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PART V

Credibility: 
Evaluating what’s 

been learned
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Evaluation: the key to success
� How predictive is the model we learned?
� Error on the training data is not a good indicator of 

performance on future data
� Otherwise 1-NN would be the optimum classifier!

� Simple solution that can be used if lots of (labeled) 
data is available:
� Split data into training and test set

� However: (labeled) data is usually limited
� More sophisticated techniques need to be used



10/25/2000 4

Issues in evaluation
� Statistical reliability of estimated differences in 

performance (→ significance tests)
� Choice of performance measure:

� Number of correct classifications
� Accuracy of probability estimates 
� Error in numeric predictions

� Costs assigned to different types of errors
� Many practical applications involve costs
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Training and testing I
� Natural performance measure for classification 

problems: error rate
� Success: instance’s class is predicted correctly
� Error: instance’s class is predicted incorrectly
� Error rate: proportion of errors made over the whole 

set of instances

� Resubstitution error: error rate obtained from the 
training data

� Resubstitution error is (hopelessly) optimistic!
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Training and testing II
� Test set: set of independent instances that have 

played no part in formation of classifier
� Assumption: both training data and test data are 

representative samples of the underlying problem

� Test and training data may differ in nature
� Example: classifiers built using customer data from 

two different towns A and B
�To estimate performance of classifier from town A in 

completely new town, test it on data from B
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A note on parameter tuning
� It is important that the test data is not used in any 

way to create the classifier
� Some learning schemes operate in two stages:

� Stage 1: builds the basic structure
� Stage 2: optimizes parameter settings

� The test data can’t be used for parameter tuning!
� Proper procedure uses three sets: training data, 

validation data, and test data
� Validation data is used to optimize parameters
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Making the most of the data
� Once evaluation is complete, all the data can be 

used to build the final classifier
� Generally, the larger the training data the better 

the classifier (but returns diminish)
� The larger the test data the more accurate the 

error estimate
� Holdout procedure: method of splitting original 

data into training and test set
� Dilemma: ideally we want both, a large training and 

a large test set
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Predicting performance
� Assume the estimated error rate is 25%. How 

close is this to the true error rate?
� Depends on the amount of test data

� Prediction is just like tossing a biased (!) coin
� “Head” is a “success”, “tail” is an “error”

� In statistics, a succession of independent events 
like this is called a Bernoulli process
� Statistical theory provides us with confidence 

intervals for the true underlying proportion!
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Confidence intervals
� We can say: p lies within a certain specified 

interval with a certain specified confidence
� Example: S=750 successes in N=1000 trials

� Estimated success rate: 75%
� How close is this to true success rate p?

�Answer: with 80% confidence p∈[73.2,76.7]

� Another example: S=75 and N=100
� Estimated success rate: 75%

� With 80% confidence p∈[69.1,80.1]
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Mean and variance
� Mean and variance for a Bernoulli trial: p, p(1-p)
� Expected success rate f=S/N
� Mean and variance for f: p, p(1-p)/N
� For large enough N, f follows a normal distribution

� c% confidence interval [-z ≤ X ≤ z] for random 
variable with 0 mean is given by:

� Given a symmetric distribution:

czXz =≤≤− ]Pr[
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Confidence limits
� Confidence limits for the normal distribution with 0 

mean and a variance of 1:

� Thus:

� To use this we have to reduce our random 
variable f to have 0 mean and unit variance
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Transforming f
� Transformed value for f:

(i.e. subtract the mean and divide by the standard 
deviation)

� Resulting equation:

� Solving for p:
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Examples
� f=75%, N=1000, c=80% (so that z=1.28):

� f=75%, N=100, c=80% (so that z=1.28):

� Note that normal distribution assumption is only 
valid for large N (i.e. N > 100)

� f=75%, N=10, c=80% (so that z=1.28):

should be taken with a grain of salt

]767.0,732.0[∈p

]801.0,691.0[∈p

]881.0,549.0[∈p
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Holdout estimation
� What shall we do if the amount of data is limited?
� The holdout method reserves a certain amount for 

testing and uses the remainder for training
� Usually: one third for testing, the rest for training

� Problem: the samples might not be representative
� Example: class might be missing in the test data

� Advanced version uses stratification
� Ensures that each class is represented with 

approximately equal proportions in both subsets
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Repeated holdout method
� Holdout estimate can be made more reliable by 

repeating the process with different subsamples
� In each iteration, a certain proportion is randomly 

selected for training (possibly with stratificiation)
� The error rates on the different iterations are 

averaged to yield an overall error rate

� This is called the repeated holdout method
� Still not optimum: the different test set overlap

� Can we prevent overlapping?
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Cross-validation
� Cross-validation avoids overlapping test sets

� First step: data is split into k subsets of equal size

� Second step: each subset in turn is used for testing 
and the remainder for training

� This is called k-fold cross-validation
� Often the subsets are stratified before the cross-

validation is performed
� The error estimates are averaged to yield an 

overall error estimate
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More on cross-validation
� Standard method for evaluation: stratified ten-fold 

cross-validation
� Why ten? Extensive experiments have shown that 

this is the best choice to get an accurate estimate
� There is also some theoretical evidence for this

� Stratification reduces the estimate’s variance
� Even better: repeated stratified cross-validation

� E.g. ten-fold cross-validation is repeated ten times 
and results are averaged (reduces the variance)
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Leave-one-out cross-validation
� Leave-one-out cross-validation is a particular form 

of cross-validation:
� The number of folds is set to the number of training 

instances
� I.e., a classifier has to be built n times, where n is 

the number of training instances

� Makes maximum use of the data
� No random subsampling involved
� Very computationally expensive (exception: NN)
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LOO-CV and stratification
� Another disadvantage of LOO-CV: stratification is 

not possible
� It guarantees a non-stratified sample because there 

is only one instance in the test set!

� Extreme example: completely random dataset with  
two classes and equal proportions for both of them
� Best inducer predicts majority class (results in 50% 

on fresh data from this domain)
� LOO-CV estimate for this inducer will be 100%!
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The bootstrap
� CV uses sampling without replacement

� The same instance, once selected, can not be 
selected again for a particular training/test set

� The bootstrap is an estimation method that uses 
sampling with replacement to form the training set
� A dataset of n instances is sampled n times with 

replacement to form a new dataset of n instances
� This data is used as the training set
� The instances from the original dataset that don’t 

occur in the new training set are used for testing
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The 0.632 bootstrap
� This method is also called the 0.632 bootstrap

� A particular instance has a probability of 1-1/n of 
not being picked

� Thus its probability of ending up in the test data is:

� This means the training data will contain 
approximately 63.2% of the instances
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Estimating error with the boostrap
� The error estimate on the test data will be very 

pessimistic 
� It contains only ~63% of the instances

� Thus it is combined with the resubstitution error:

� The resubstituion error gets less weight than the 
error on the test data

� Process is repeated several time, with different 
replacement samples, and the results averaged

instances  traininginstancestest  368.0632.0 eeerr ⋅+⋅=
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More on the bootstrap
� It is probably the best way of estimating 

performance for very small datasets
� However, it has some problems

� Consider the random dataset from above
� A perfect memorizes will achieve 0% resubstitution 

error and ~50% error on test data

� Bootstrap estimate for this classifier:

� True expected error: 50%

%6.31%0368.0%50632.0 =⋅+⋅=err
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Comparing data mining schemes
� Frequent situation: we want to know which one of 

two learning schemes performs better
� Note: this is domain dependent!
� Obvious way: compare 10-fold CV estimates
� Problem: variance in estimate
� Variance can be reduced using repeated CV
� However, we still don’t know whether the results 

are reliable
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Significance tests
� Significance tests tell us how confident we can be 

that there really is a difference
� Null hypothesis: there is no “real” difference
� Alternative hypothesis: there is a difference
� A significance test measures how much evidence 

there is in favor of rejecting the null hypothesis
� Let’s say we are using 10 times 10-fold CV
� Then we want to know whether the two means of 

the 10 CV estimates are significantly different
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The paired t-test
� Student’s t-test tells us whether the means of two 

samples are significantly different
� The individual samples are taken from the set of 

all possible cross-validation estimates
� We can use a paired t-test because the individual 

samples are paired
� The same CV is applied twice

� Let x1, x2, …, xk and y1, y2, …, yk be the 2k
samples for a k-fold CV



10/25/2000 28

The distribution of the means
� Let mx and my be the means of the respective 

samples
� If there are enough samples, the mean of a set of 

independent samples is normally distributed

� The estimated variances of the means are σx
2/k

and σy
2/k

� If µx and µy are the true means then
are approximately normally distributed with 0 
mean and unit variance
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Student’s distribution
� With small samples (k<100) the mean follows 

Student’s distribution with k-1 degrees of freedom
� Confidence limits for 9 degrees of freedom (left), 

compared to limits for normal distribution (right):
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The distribution of the differences
� Let md=mx-my

� The difference of the means (md) also has a 
Student’s distribution with k-1 degrees of freedom

� Let σd
2 be the variance of the difference

� The standardized version of md is called t-statistic:

� We use t to perform the t-test

k

m
t

d

d

/2σ
=
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Performing the test
1. Fix a significance level α

� If a difference is significant at the α% level there is 
a (100-α)% chance that there really is a difference

2. Divide the significance level by two because the 
test is two-tailed
� I.e. the true difference can be positive or negative

3. Look up the value for z that corresponds to α/2
4. If t≤-z or t≥z then the difference is significant

� I.e. the null hypothesis can be rejected
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Unpaired observations
� If the CV estimates are from different 

randomizations, they are no longer paired
� Maybe we even used k-fold CV for one scheme, 

and j-fold CV for the other one
� Then we have to use an unpaired t-test with 

min(k,j)-1 degrees of freedom
� The t-statistic becomes:
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A note on interpreting the result
� All our cross-validation estimates are based on the 

same dataset
� Hence the test only tells us whether a complete k-

fold CV for this dataset would show a difference
� Complete k-fold CV generates all possible partitions 

of the data into k folds and averages the results

� Ideally, we want a different dataset sample for 
each of the k-fold CV estimates used in the test to 
judge performance across different training sets 
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Predicting probabilities
� Performance measure so far: success rate
� Also called 0-1 loss function:

� Most classifiers produces class probabilities
� Depending on the application, we might want to 

check the accuracy of the probability estimates
� 0-1 loss is not the right thing to use in those cases

∑




i incorrect is prediction if 1

correct is prediction if 0
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The quadratic loss function
� p1,…, pk are probability estimates for an instance
� Let c be the index of the instance’s actual class
� a1,…, ak=0, except for ac, which is 1
� The quadratic loss is:

� Justification:
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Informational loss function
� The informational loss function is –log(pc), where c

is the index of the instance’s actual class
� Number of bits required to communicate the actual 

class
� Let p1

*,…, pk
* be the true class probabilities

� Then the expected value for the loss function is:

� Justification: minimized for pj= pj
*

� Difficulty: zero-frequency problem

kk pppp 2
*

12
*
1 log...log −−−
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Discussion
� Which loss function should we choose?

� The quadratic loss functions takes into account all 
the class probability estimates for an instance

� The informational loss focuses only on the 
probability estimate for the actual class

� The quadratic loss is bounded by
� It can never exceed 2 

� The informational loss can be infinite

� Informational loss is related to MDL principle

∑+
j

jp21
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Counting the costs
� In practice, different types of classification errors 

often incur different costs
� Examples:

� Predicting when cows are in heat (“in estrus”)
� “Not in estrus” correct 97% of the time

� Loan decisions
� Oil-slick detection
� Fault diagnosis

� Promotional mailing
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Taking costs into account
� The confusion matrix:

� There many other types of costs!
� E.g.: cost of collecting training data

Actual 
class

True 
negative

False 
positive

No

False 
negative

True 
positive

Yes

NoYes

Predicted class
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Lift charts
� In practice, costs are rarely known
� Decisions are usually made by comparing possible 

scenarios
� Example: promotional mailout

� Situation 1: classifier predicts that 0.1% of all 
households will respond

� Situation 2: classifier predicts that 0.4% of the 
10000 most promising households will respond 

� A lift chart allows for a visual comparison 
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Generating a lift chart
� Instances are sorted according to their predicted probability 

of being a true positive:

� In lift chart, x axis is sample size and y axis is number of 
true positives

………

Yes0.884

No0.933

Yes0.932

Yes0.951

Actual classPredicted probabilityRank
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A hypothetical lift chart
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ROC curves
� ROC curves are similar to lift charts

� “ROC” stands for “receiver operating characteristic”

� Used in signal detection to show tradeoff between 
hit rate and false alarm rate over noisy channel

� Differences to lift chart:
� y axis shows percentage of true positives in sample 

(rather than absolute number)
� x axis shows percentage of false positives in 

sample (rather than sample size) 
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A sample ROC curve
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Cross-validation and ROC curves
� Simple method of getting a ROC curve using 

cross-validation:
� Collect probabilities for instances in test folds
� Sort instances according to probabilities

� This method is implemented in WEKA
� However, this is just one possibility

� The method described in the book generates an 
ROC curve for each fold and averages them 
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ROC curves for two schemes



10/25/2000 47

The convex hull
� Given two learning schemes we can achieve any 

point on the convex hull!
� TP and FP rates for scheme 1: t1 and f1
� TP and FP rates for scheme 2: t2 and f2
� If scheme 1 is used to predict 100×q% of the 

cases and scheme 2 for the rest, then we get:
� TP rate for combined scheme: q × t1+(1-q) × t2
� FP rate for combined scheme: q × f2+(1-q) × f2
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Cost-sensitive learning
� Most learning schemes do not perform cost-

sensitive learning
� They generate the same classifier no matter what 

costs are assigned to the different classes
� Example: standard decision tree learner

� Simple methods for cost-sensitive learning:
� Resampling of instances according to costs
� Weighting of instances according to costs

� Some schemes are inherently cost-sensitive, e.g. 
naïve Bayes
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Measures in information retrieval
� Percentage of retrieved documents that are 

relevant: precision=TP/TP+FP
� Percentage of relevant documents that are 

returned: recall =TP/TP+FN
� Precision/recall curves have hyperbolic shape
� Summary measures: average precision at 20%, 

50% and 80% recall (three-point average recall)
� F-measure=(2×recall×precision)/(recall+precision)



10/25/2000 50

Summary of measures

ExplanationPlotDomain

TP/(TP+FN)
TP/(TP+FP)

Recall
Precision

Information 
retrieval

Recall-
precision 
curve

TP/(TP+FN)
FP/(FP+TN)

TP rate
FP rate

CommunicationsROC curve

TP
(TP+FP)/
(TP+FP+TN+FN)

TP 
Subset 
size

MarketingLift chart
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Evaluating numeric prediction
� Same strategies: independent test set, cross-

validation, significance tests, etc.
� Difference: error measures
� Actual target values: a1, a2,…,an

� Predicted target values: p1, p2,…,pn

� Most popular measure: mean-squared error

� Easy to manipulate mathematically
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apap nn
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Other measures
� The root mean-squared error:

� The mean absolute error is less sensitive to 
outliers than the mean-squared error:

� Sometimes relative error values are more 
appropriate (e.g. 10% for an error of 50 when 
predicting 500)

n
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Improvement on the mean
� Often we want to know how much the scheme 

improves on simply predicting the average
� The relative squared error is (                  ):

� The relative absolute error is:
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The correlation coefficient
� Measures the statistical correlation between the 

predicted values and the actual values

� Scale independent, between –1 and +1
� Good performance leads to large values!
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Which measure?
� Best to look at all of them
� Often it doesn’t matter
� Example:

0.910.890.880.88Correlation coefficient

30.4%34.8%40.1%43.1%Relative absolute error

35.8%39.4%57.2%42.2%Root relative squared error

29.233.438.541.3Mean absolute error

57.463.391.767.8Root mean-squared error

DCBA
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The MDL principle
� MDL stands for minimum description length
� The description length is defined as:

space required to describe a theory
+

space required to describe the theory’s mistakes
� In our case the theory is the classifier and the 

mistakes are the errors on the training data
� Aim: we want a classifier with minimal DL
� MDL principle is a model selection criterion
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Model selection criteria
� Model selection criteria attempt to find a good 

compromise between:
A. The complexity of a model
B. Its prediction accuracy on the training data

� Reasoning: a good model is a simple model that 
achieves high accuracy on the given data

� Also known as Occam’s Razor: the best theory is 
the smallest one that describes all the facts 
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Elegance vs. errors
� Theory 1: very simple, elegant theory that explains 

the data almost perfectly
� Theory 2: significantly more complex theory that 

reproduces the data without mistakes
� Theory 1 is probably preferable
� Classical example: Kepler’s three laws on 

planetary motion
� Less accurate than Copernicus’s latest refinement 

of the Ptolemaic theory of epicycles
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MDL and compression
� The MDL principle is closely related to data 

compression:
� It postulates that the best theory is the one that 

compresses the data the most
� I.e. to compress a dataset we generate a model 

and then store the model and its mistakes
� We need to compute (a) the size of the model and 

(b) the space needed for encoding the errors
� (b) is easy: can use the informational loss function
� For (a) we need a method to encode the model
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DL and Bayes’s theorem
� L[T]=“length” of the theory
� L[E|T]=training set encoded wrt. the theory
� Description length= L[T] + L[E|T]
� Bayes’s theorem gives us the a posteriori 

probability of a theory given the data:

� Equivalent to:

]Pr[
]Pr[]|Pr[

]|Pr[
E

TTE
ET =

]Pr[log]Pr[log]|Pr[log]|Pr[log ETTEET +−−=−

constant
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MDL and MAP
� MAP stands for maximum a posteriori probability
� Finding the MAP theory corresponds to finding the 

MDL theory
� Difficult bit in applying the MAP principle: 

determining the prior probability Pr[T] of the theory
� Corresponds to difficult part in applying the MDL 

principle: coding scheme for the theory
� I.e. if we know a priori that a particular theory is 

more likely we need less bits to encode it
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Discussion of the MDL principle
� Advantage: makes full use of the training data 

when selecting a model
� Disadvantage 1: appropriate coding scheme/prior 

probabilities for theories are crucial
� Disadvantage 2: no guarantee that the MDL theory 

is the one which minimizes the expected error 
� Note: Occam’s Razor is an axiom!
� Epicurus’s principle of multiple explanations: keep 

all theories that are consistent with the data
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Bayesian model averaging
� Reflects Epicurus’s principle: all theories are used 

for prediction weighted according to P[T|E]
� Let I be a new instance whose class we want to 

predict
� Let C be the random variable denoting the class
� Then BMA gives us the probability of C given I, the 

training data E, and the possible theories Tj:

]|Pr[],|[Pr],|Pr[ ETTICEIC jj
j

∑=
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MDL and clustering
� DL of theory: DL needed for encoding the clusters 

(e.g. cluster centers)
� DL of data given theory: need to encode cluster 

membership and position relative to cluster (e.g. 
distance to cluster center)

� Works if coding scheme needs less code space 
for small numbers than for large ones

� With nominal attributes, we need to communicate 
probability distributions for each cluster


