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Abstract. In this paper we set out to theoretically explore and experi-
mentally compare different client-server design alternatives implemented
in Java. We introduce a new concurrent data structure, called concur-
rent hash table, for solving the synchronization problem in the classical
producer/consumer model. The structure allows multiple reads and a sin-
gle write to proceed concurrently. We look at the following TCP server
designs: concurrent server-new thread per client; pre-threaded servers:
locking around accept; socket passing through a shared buffer; socket
passing through a concurrent queue; socket passing through a concur-
rent hash table; socket passing through pipes. The servers have been
tested on a network of 35 workstations. The experimental results have
shown that the server using pipes to pass tasks to the workers outper-
forms every other one. For all servers, better performance is achieved by
using a number of worker threads in the range of one hundred rather
than fifteen as commonly recommended.

1 Introduction

The third industrial revolution is all about what George Herbert Wells envisaged
at the dawn of last century as “The World Brain.” Today, we see the prophecy
come true. The neurons of this brain constitute the interconnection of networked
computers called the Internet where the processing elements interact with each
other using the client-server pattern. In this paper we set out to explore and
experimentally compare different client-server design alternatives implemented
in Java. The application programming interface used is “Berkeley sockets” [9].
Threads, an abstract compute model, are used to structure the concurrent ac-
tivities in the server programs.

The performance and correctness of the server programs is of crucial impor-
tance to the success of many network applications and distributed systems. With
the explosion of the WWW, busy Web servers measure the number of connections
per hour in the hundreds of thousands. Furthermore, many of these servers inter-
act with backend database servers, which in turn have to process an even greater
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workload. In other words, if we are to build robust Internet applications materi-
alizing Wells’s metaphor, more than ever before the network applications should
be based on efficient client-server architectures. Today, many new technologies,
like the Java Virtual Machine (JVM), multiprocessor and multithreaded kernels
have matured. In JVM the time required to spawn a new thread or to obtain
an object’s lock in most implementations is negligible. The use of multiproces-
sor computing machines is a norm. Mapping of threads to processors has been
optimized tremendously. As a result, designs that have been impossible until
recently become viable propositions.

Java [4], an object-oriented language, has become popular because of its
platform independence and safety. It has greatly simplified network program-
ming [5] by providing elegant TCP/IP API, object serialization, network class
loading (code mobility), remote method invocation, Servlets and built-in con-
current constructs. This along with its phenomenally growing popularity entails
a rapidly expanding body of projects: Atlas, Charlotte, Javelin, JPVM, Globus,
IceT, JavaSpaces, MP1LJ, Bayanihan to mention but a few, that use Java as a
language for high performance computing on networks of workstations [11]. The
Syracuse workshop [3] discussed Java’s possible role as the basic programming
language for science and engineering—taking the role now played by Fortran 90
and C++-and concluded that Java could become dominant by adding the nec-
essary functionality to the basic Web loosely coupled distributed model.

In this paper we compare the following TCP server designs: (1) iterative
server; (2) concurrent server-new thread per client; (3) pre-threaded server with
locking (mutex) around accept; (4) pre-threaded server—connected socket pass-
ing through a shared buffer; (5) pre-threaded server—connected socket passing
through a concurrent queue [8]; (6) pre-threaded server—connected socket passing
through a concurrent hash table; and (7) pre-threaded server—connected socket
passing through pipes.

For all the server architectures, we evaluate experimentally parameters taken
for granted for quite a long time, for example, the number of worker threads a
server should spawn, the buffer capacity of the shared buffer and techniques for
synchronizing the work of the thread accepting the connections and the threads
carrying out the service requests. To evaluate the servers, we run the same client
on 35 hosts on the same subnet on which the server being evaluated is running.
Each client spawns between 4 and 20 child clients to create multiple simultaneous
connections to the server, for a maximum of 700 simultaneous connections. We
consider the effect of having too many/few threads.

The remainder of the paper is structured as follows. In Section 2, we review
the TCP/IP protocol stack and Java concurrent and multithreading constructs.
In Section 3, we describe the architecture and the implementation of the server
designs. Next, in Section 4 we give theoretical analysis of the performance of
the concurrent hash table and synchronization using pipes. Then, in Section 5
we present experimental results. In the final section we outline plans for future
work and conclude.
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2 TCP/IP and Concurrent Java Programming

Most network applications are structured in two pieces: a client and a server.
Clients normally communicate with one server at a time. On the other hand,
servers commonly handle multiple client requests at any given point in time.
Network protocols are involved in the client-server communication. In this paper
we focus on the TCP/IP protocol suite. The TCP [9] protocol is a connection-
oriented protocol that provides a reliable, full-duplex, byte stream for a user
process or thread. TCP takes care of details such as acknowledgements, timeouts,
and retransmissions. Most Internet application programs use TCP. TCP can use
either IPv4 [10] or IPv6 [2].

Java is a shared memory thread-based language with built-in monitors [6] and
binary semaphores as a means of synchronization at the object and class level [7].
The Java class libraries relevant to network programming, thread communication
and synchronization are java.net, java.io, and java.lang.

class TCPClient {
//instance variables
public void execute () {
for( int 1 = 0 ; i < nchildren - 1 ; i++ )
{// Spawn a new client processe }
for (int 1 = 0 ; i < nrequests ; i++ ) {
connect = new Socket( hostIP, port );
// send request and get response
connect.close() ;

Py

Fig. 1. Pseudo code for the TCP client program testing the different server designs

3 Client-Server Design Alternatives

Below we describe each of the server designs we use. We examine how the main
server thread and the worker threads can be synchronized. The client used to
test all the servers is shown in Figure 1. When we execute the client,

java TCPClient IP port nchildren nrequest [millisec | filename]
we specify the host’s IP address, the server’s port, the number of children for
the client to spawn, the number of requests each child should send to the server,
and the number of milliseconds the server should delay its response to simulate
the processing of a client request. The client closes the connection after receiving
the server’s response, so TCP’s TIME_WAIT state occurs on the client, and not
on the server.
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All servers subclass the abstract class TCPServer shown in Figure 2. They
implement its abstract method handleRequest (), processing a single client re-
quest. Each server extends the class constructor to kick off the required worker
threads, monitors, locks, barriers and/or buffers used for synchronization and
communication.

publicabstractclass TCPServer implements Runnable {
public TCPServer( int port, int nreq, int nbytes, long time )
..
public void run O {
while ( true ) {
try {
connect = listenSocket.accept () ;
handleRequest( connect ); processedRequests++;
if ( processedRequests == nrequests )
{listenSocket.close () ; break ;}
} catch ( IOException excp ) { }
} return ;

}

protected abstract void handleRequest( Socket connect ) ;

Fig. 2. Generic TCP server. Servers implements the abstract method handleRequest ()

3.1 TCP Iterative and Concurrent Server Designs

Our first server is an iterative single-threaded server. It is used as a benchmark
to measure the speed up of the concurrent servers. The server cannot process a
pending client until it has served the current one.

Our next design is a classical concurrent server. It spawns a thread to handle
each new client request. When a new connection is established, accept () method
of ServerSocket returns, the server calls the worker thread constructor and then
the spawned thread serves the client. The parent server thread goes back to wait
for another connection.

3.2 Pre-threaded Server, Locking around accept

In this server design we use a technique called pre-threading. The server pre-
spawns a pool of worker threads, see Figure 3. The worker threads are ready
to serve the clients as each client connection arrives. As shown in Figure 4, all
worker compete to obtain the ServerSocket lock passed to each of them when
they were created. As a result, only one worker thread, the winner, is blocked
in the call to accept (). The remaining workers are blocked trying to obtain
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Fig. 3. The main thread S spawns worker threads, W;, to serve the clients C;

the server socket’s lock. We use Java’s block synchronization to implement this
server design.

acquire

accept

server socket

Fig. 4. TCP pre-threaded server, locking (mutex) around accept

Theoretically, the advantage of this technique is that a new client request can
be handled without the cost of spawning a new thread. An important parameter
of the design is the number of worker threads the server should spawn when it
starts. 15 threads are recommended in [12]. In contrast, our experiments show
that better results are obtained with 70 to 80 threads. If the number of clients
at any time equals the number of worker threads, additional clients will notice
degradation in response time. The kernel will still complete the TCP three-way
handshake for the additional clients, up to the listen backlog specified when
the ServerSocket is instantiated. Stevens [12] suggests that the main thread
monitor the number of available workers, and if this value drops below or exceeds
some thresholds, it must spawn or terminate some workers, respectively, to avoid
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performance degradation. We found out experimentally that the main server
thread can handle up to 200 worker threads without any performance penalty
and there is no need to implement a sophisticated monitoring.

3.3 Pre-threaded Server, Connected Socket Passing through a
Shared Buffer

Next, we modify the pre-threaded server to have only the parent server thread
call accept () and then pass the connected socket to one of the worker threads
through a shared buffer. The buffer is implemented as a fixed array of references
to sockets along with two indices that circularly traverse the array, keeping
track of the next position to put and take respectively. This is a classical pro-
ducer/consumer solution where a monitor is used to synchronize the access to
the shared buffer.

3.4 Pre-threaded Server, Connected Socket Passing through
Concurrent Queue

In this server design the shared buffer described in Section 3.3 is implemented
as a concurrent queue [8]. The queue uses the lock-splitting technique [7] to
minimize access contention. A put lock ensures that only one put operation at
a time can proceed. A take lock similarly ensures that only one take operation
at a time can proceed. A put and a take can normally proceed independently,
except when the queue is empty. The main server thread puts the connected
socket on the queue. The worker threads take the connected sockets from the
queue.

3.5 Pre-threaded Server, Connected Socket Passing through
Concurrent Hash Table

Next, we introduce a new server design technique, where the shared buffer is im-
plemented as a concurrent hash table, see Figure 5. A dynamic set that supports
the operations insert, search, and delete is called a dictionary. A hash table
is an efficient data structure for implementing dictionaries. Under reasonable
assumptions, the expected time to search for an element in a hash table is O(1).
With hashing, an element x with key k is stored in slot h(k), where h is a hash
function used to compute the slot from the key k. When two keys hash to the
same slot a collision occurs. Collisions in the concurrent hash tables are resolved
using open addressing [1]. In open addressing, each table entry contains either
an element or null. When searching for an element, we systematically examine
table slots until an element is found. To perform insertion, we probe the hash ta-
ble until we find an empty slot in which to put the element. To determine which
slots to probe we extend the hash function to include the probe number, starting
from zero, as a second input. The code is given in the Appendix. Each element
in the concurrent hash table is of type SynchronizedRef. This class maintains a
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Fig. 5. Concurrent hash table. The main server thread inserts connected sockets in the
table. The prethreaded worker threads retrieve these sockets

single reference variable that is always accessed and updated under synchroniza-
tion. Using SynchronizedRef objects as elements in the hash table, allows us
to loosen the synchronization among the worker threads, and between the main
server thread and the worker threads using an optimistic control strategy. Each
thread can access any slot without possessing a synchronization lock as a pre-
condition. We have two different cases to consider corresponding to the methods
insert and search: (i) The main server thread calls accept () and then inserts
the returned connected socket in the table using the insert method of the con-
current hash table object. The insert method uses the hashCode () method of
the Object class to compute the key of the connected socket and double hashing
[1] to compute the slot in the table. (ii) Worker threads retrieve connected sock-
ets from the table using the search method of the concurrent hash table object.
They pass as an argument to the search method a pseudo randomly generated
number. This number is used to calculate the first slot of the table to be checked
for a connected socket. If the slot is not null, the connected socket is retrieved
and the slot is set to null. Otherwise, the next slot in the probe sequence is
calculated and checked. If a collision occurs, i.e. two or more workers access the
same slot, because the table slots are objects of type SynchronizedRef only one
of the workers will retrieve the connected socket and set the slot to null. The
rest will see the null value and try to retrieve a connected socket from other
slots.
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3.6 Pre-threaded Server, Connected Socket Passing Through Pipes

O (0| | O | Wb | W[ |[—

success ym-2 true

m-1

Fig. 6. TCP pre-threaded server, connected socket passing through pipes

The final modification, shown in Figure 6, of the pre-threaded server gets
around the need for using a common buffer and synchronization between the
main thread and the worker threads. The main server thread calls accept (). It
keeps track of the worker threads being free to pass a new connected socket to
a free worker through a pipe. We had to write our own pipe class since class
Socket does not implement the Serializable interface and therefore objects
of this class cannot be passed through Java communication pipes. When a new
request arrives, the main server thread finds the first available free worker by
scanning the array of WorkerStatus elements denoted as A[l..n] in Figure 6
and passes the socket to that worker through its own pipe. Being finished with
a client, the worker thread changes the status of its pipe back to ready state by
writing true in its WorkerStatus element.
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4 Theoretical Analysis

4.1 Analysis of Concurrent Hashing

Given a concurrent hash table T" with m slots that stores n elements, we define
the load factor a for T' as n/m, a < 1. We make the assumption of uniform
hashing: each key considered is equally likely to have any of the m! permutations
of {0,1,...,m — 1} as its probe sequence. In our implementation we use double
hashing which is a suitable approximation to uniform hashing. Double hashing
uses a hash function of the form

h(k, i) = (hi (k) + ihs(k)) mod m

where hy and hs are auxiliary hash functions. The initial position probed is
T'[h1(k)]; successive probe positions are offset from previous positions by the
amount hz(k) modulo m. The value of hy(k) must be relatively prime to the
concurrent hash table size m for the entire concurrent hash table to be searched.
Otherwise, if m and ho(k) have greatest common divisor d > 1 for some key £,
then a search for key k would examine only 1/dth of the table.

Theorem 1. Inserting an element into a concurrent hash table with load factor
a < 1 requires at most 1/(1 — a) probes on average, assuming uniform hashing.

Proof Inserting an element requires an unsuccessful search followed by the
placement of the element in the first empty slot found. In an unsuccessful search,
every probe but the last accesses an occupied slot, and the last slot probed is
empty. Let p; = Pr{exactly ¢ probes access occupied slots} for i = 0,1,2,....
For ¢ > n, we have p; = 0, since we can find at most n slots already occupied.
Thus the expected number of probes is

[ee]
1+ ip; (1)
i=0

To evaluate (1) we define ¢; = Pr{at least ¢ probes access occupied slots} for
i=0,1,2,.... Since i takes on values from the natural numbers

[ee] o0
D=2 4
i=0 i=1
The probability that the first probe accesses an occupied slot is n/m. Thus
n
a=—-
m

A second probe, if necessary, is to one of the remaining m — 1 unprobed slots,
n — 1 of which are occupied, thus,

w=(2)(55)
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The ith probe is made only if the first ¢ — 1 probes access occupied slots. Thus,
(n) n—1 n—(i—1) <(n)Z i
i=— i | ———= —) =a,
1 m/ \m—1 m—(G—1)) — \m

since (m —n —j)/(m —j) < (m —n)/m when m —n < m and j > 0. Now, we
can evaluate (1).

1
l—«

o0 o0
L+Y ip=14+> g<l+a+a®+a®+...=
=0 =1

If @ is a constant, Theorem 1 predicts that inserting an element runs in O(1)
time.

Theorem 2. In a concurrent hash table with load factor & = n/m < 1, the
expected number of probes in a successful search is at most 1/a.

The proof is similar to that of Theorem 1. If « is a constant, Theorem 2 predicts
that searching an element runs in O(1) time. For example, if we have a table
with a = 0.95, then the average search will take 1.05 probes, meaning that when
the server is overloaded, a worker thread can quickly retrieve a connected socket
and service a pending request.

4.2 Analysis of Pipe Synchronization

Here, the roles of producer and consumer are reversed w.r.t. the concurrent hash
table. The worker threads insert synchronization tokens (true values) while the
main server thread searches for an empty slot to find a free worker. Similarly to
hash table, given an array A[l..m] with m elements n of which are set to true,
we define the load factor 8 for A as n/m, § < 1.

Proposition 1. Insertion of true by a worker thread takes O(1) time.

Theorem 3. Assuming uniform hashing, searching for an element into array
A[l..m] with load factor B < 1 requires at most 1/83 probes on average by the
server thread S.

The proof is similar to that of Theorem 1. If 3 is a constant, Theorem 3 predicts
that searching an element runs in O(1) time.

5 Experimental Results

To evaluate the server design alternatives, we run the same client on 35 hosts
running Windows NT against each server, measuring the server wall-clock time
required to process a fixed number of requests. We summarize all our CPU
timings in Table 1. The readings recorded in column 3 (column 4) correspond to
250 milliseconds (500 milliseconds) server delay before sending back the response.
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Table 1. Timing comparisons of the various server designs

##|Server description CPU time|CPU time
1 |Iterative server 700000 -

2 |Concurrent server, one thread per child 12552 21499

3 |Locking around accept with 50 threads 21153 33602

4 |Shared buffer with 50 threads, 101 capacity 16562 28960

5 |Concurrent queue with 70 threads 13048 -

6 |Concurrent hash table with 50 threads, 101 capacity| 14562 24265

7 |Pipes with 150 threads 13195 19253

Each client spawns 4 child clients to create 4 simultaneous connections to the
server, for a maximum of 140 simultaneous connections at the server at any
time. Further, each client makes 20 connections to the server amounting to 2800
connections altogether. For the tests involving multithreaded servers, the server
creates up to 200 worker threads when it starts. We consider also the effect
of having too many/few threads. The clients send 1 byte to the server, which
responds with 4000 bytes after waiting for a predefined interval of time specified
in milliseconds. The number of worker threads and the buffer capacities recorded
in the second column of Table 1 were found experimentally to give the best results
for the corresponding server design. Table 2 shows how we have arrived at the
figures for the server using a concurrent queue.

The small CPU time obtained for the concurrent server indicates that spawn-
ing a new thread may be less expensive than synchronizing a great number of
pre-spawned threads. The smallest CPU time is for the server using pipes. In
this design, not only is there no synchronization among the worker threads, but
there is no additional cost for spawning worker threads. We were interested to
find out the threshold after which the server using pipes denies service, i.e., the
effect of having too many threads to synchronize. We ran experiments with up to
700 simultaneous clients, and the server was still providing a satisfactory service.

Table 2. Effect of threads number on the performance of the pre-threaded concurrent
server using concurrent queue as a shared buffer

# threads | 10 30 40 50 60 70 80
CPU time |70312|23781|20828(17549|17047|13048(18203

6 Conclusion

In this paper we compared the performance of seven server designs by running
them against the same client. The experimental results show that only one pre-
threaded server, the one using pipes, outperforms the classical concurrent server
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where the server spawns a new thread to handle the client connection. This
leads us to the conclusion that spawning a new thread is less expensive than
synchronizing a great number of threads. We introduced a new concurrent data
structure called concurrent hash table. Although theoretically sound, in practice
the performance of the concurrent hash table is not so good as the performance
of the server using pipes. We also considered the number of worker threads the
server should spawn in order to get maximum performance. We found out that
better performance is achieved by using a greater number of worker threads, in
the range of 100 rather than 15 as is commonly recommended.

We plan to run more experiments to fine-tune the behavior of the concurrent
hash table. We are going to test this data structure on a multiprocessor and
to gather data about the number of collisions. Similarly to hash tables this
concurrent data structure is highly sensitive to the choice of the hash function
and the capacity of the table. Theoretically, this server design should give good
performance when the load factor a approaches 1.
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Appendix

class HashBuffer {
protected SynchronizedRef[] table ;
protected int capacity ;
public HashBuffer( int capacity ) {
this.capacity = capacity ;



Lecture Notes in Computer Science 13

table = new SynchronizedRef [capacity] ;
for ( int i = 0; i < capacity ; i++ )
table[i] = new SynchronizedRef( null ) ;
}
protected void insert( Object obj ) {
int pos = 0 ;
int key = obj.hashCode() ;
if ( key < 0 ) key = -key ;
int hashl = key % capacity ;
int hash2 = 1 + key % (capacity - 1) ;
while ( true ) {
pos = hashl ;
if ( tablel[pos].get() == null ) {
table[pos].set( obj ) ;
return ;
}
for ( int i = 0; i < capacity ; i++ ) {
pos = (pos + hash2) % capacity ;
if ( tablel[pos].get() == null ) {
table[pos].set( obj ) ;
return ;
}
}
synchronized( obj ) {
try { obj.wait( 500 ) ; }
catch ( InterruptedException e ) {}

}
}
protected Object search( int key ) {
Object temp = null ;
int pos = 0 ;
if ( key < 0 ) key = -key ;
int hashl = key % capacity ;
int hash2 = 1 + key % (capacity - 1) ;
while ( true ) {
pos = hashl ;
if ( ( temp = table[pos].set( null ) ) != null )
return temp ;
for ( int i = 1; i < capacity ; i++ ) {
pos = (pos + hash2) % capacity ;
if ( ( temp = table[pos].set( null ) ) != null )
return temp ;
}
synchronized( obj ) {
try { obj.wait( 500 ) ; } catch(InterruptedException e){}
}



