodes. Let S(a) = k be the
safety status of node a, where k is referred to as the level of safety,
node a is called k-safe. A faulty node is 0-safe which corresponds to
the lowest level of safety, while an n-safe node (also called a safe
node) corresponds to the highest level of safety. A node with k-safe
status is called unsafe if k π n.

DEFINITION 1 [9]. The safety level of a faulty node is 0. For a nonfaulty
node a, let (S0, S1, S2, ..., Sn-1), 0 £ Si £ n, be the nondecreasing
safety level sequence of node a’s n neighboring nodes in an n-cube,
such that Si £ Si+1, 0 £ i £ n - 2. The safety level of node a is de-
fined as: if (S0, S1, S2, ..., Sn-1) ≥ (0, 1, 2, ..., n - 1),1 then S(a) = n
else if (S0, S1, S2,..., Sk-1) ≥ (0, 1, 2, ..., k - 1) Ÿ (Sk = k - 1) then
S(a) = k.

The safety level of a nonfaulty node is recursively defined in

1. seq1 ≥ seq2 if and only if each element in seq1 is greater or equal to
the corresponding element in seq2.

terms of its neighbors’ safety levels. The following theorem shows
that for any faulty hypercube there is one and only one safety level
for each node that satisfies the condition in Definition 1.

THEOREM 1. For any given faulty hypercube, there is one and only one
way to assign safety levels to nodes that satisfies the safety level
condition in Definition 1.

PROOF. We first show that there exists a feasible safety level as-
signment for any given faulty hypercube and then we show
that it is the only possible one.

For a given faulty n-cube, Qn, we perform n-rounds of
safety level assignment. Each nonfaulty node is assigned
once and only once. All the assignments in the kth round are
of safety level k. In the first round, any nonfaulty node that
has two or more faulty neighbors is assigned safety level 1.
In the second round, any unassigned nonfaulty node that
has three or more neighbors whose safety levels is no more
than 1 is assigned a safety level 2. This process continues
from round to round. At the kth round, any unassigned
nonfaulty node that has k + 1 or more neighbors whose
safety levels are no more than k - 1 is assigned a safety level
k. Clearly, the safety level k assigned to node a at the kth
round meets the safety level condition. Also, any later as-
signment (with a safety level larger than k) of an unassigned
nonfaulty neighbor of a will not affect a’s safety status. That
is, once a nonfaulty node is assigned a safety level, this level
remains feasible. At the last round, a safety level n is given
to all the unassigned nonfaulty nodes (if there are any).

To prove there is only one safety level assignment, let’s
assume that there are two different assignments S(1), S(2)

both satisfying the safety level condition. Select a node a
that has two different safety levels and min{S(1)(a), S(2)(a)} =

min {min {S(1)(s), S(2)(s)} | S(1)(s) π S(2)(s), "s Œ Qn}; that is,
among nodes that have different safety level assignments,
node a has the lowest safety level in one of two assignments.

Without loss of generality, let S(1)(a) = k1, S
(2)(a) = k2 and k1 < k2.
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status sequence (not necessarily nondecreasing) based on
the safety assignment S(2) and the dimension sequence
( , , , , , , , )d d d d d dk k n0 1 2 1 11 1

K K- - . Because node a has the

lowest safety level among all the nodes that have different

safety level assignments, S Si i
( ) ( )1 2=  for all 0 £ i £ k1, and

S Si j
( ) ( )1 2=  or S kj

( )2
1≥  for all k1 < j £ n - 1. Based on the safety

level definition, the safety level of a based on S(2) is also k1,

i.e., k1 = k2. This brings up a contradiction to the assumption

that k1 π k2. �

The proof of Theorem 1 also suggests a simple way to identify
the safety level of every node in a given faulty hypercube. The
following iterative algorithm (GS) calculates the safety level of
each node in an n-cube. For simplicity, we show here only the
synchronous version of GS, although it can be implemented
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asynchronously. We assume that all nonfaulty nodes in Qn have n
as their initial safety levels (in this way the nth round in the proof
of Theorem 1 is not necessary and there is no need to calculate
safety levels when the hypercube is fault-free) and N is the set of
all the nonfaulty nodes in Qn. The selection of D, the number of
iterations used in GS, will be discussed in the next section.

Algorithm GLOBAL_STATUS (GS)
{Initially all nonfaulty nodes are n-safe, faulty nodes are 0-safe,
and round = 1.}
begin
    ë while round £ D
          parbegin
              ë NODE_STATUS(a), "a Œ N
          parend;
          round := round + 1
end.
Procedure NODE_STATUS(a)
begin
     at node a determine the nondecreasing status sequence of
      neighboring nodes (S0, S1, S2, ..., Sn-1)
      if (S0, S1, S2, ..., Sn-1) ≥ (0, 1, 2, ..., n - 1)
          then mark a as n-safe (or safe);
     if  ((S0, S1, S2, ..., Sk-1) ≥ (0, 1, 2, ..., k - 1)) Ÿ (Sk = k - 1)
          then mark a as k-safe;
end.

Fig. 1 shows the safety level of each node in a faulty four-cube
with four faulty nodes (represented as black nodes): 0011, 0100, 0110,
and 1001. Based on the safety level definition, the safety levels of all
the nodes that have two (or more) faulty neighbors will be changed
to 1 after the first round, as in the case for nodes 0001, 0010, 0111,
1011 in Fig. 1. That is, the effect of 0-safe status of faulty nodes first
propagated to their neighbors, then neighbors’ neighbors and so on.
For example, after the second round the safety level of node 0101
changes to 2, because this node has three 1-safe or 0-safe neighbors.
Similarly, the safety level of node 0000 changes to 2. The safety level
of each node remains stable after two rounds and each value repre-
sents the safety level of the corresponding node. Note that in the
absence of faulty nodes, all the nodes are safe and no extra overhead
is introduced using this approach.

Fig. 1. A four-cube with four faulty nodes.

There are several ways to keep safety level information up-to-date.

1) Demand-driven: The GS is applied only when a node detects
an inaccurate safety level of one of its neighbors caused by
the occurrence (or recovery) of faulty nodes in the neigh-
borhood during a unicast. The recovery of a faulty node will
not cause disruption of a unicasting. However, in case of oc-
currence of a new faulty node that affects a unicast, this
unicast might either be aborted or be re-routed from the
current node after all the safety levels are stabilized.

2) Periodic: Each node exchanges safety information periodi-
cally with its neighbors. Note that this approach does not
adapt the activity to the failure rate of nodes. For example,

all (or most) exchanges are wasted when all (or most) of
nodes’ status remain stable.

3) State-change-driven: A node initiates a GS whenever it detects
that a neighboring node fails (or recovers). In this case, the
GS algorithm can be implemented asynchronously as in the
demand-driven approach.

2.3 Properties of Safety Levels
We consider here properties of safety levels that are useful for
efficient unicasting in a faulty hypercube.

PROPERTY 1 [9]. The GS algorithm identifies a k-safe (k π n) node of an
n-cube in k rounds, i.e., at the kth round this node reaches a stable
status.

COROLLARY. To identify the status of all the nonfaulty nodes in any
faulty hypercube (which might be a disconnected hypercube), the
number of rounds (D in GS) is n - 1, where n is the dimension of
the faulty hypercube.

We compare the proposed method with other definitions of
safe nodes. Two measures are used:

1) the number of steps required to determine the status of a
node,

2) the size of safe node set.

The following are two other definitions of safety status of a
node. Again, we assume that initially all nonfaulty nodes’ are safe.

DEFINITION 2 (Lee and Hayes [7]). A nonfaulty node is unsafe if and
only if there are at least two unsafe or faulty neighbors.

DEFINITION 3 (Wu and Fernandez [10]). A nonfaulty node is unsafe if and
only if one of the following conditions is true: There are two faulty
neighbors, or there are at least three unsafe or faulty neighbors.

In general, it is difficult, if not impossible, to compare the size
of safe node sets because each safe node set depends on the distri-
bution of faulty nodes. However, it is clear that, for each distribu-
tion of faulty nodes, the safe node set obtained using the definition
in this paper contains the set using the definition in [10], which in
turn contains the set using the definition in [7]. Consider a four-
cube with three faulty nodes: 0000, 0110, and 1111. Each node has
three safety status based on the three different definitions. Using
the safety definition proposed in this paper, we obtain the safe
node set which is {0001, 0011, 0101, 1000, 1001, 1010, 1011, 1100,
1101}. Using Definition 3 [10], we have {0001, 0011, 0101, 1000,
1001, 1010, 1011, 1101} as the safe node set with the absence of
node 1100. The safe node set is empty using Definition 2 [7]. In
summary, the safety level defined here provides more accurate
information than the previous ones. Surprisingly, it takes fewer
rounds (n - 1 by the above Corollary) to determine the safety level
of each node than using both of the other definitions which require
O(n2) rounds of information exchanges in the worst case.

Simulation results show that when the number of faulty nodes
is less than the dimension of the hypercube, the average number of
rounds is much lower than the worst case bound (i.e., dimension
minus one). Fig. 2 shows that the number of rounds for seven-
cubes with various number of faults is much lower than the worst
case number. When the number of faulty nodes is less than the
number of rounds for seven-cubes is less than 2.

PROPERTY 2 [9]. In a faulty n-cube with fewer than n faulty nodes, each
nonfaulty but unsafe node has a safe neighbor.

For example, in the faulty four-cube with three faulty nodes:
0000, 0110, and 1101, all nonfaulty but unsafe nodes have at least
one safe neighbor.
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Fig. 2. Average number of rounds of information exchange for seven-
cubes.

3 UNICASTING IN FAULTY HYPERCUBES

3.1 Basic Ideas
In this section, we propose an optimal unicasting scheme for faulty
hypercubes. The scheme is a distributed one in which each inter-
mediate (including the source) node routes the unicast message
based on its own safety level and its neighbors’. Optimality (or
suboptimality2) is ensured when the safety level of the source or
one of its neighbors meets certain safety level decided by the
Hamming distance between the source and the destination. The
selection of a neighbor, among all its preferred neighbors, to for-
ward the unicast message is based on the safety level of this
neighbor. The following result serves as a basis for our approach.

THEOREM 2. If the safety level of a node is k (0 < k £ n), then there is at
least one Hamming distance path from this node to any node
within k Hamming distance.

PROOF. We prove this theorem using the mathematical induction
on j, the distance between the source and the destination.

When j = 1, the source node can clearly reach all the
neighbors, faulty and nonfaulty. Assume that this theorem
holds true for all j < i. When j = i, based on the hypercube
property that there are j node-disjoint optimal paths be-
tween two nodes separated by j Hamming distance, there
are j preferred dimensions of a source node to any destina-
tion node which is j distance away. Based on the safety level
definition and assuming that the safety level is k (≥ j), the
nondecreasing safety level sequence of the source node’s
neighboring nodes satisfies the following condition: (S0, S1,
S2, ..., Sk-1) ≥ (0, 1, 2, ..., k - 1) Ÿ (Sk = k - 1). Therefore, among
j (£ k) preferred neighbors, there is at least one neighbor
whose safety level is at least j - 1. Because the distance be-
tween this neighbor and the destination node is j - 1 and
based on the induction assumption, there exists an optimal
path from the source node to the destination node. �

The above result also provides a simple way to identify an op-
timal path between two nodes: An optimal path is generated by
selecting a preferred neighbor with the highest safety level at each
routing step. We consider two unicasting algorithms: one is an
optimal algorithm in which a message is guaranteed to be for-
warded to the destination node along an optimal path and the
other is a suboptimal algorithm in which a message is forwarded
to the destination node along a path with a length of the Hamming

2. A unicasting is called suboptimal if it generates a path connecting
a given pair of source and destination nodes that has a length of
Hamming distance plus two.

distance between the source and the destination plus two. The selec-
tion between the optimal and the suboptimal algorithms can be de-
cided locally at the source node, using the following information:

1) The Hamming distance of the source s and the destination d,
H(s, d) = |s ≈ d|. The preferred neighbor sets and the spare
neighbor sets are obtained based on s ≈ d.

2) The safety level of the source node S(s).
3) The safety levels of the neighboring nodes of the source

node S(s0), S(s1), S(s2), ..., S(sn-1) for neighbors along dimen-
sions 0, 1, 2, ..., n - 1, respectively.

Note that safety levels of neighbors are available at each node and
they are updated at each application of GS.

A navigation vector N = s ≈ d is introduced here which is calcu-
lated at the source node and is passed to a selected neighbor after
resetting or setting the corresponding bit depending on whether
this neighbor is a preferred one or a spare one. The safety level
requirement for optimal unicasting is as follows: The safety level
of the source is at least equal to the Hamming distance between
the source and the destination or one preferred neighbor’s safety
level is at least equal to the Hamming distance minus one. If there
is no such preferred neighbor, then a spare neighbor whose safety
level is at least equal to the Hamming distance plus one (the con-
dition for suboptimal unicasting) is selected and the correspond-
ing algorithm is suboptimal. At each intermediate node, a pre-
ferred neighbor with the highest safety level is selected (for both
optimal and suboptimal algorithms). Each intermediate node
knows its preferred and spare neighbors upon receiving the
unicast message with a navigation vector. A unicasting completes
when the navigation vector becomes zero; that is, each bit is zero.
Note that, at the source node, if both conditions for optimal and
suboptimal unicasting fail then the routing algorithm fails. This
failure state can be easily detected at the source node. The cause of
failure can be either too many faulty nodes in the neighborhood or
a network partition (this case will be discussed in the next section).
As shown in Property 2, when there are fewer than n faulty nodes
in an n-cube, the proposed unicasting algorithm never fails (each
unsafe but nonfaulty node has a safe neighbor); that is, the pro-
posed algorithm is either optimal or suboptimal. When there are
more than n - 1 faulty nodes, the proposed unicasting algorithm
may still work (at certain source nodes with appropriate routing
distances as in Fig. 1) depending on the distribution of faults.

3.2 Unicasting Algorithm
At the source node s with unicast message m and destination d:

Algorithm UNICASTING_AT_SOURCE_NODE
    ë N = s ≈ d; H = H(s, d);
     /* calculate the navigation vector and the Hamming
     distance */
     if (C1ë : S(s) ≥ H) ⁄ (C2 : $i(S(si) ≥ H - 1 Ÿ N(i) = 1))
          / * the safety level of the source is at least
        equal to the Hamming distance or a preferred

        neighbor's safety level is at least equal to
        the distance minus one */
     then ë OPTIMAL_UNICASTING:
          send (m, N ≈ ei) to si, where S(si) = max{S(sj)| N(j) = 1}
          /* send the message to the preferred neighbor si

       with the highest safety level together with N
       after resetting bit i */
     else if C3 : $i(S(si) ≥ H + 1 Ÿ Ni = 0)
               /* one spare neighbor's safety level is at

          least equal to the distance plus one */
          then SUBOPTIMAL_UNICASTING:
               send (m, N ≈ ei) to si, where S(si) = max{S(sj)| N(j) = 0}
               /* send the message to the spare neighbor si

         with the highest safety level together with
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         N after setting bit i */
     else failure

At any intermediate node a with unicast message m and navi-
gation vector N:

Algorithm UNICASTING_AT_INTERMEDIATE_NODE
     if N = 0 /* the navigation vector is empty */
     then ë stop /* the current node is the destination */
     else send (m, N ≈ ei) to ai, where S(ai) = max{S(aj)|N(j) = 1}
          /* send the message to the preferred neighbor ai

       with the highest safety level together with N
       after resetting bit i */

Consider again the example in Fig. 1. The number in each circle
(node) represents the safety level of this node. In a unicast where
s1 = 1110 and d1 = 0001 are the source and the destination nodes,
respectively, the navigation vector is N1 = s1 ≈ d1 = 1111; hence,
H(s1, d1) = 4. Also, the safety level of the source s1 is 4. Therefore,
the optimal algorithm is applied. Among preferred neighbors of
the source, nodes 1010, 1100, and 1111 have a safety level 4 and
node 0110 has a safety level 0. A neighbor with the highest safety
level, say 1111 along dimension 0, is selected. The navigation vec-
tor N is sent together with the unicast message after resetting bit 0.
At intermediate node 1111, based on the navigation vector 1110,
the preferred neighbor set is calculated which is {0111, 1011, 1101}.
Among preferred neighbors, node 1101 has the highest safety level
(which is 4); therefore, 1101 is the next intermediate node with a
navigation vector 1100. At node 1101, the preferred node 0101
(with a safety level 2) is selected among two preferred neighbors
(the other one is the faulty neighbor 1001). At node 0101 with
navigation vector 0100, there is only one preferred neighbor which
is 0001. Upon receiving the unicast message with a navigation
vector 0000, node 1100 identifies itself as the destination node and
terminates the unicasting algorithm.

Consider another unicasting example in the faulty four-cube of
Fig. 1, where s2 = 0001 and d2 = 1100 are the source and the desti-
nation. In this case, the safety level of the source (which is 1) is less
than the Hamming distance between the source and the destina-
tion (which is 3). However, there are two preferred neighbors
(0000 and 0101) whose safety levels are 2 (which is the Hamming
distance minus one). Therefore, optimal unicasting is still possible
by selecting one of these two preferred neighbors, say 0000. The
corresponding routing path 0001 Æ 0000 Æ 1000 Æ 1100 is shown
in Fig. 1.

Note that if the source node is safe (the highest safety level),
optimality is automatically guaranteed for any unicasting. When
one neighbor of the source is safe at least suboptimality is guar-
anteed. If this neighbor is a preferred one, then the unicasting is
optimal. If this neighbor is a spare one, then the unicasting is
suboptimal. Based on Property 2, any unsafe node has a safe
neighbor in a faulty n-cube with no more than n - 1 faulty nodes.
Suboptimality is guaranteed in such faulty hypercubes.

THEOREM 3. Suppose the Hamming distance between the source and the
destination is j for a given unicasting. When the source is k (≥ j)-safe
or there is an l (≥ j - 1)-safe preferred neighbor of the source node,
optimality for any unicast is guaranteed using the proposed
unicasting algorithm. When there is an m (≥ j + 1)-safe spare neigh-
bor of the source node, at least suboptimality is guaranteed.

This theorem can be directly derived based on Theorem 2 and
the proposed unicasting algorithm.

3.3 Unicasting in Disconnected Hypercubes
In this section, we show that the proposed unicasting algorithm
can be applied to various faulty hypercubes, including discon-
nected hypercubes. To our best knowledge, our approach is the

first one that addresses routing in disconnected hypercubes.
We first show an example of a disconnected hypercube and see

how the proposed algorithm works in this case. Fig. 3 shows a
disconnected four-cube with four faulty nodes: 0110, 1010, 1100,
and 1111. Clearly, any unicasting initiated at node 1110 will fail.
The source node 1110 detects this situation by checking its neigh-
bors’ safety levels and its own safety level. However, unicasting is
possible if it is initiated from the other part of the partition. For
example, in a unicasting with source s1 = 0101 and destination
d1 = 0000, the Hamming distance between the source and the des-
tination is 2 and the safety level of the source is 2. Therefore, opti-
mal unicasting is possible and the corresponding path is shown in
Fig. 3. In another example where s2 = 0111 and d2 = 1011, although
the safety level of the source (1) is less than the Hamming distance
(2), the preferred neighbor 0011’s safety level is 2, which is more
than the the Hamming distance minus one. Again, the optimal
routing is possible in this case (see Fig. 3). When the destination is
1110, any unicasting fails and this can be easily detected at the
source node, say 0111. At 0111, the safety level of the source is 1,
which is less than the Hamming distance H(0111, 1110) = 2
(condition C1 fails) and none of the preferred neighbors’ (0110 and
1111) safety level is more than the Hamming distance minus one
(condition C2 fails), hence there is no optimal unicasting. Both
spare neighbors’ (0101 and 0011) safety levels are 2 which is less
than the Hamming distance plus one (condition C3 also fails), and
hence there is no suboptimal unicasting. Therefore, this unicasting
is aborted at the source node.

Fig. 3. Unicasting in a disconnected four-cube with four faulty nodes.

The following theorem shows that in any disconnected hyper-
cube all the nonfaulty nodes are unsafe based on the safe node
definitions of both Lee-Hayes [7] and Wu-Fernandez [10]. Because
both unicasting algorithms in [7] and [4] need at least one safe
node in the neighborhood of the source node, they cannot be used
for cubes with no safe nodes. That is, they are not applicable in
any disconnected hypercube. Because for any given faulty hyper-
cube the safe node set based on Lee-Hayes’ definition is a subset of
the one based on Wu-Fernandez’ definition, it suffices to prove
that the safe node set based on Wu-Fernandez’s definition is
empty.

THEOREM 4. Based on Wu and Fernandez’s safe node definition, the safe
node set is empty for any disconnected hypercube.

PROOF. Assume that the nonfaulty node set of a given faulty n-
cube is partitioned into two disjoint sets V and W. That is,
any two nodes, one from each of V and W, are disconnected
in the faulty n-cube.

Select a node v from V and assume that its address is
0000 (otherwise we can always remap nodes to make the
address of 0000). We then classify nodes in the n-cube into n
levels. A node with i one bits in its address belongs to level
i. Note that any node at level i has i neighbors at level i - 1.
Assume that level k is the lowest (closest to node v: 0000)
level among the nodes in W, then k should be larger then 1;
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otherwise, W and V are connected. Randomly select a node
w from W at level k, there are at least k ≥ 2 neighbors at level
k - 1. Based on the fact that W and V are disconnected and k
is the lowest level among the nodes in W, all k neighbors at
level k - 1 are faulty. Therefore, node w is unsafe. Since node
w is randomly selected, all nodes at level k that belong to W
are unsafe.

At level k + 1, again we randomly select a node w¢ in W.
Node w¢ has k + 1 ≥ 3 neighbors at level k, among them some
are unsafe nodes in W and the rest are faulty. Based on the
Wu-Fernandez’s definition (Definition 3) of safe node, a
node is unsafe if there are three unsafe or faulty neighbors,
all the nodes at level k + 1 that are in W are unsafe. The same
argument can be applied level by level until reaching the
highest level among the nodes in W. In this way, we prove
that all the nodes in W are unsafe. Note that the highest
level may or may not be n. By interchanging the role of V
and W, we can prove that all the nodes in V are unsafe.

A disconnected hypercube with multiple disjoint parts
can be considered as the result of a series of partitions of a
disconnected hypercube with two disjoint parts. Clearly, the
above conclusion applies to any disconnected hypercube
with multiple disjoint parts.                                                      �

Based on the above result, we conclude that the unicasting al-
gorithms proposed by Lee-Hayes [7] and Chiu-Wu [4] are not ap-
plicable to any disconnected hypercube.

4 EXTENSIONS

4.1 Hypercubes with Both Faulty Links and Nodes
We first extend the safety level concept to a general faulty hyper-
cube with both faulty links and nodes. The approach is based on
the following idea: Nonfaulty nodes are classified into

1) nonfaulty nodes without adjacent faulty link(s) and set N1
includes all these nodes, and

2) nonfaulty nodes with adjacent faulty link(s) and set N2 in-
cludes all these nodes.

The safety levels of nodes from these two sets (N1 and N2) are de-
fined differently representing two different views of the same
system. From the view of a nonfaulty node in N1, each nonfaulty
node in N2 is treated as a faulty node. However, a nonfaulty node
in N2 considers itself as a regular healthy node but treats all the
other end node(s) of adjacent faulty link(s) as faulty nodes. We
assume that any nonfaulty node can distinguish an adjacent faulty
link from an adjacent faulty nodes.

The GLOBAL_STATUS algorithm can be modified as follows:
Each faulty node (F is the set of faulty nodes) is labeled as 0, each
nonfaulty node with adjacent faulty link(s) declares itself faulty
with an initial safety level 0, and each nonfaulty node without
adjacent faulty link(s) has an initial safety level n. Apply first the
regular GS algorithm only to nonfaulty nodes without adjacent
faulty link(s) (nodes in N1) and each nonfaulty node with adjacent
faulty link(s) (a node in N2) runs the NODE_STATUS algorithm
once only in the last round.

Algorithm EXTENDED_GLOBAL_STATUS (EGS)
{Initially all nonfaulty nodes in N1 are n-safe, all faulty nodes in F
  and nonfaulty nodes in N2 are 0-safe, and round = 1.}
begin
     while round £ n - 1
          parbegin
               NODE_STATUS(a), "a Œ N1;
               if round = n - 1 then NODE_STATUS(a), "a Œ N2

          parend;
          round := round + 1
end.

Fig. 4 shows a faulty four-cube with four faulty nodes and one
faulty link, and lists the safety levels of nonfaulty nodes after exe-
cuting the GS algorithm. Node 1000 is 1-safe and node 1001 is 2-
safe. However, both are treated as faulty3 by all the other nodes.
Each node in N2 (nodes 1000 and 1001) considers itself regular and
uses the associated safety level to perform a unicasting. Assume
that node 1101 needs to forward a message to node 1000. Because
both preferred neighbors of node 1101 are faulty, there is no
Hamming distance path between 1101 and 1000. However, the
spare neighbor 1111 has a safety level of 4 which is more than the
Hamming distance (which is 2) plus 1. Therefore, suboptimal
routing is possible and the routing path is 1101 Æ 1111 Æ 1011 Æ
1010 Æ 1000 as shown in Fig. 4.

Fig. 4. A faulty four-cube with four faulty nodes and one faulty link.

The proposed routing algorithm (in Section 3) can also be used
at nonfaulty nodes with adjacent faulty link(s). The rule is as fol-
lows: Suppose node a is the source node with adjacent faulty
link(s), except for the end node(s) of adjacent faulty link(s) of a,
there exists a Hamming distance path to any nodes with k dis-
tance, where k is the safety level of a nonfaulty node with adjacent
faulty link(s). The same rule for suboptimality applies here.

4.2 Generalized n-Dimensional Hypercubes
Let N be the total number of processors (nodes) and be repre-
sented as a product of mi’s, mi > 1 for 0 £ i < n, i.e., N = mn-1 ¥ mn-2
¥ ... ¥ m1 ¥ m0. Each node corresponds to an n-vector (an-1, an-2, ...,
a1, a0), where 0 £ ai £ mi - 1. In a generalized n-dimensional hyper-
cubes (GHn) [1], two nodes are linked by an edge if they differ in
exactly one coordinate.

The safety level of a node in GHn is defined as follows: Each
node’s safety level (S) depends on the neighbors’ safety levels.
Neighbors are grouped by dimensions and each node needs only
one safety level from nodes in the same dimension. Therefore,
each node in a generalized n-dimensional hypercube still has an n-
vector of neighbors’ safety level. The definition of the safety level
is the same as the one defined in regular hypercubes, which is
based on the n-vector of neighbor’s safety level. However, the
definition of safety level along each dimension is different. The
safety level along a dimension (say i) of node a (analogous to the
safety level along this dimension in a regular hypercube) is the
minimum safety level of all the nodes (mi - 1 in total) along this
dimension, i.e., the minimum of all the nodes that have the same
addresses as node a except at coordinate (dimension) i.

DEFINITION 4. The safety level of a faulty node is 0. For a nonfaulty node
a, let (S0, S1, S2, ..., Sn-1), 0 £ Si £ n, be the nondecreasing safety
level sequence of node a’s n neighboring nodes in an n-cube, such

3. It is treated as a special fault. Although such a node may not be
used as an intermediate node to forward a message, the message still
needs to be forwarded to this node if it is a destination node.
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that Si £ Si+1, 0 £ i £ n - 2. Let (d0, d1, ..., dn-1) be the corre-
sponding dimension sequence of the safety level sequence. Each Si

is defined as follows: Si is the minimum of safety levels among all
the nodes that have the same coordinates as node a except at di-
mension di. The safety level of node a is defined as: if (S0, S1, S2,
..., Sn-1) ≥ (0, 1, 2, ..., n - 1) then S(a) =  n else if (S0, S1, S2, ...,
Sk-1) ≥ (0, 1, 2, ..., k - 1) Ÿ (Sk = k - 1) then S(a) = k.

The GLOBAL_STATUS algorithm can be easily extended to be
applied to the generalized hypercube. The key is to obtain each
element of (S0, S1, ..., Sn-1). Because all the nodes along the same
dimension are directly connected, the minimum safety level of all
the nodes in the same dimension can be obtained in one step.
Therefore, it still requires a total of (n - 1) steps to obtain the safety
status of each node in GHn. The following is the extended
NODE_STATUS algorithm (we will use the same GS algorithm as
shown in Section 2).

Procedure EXTENDED_NODE_STATUS(a)
begin ë
     {at node a determine the ascending status sequence of neigh-
       boring nodes (S0, S1, S2, ..., Sn-1) where Si = min{S(ai)|ai and a
       differ only in the ith coordinate}
     if (S0, S1, S2, ..., Sn-1) ≥ (0, 1, 2, ..., n - 1)
          then mark a as n-safe (or safe);
     if ((S0, S1, S2, ..., Sk-1) ≥ (0, 1, 2, ..., k - 1)) Ÿ (Sk = k - 1)
          then mark a as k-safe;
end.

THEOREM 2¢. If the safety level of a node (say a) in a generalized hypercube
is k (0 £ k £ n), then there is at least one optimal path from this node
to any node that differ from node a by at most k coordinates.

Routing in GHn is exactly the same as in a regular hypercube,
because all the nodes are directly connected along the same di-
mension. Fig. 5 shows a 2 ¥ 3 ¥ 2 generalized hypercube with four
faulty nodes. The number inside each cycle represents the safety
level of the node. There are four nodes whose safety levels are 3,
i.e., safe. Therefore, routing from any of these four nodes are op-
timal. Because each unsafe but nonfaulty node has a safe neighbor,
routing from any of these nodes is at least suboptimal (the length
of such a path is the distance between the source and destination
plus two). Suppose node 010 is the source and node 101 is the des-
tination (their addresses differ in three coordinates). At the first
step, node 010 can forward the unicast message to one of four
neighbors along one of three possible dimensions. The neighbor
along dimension 0 is faulty and it is not eligible. The neighbor
along dimension 2 has a safety level of 1 which is less than 3 - 1 =
2 and again is not eligible. Therefore, the only eligible neighbors
are the ones along dimension 1. Based on the relative distance be-
tween the source and the destination along dimension 1, node 000 is
selected (as part of ring routing along this dimension). Once node
000 receives the message, it then forwards the message to one of its
two eligible neighbors, in this case, the only choice is node 001
(with a safety level 1) which in turn forwards the message to the
destination node 101. Another possible optimal path is 010 Æ 020
Æ 021 Æ 121 Æ 101.

5 CONCLUSIONS

We have proposed a unicasting algorithm for faulty hypercubes.
This algorithm uses limited global information captured by a
safety level associated with each node. The safety level can be cal-
culated through a simple (n - 1)-round information exchange
among neighboring nodes in an n-cube. A source node can easily
decide to perform either an optimal or a suboptimal unicast, based
on its safety level, its neighbors’ safety levels, and the Hamming
distance between the source and the destination. A source node

can also identify cases when optimal and suboptimal paths are
blocked by faulty nodes and when the corresponding unicast tries
to forward a message to another part in a disconnected faulty hy-
percube. The proposed approach is the first attempt to address
reliable unicasting in disconnected hypercubes. We have also ex-
tended the safety level concept to cover faulty links and have
shown its application in generalized hypercubes.

REFERENCES

[1] L.N. Bhuyan and D.P. Agrawal, “Generalized Hypercube and
Hyperbus Structures for a Computer Network,” IEEE Trans. Com-
puters, vol. 32, no. 4, pp. 323-333, Apr. 1984.

[2] M.S. Chen and K.G. Shin, “Adaptive Fault-Tolerant Routing in
Hypercube Multicomputers,” IEEE Trans. Computers, vol. 39, no. 12,
pp. 1,406-1,416, Dec. 1990.

[3] M.S. Chen and K.G. Shin, “Depth-First Search Approach for Fault-
Tolerant Routing in Hypercube Multicomputers,” IEEE Trans.
Parallel and Distributed Systems, vol. 1, no. 2, pp. 152-159, Apr.
1990.

[4] G.M. Chiu and S.P. Wu, “A Fault-Tolerant Routing Strategy in
Hypercube Multicomputers,” IEEE Trans. Computers, vol. 45, no. 2,
pp. 143-156, Feb. 1996.

[5] J.M. Gordon and Q.F. Stout, “Hypercube Message Routing in the
Presence of Faults,” Proc. Third Conf. Hypercube Concurrent Com-
puters and Applications, pp. 251-263, Jan. 1988.

[6] Y. Lan, “A Fault-Tolerant Routing Algorithm in Hypercubes,”
Proc. 1994 Int’l Conf. Parallel Processing, pp. III 163-III 166, Aug.
1994.

[7] T.C. Lee and J.P. Hayes, “A Fault-Tolerant Communication
Scheme for Hypercube Computers,” IEEE Trans. Computers, vol. 41,
no. 10, pp. 1,242-1,256, Oct. 1992.

[8] C.S. Raghavendra, P.J. Yang, and S.B. Tien, “Free Dimensions—
An Effective Approach to Achieving Fault Tolerance in Hyper-
cubes,” Proc. 22nd Int’l Symp. Fault-Tolerant Computing, pp. 170-
177, 1992.

[9] J. Wu, “Safety Level—An Efficient Mechanism for Achieving Reli-
able Broadcasting in Hypercubes,” IEEE Trans. Computers, vol. 44,
no. 5, pp. 702-705, May 1995.

[10] J. Wu and E.B. Fernandez, “Reliable Broadcasting in Faulty Hy-
percube Computers,” Microprocessing and Microprogramming, vol. 39,
pp. 43-53, 1993.

Fig. 5. Routing in a 2 ¥ 3 ¥ 2 GH3.


