
10/25/2000 1

Machine Learning
Techniques for
Data Mining

Eibe Frank
University of Waikato
New Zealand

10/25/2000 2

PART VI

Implementations:
Real machine

learning schemes

10/25/2000 3

Industrial-strength algorithms
� Requirements for an algorithm to be useful in a

wide range of real-world applications:
� Can deal with numeric attributes
� Doesn’t fall over when missing values are present
� Is robust in the presence of noise
� Can (at least in principle) approximate arbitrary

concept descriptions

� Basic schemes (may) need to be extended to fulfill
these requirements

10/25/2000 4

Decision trees
� Extending ID3 to deal with numeric attributes:

pretty straightforward
� Dealing sensibly with missing values: a bit trickier
� Stability for noisy data: requires sophisticated

pruning mechanism
� End result of these modifications: Quinlan’s C4.5
� Best-known and (probably) most widely-used

learning algorithm
� Commercial successor: C5.0

10/25/2000 5

Numeric attributes
� Standard method: binary splits (i.e. temp < 45)
� Difference to nominal attributes: every attribute

offers many possible split points
� Solution is straightforward extension:

� Evaluate info gain (or other measure) for every
possible split point of attribute

� Choose “best” split point

� Info gain for best split point is info gain for attribute

� Computationally more demanding

10/25/2000 6

An example
� Split on temperature attribute from weather data:

� Eg. 2 yeses and 2 nos for temperature < 71.5
and 4 yeses and 2 nos for temperature ≥ 71.5

� Info([4,2],[5,3]) = (6/14)info([4,2]) + (8/14)info([5,3]) =
0.939 bits

� Split points are placed halfway between values
� All split points can be evaluated in one pass!

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

10/25/2000 7

Avoiding repeated sorting
� Instances need to be sorted according to the

values of the numeric attribute considered
� Time complexity for sorting: O(n log n)

� Does this have to be repeated at each node?
� No! Sort order from parent node can be used to

derive sort order for children
� Time complexity of derivation: O(n)

� Only drawback: need to create and store an array
of sorted indices for each numeric attribute

10/25/2000 8

Notes on binary splits
� Information in nominal attributes is exhausted

using one multi-way split on that attribute
� This is not the case for binary splits on numeric

attributes
� The same numeric attribute may be tested several

times along a path in the decision tree

� Disadvantage: tree is relatively hard to read
� Possible remedies: pre-discretization of numeric

attributes or multi-way splits instead of binary ones

10/25/2000 9

Computing multi-way splits
� Simple and efficient way of generating multi-way

splits: greedy algorithm
� Optimum multi-way splits (for additive criteria) can

be found using dynamic programming in O(n2)
� Let IMP(k,i,j) be the impurity of the best split of

values xi,…,xi into k sub-intervals
� IMP(k,i,j) = MIN0<j<i{IMP(k-1,1,j)+IMP(1,j+1,i)}
� IMP(k,1,N) gives us the best k-way split

� In practice, greedy algorithm works as well

10/25/2000 10

Missing values
� C4.5 splits instances with missing values into

pieces (with weights summing to 1)
� A piece going down a particular branch receives a

weight proportional to the popularity of the branch

� Info gain etc. can be used with fractional instances
using sums of weights instead of counts

� During classification, the same procedure is used
to split instances into pieces
� Probability distributions are merged using weights

10/25/2000 11

Pruning
� Pruning simplifies a decision tree to prevent

overfitting to noise in the data
� Two main pruning strategies:

1. Postpruning: takes a fully-grown decision tree and
discards unreliable parts

2. Prepruning: stops growing a branch when
information becomes unreliable

� Postpruning preferred in practice because of
early stopping in prepruning

10/25/2000 12

Prepruning
� Usually based on statistical significance test
� Stops growing the tree when there is no

statistically significant association between any
attribute and the class at a particular node

� Most popular test: chi-squared test
� ID3 used chi-squared test in addition to

information gain
� Only statistically significant attributes where allowed

to be selected by information gain procedure

10/25/2000 13

Early stopping
� Pre-pruning may suffer from early stopping: may

stop the growth process prematurely
� Classic example: XOR/Parity-problem

� No individual attribute exhibits any significant
association to the class

� Structure is only visible in fully expanded tree

� Prepruning won’t expand the root node

� But: XOR-type problems not common in practice
� And: prepruning faster than postpruning

10/25/2000 14

Postpruning
� Builds full tree first and prunes it afterwards

� Attribute interactions are visible in fully-grown tree

� Problem: identification of subtrees and nodes
that are due to chance effects

� Two main pruning operations:
1. Subtree replacement
2. Subtree raising

� Possible strategies: error estimation, significance
testing, MDL principle

10/25/2000 15

Subtree replacement
� Bottom-up: tree is considered for replacement

once all its subtrees have been considered

10/25/2000 16

Subtree raising
� Deletes node and redistributes instances
� Slower than subtree replacement (Worthwhile?)

10/25/2000 17

Estimating error rates
� Pruning operation is performed if this does not

increase the estimated error
� Of course, error on the training data is not a useful

estimator (would result in almost no pruning)
� One possibility: using hold-out set for pruning

(reduced-error pruning)
� C4.5’s method: using upper limit of 25%

confidence interval derived from the training data
� Standard Bernoulli-process-based method

10/25/2000 18

C4.5’s method
� Error estimate for subtree is weighted sum of error

estimates for all its leaves
� Error estimate for a node:

� If c = 25% then z = 0.69 (from normal distribution)
� f is the error on the training data
� N is the number of instances covered by the leaf







+





+−++=

N
z

N

z
N
f

N
f

z
N

z
fe

2

2

222

1
42

10/25/2000 19

Example

f=0.33
e=0.47 f=0.5

e=0.72
f=0.33
e=0.47

f=5/14
e=0.46

Combined using
ratios 6:2:6
this gives 0.51

10/25/2000 20

Complexity of tree induction
� Assume m attributes, n training instances and a

tree depth of O(log n)
� Cost for building a tree: O(mn log n)
� Complexity of subtree replacement: O(n)
� Complexity of subtree raising: O(n (log n)2)

� Every instance may have to be redistributed at
every node between its leaf and the root: O(n log n)

� Cost for redistribution (on average): O(log n)
� Total cost: O(mn log n) + O(n (log n)2)

10/25/2000 21

From trees to rules
� Simple way: one rule for each leaf
� C4.5rules greedily prunes conditions from each

rule if this reduces their estimated error
� This may produce duplicates which have to be

removed subsequently
� Then it considers the rules for each class in turn

and finds “good” subsets guided by MDL
� After that it ranks the subsets to avoid conflicts
� Finally rules are greedily removed if this

decreases the error on the training data

10/25/2000 22

C4.5: choices and options
� C4.5rules can be slow for large and noisy datasets
� Commercial version C5.0rules uses a different

technique
� Much faster and a bit more accurate

� C4.5 offers two parameters
� The confidence value (default 25%): lower values

incur heavier pruning

� A threshold on the minimum number of instances in
the two most popular branches (default 2)

10/25/2000 23

Discussion
� TDIDT is probably the most extensively studied

method of machine learning used in data mining
� Different criteria for attribute/test selection rarely

make a large difference
� Different pruning methods mainly change the size

of the resulting pruned tree
� C4.5 builds univariate decision trees
� Some TDITDT systems can build multivariate

trees (e.g. CART)

10/25/2000 24

Classification rules
� Common procedure: separate-and-conquer
� Differences:

� Search method (e.g. greedy, beam search, ...)
� Test selection criteria (e.g. accuracy, ...)
� Pruning method (e.g. MDL, hold-out set, ...)
� Stopping criterion (e.g. minimum accuracy)

� Post-processing step

� Also: Decision list vs. one rule set for each class

10/25/2000 25

Test selection criteria
� Accuracy: p/t

� Attempts to produce rules that don’t cover negative
instances as quickly as possible

� May produce rules with very small coverage
�Special cases or noise?

� Information gain: p[log(p/t) – log(P/T)]
� Puts more emphasis on number of positive

instances covered

� These interact with the pruning mechanism used

10/25/2000 26

Missing values, numeric attributes
� Common treatment of missing values: let them fail

any test
� Forces algorithm to either use other tests to

separate out positive instances or to leave them
uncovered until later on in the process

� Note that in some cases it’s better to treat
“missing” as a separate value

� Numeric attributes are treated as they are in
decision trees

10/25/2000 27

Pruning rules
� Two main strategies:

� Incremental pruning

� Global pruning

� Other difference: pruning criterion
� Error on hold-out set (reduced-error pruning)
� Statistical significance

� MDL principle

� Also: post-pruning vs. pre-pruning

10/25/2000 28

INDUCT

� Performs incremental pruning

Initialize E to the instance set

Until E is empty do

For each class C for which E contains an instance

Use basic covering algorithm to create best perfect rule for C

Calculate significance m(R) for rule and significance m(R-) for

rule with final condition omitted

If (m(R-) < m(R)), prune rule and repeat previous step

From the rules for the different classes, select the most

significant one (i.e. the one with smallest m(R))

Print the rule

Remove the instances covered by rule from E

Continue

10/25/2000 29

Computing significance
� INDUCT’s significance measure for a rule:

� Probability of completely random rule with same
coverage performing at least as well

� Random rule R selects t cases at random from the
dataset

� We want to know how likely it is that p of these
belong to the correct class?

� This probability is given by the hypergeometric
distribution

10/25/2000 30

The hypergeometric probability















−
−








t

T
pt

PT

p

P

t examples
selected by rule

class contains
P examples

dataset contains
P examples

p examples
correctly covered

10/25/2000 31

Computing significance II
� We want the probability that a random rule does at

least as well (statistical significance of rule):

∑
= 














−
−








=
),min(

)(
Pt

pi

t

T
pt

PT

p

P

Rm

10/25/2000 32

The binomial distribution
� Approximation: can use sampling with

replacement instead of samp. without replacement

ptp

T

P

T

P

p

t −






 −













1

t examples
selected by rule

class contains
P examples

dataset contains
P examples

p examples
correctly covered

10/25/2000 33

Using a pruning set
� For measure to be valid in a statistical sense, it

must be evaluated on data not used for training:
� This requires a growing set and a pruning set

� Reduced-error pruning for rules builds a full
unpruned rule set and simplifies it subsequently

� Incremental reduced-error pruning simplifies a rule
immediately after it has been build
� Can re-split data after rule has been pruned

� Stratification advantageous

10/25/2000 34

Incremental reduced-error pruning
Initialize E to the instance set

Until E into Grow and Prune in the ratio 2:1

For each class C for which Grow and Prune both contain an instance

Use basic covering algorithm to create best perfect rule for C

Calculate worth w(R) for rule on Prune and worth w(R-) for

rule with final condition omitted

If (w(R-) < w(R)), prune rule and repeat previous step

From the rules for the different classes, select the one that’s

worth most (i.e. the one with the largest w(R))

Print the rule

Remove the instances covered by rule from E

Continue

10/25/2000 35

Measures used in IREP
� [p+(N-n)]/T (with N being the total #negatives)

� Is counterintuitive:
�p = 2000 and n = 1000 vs. p = 1000 and n = 1

� p/t
� Problem: p = 1 and t = 1 vs. p = 1000 and t = 1001

� (p-n)/t
� Has the same effect as success rate because it is

equal to 2p/t-1

10/25/2000 36

Variations
� Generating rules for classes in order

� Usually starting with the smallest class and leaving
the largest class covered by the default rule

� Stopping criterion
� Stop rule production if accuracy becomes too low

� Rule learner RIPPER:
� Uses MDL-based stopping criterion
� Employs post-processing step to modify rules

guided by MDL criterion

10/25/2000 37

PART
� Avoids global optimization step used in C4.5rules

and RIPPER
� Generates an unrestricted decision list using basic

separate-and-conquer procedure
� Builds a partial decision tree to obtain a rule

� A rule is only pruned if all its implications are known
� Prevents hasty generalization

� Uses C4.5’s procedures to build a tree

10/25/2000 38

Building a partial tree

Expand-subset (S):

Choose test T and use it to split set of examples into subsets

Sort subsets into increasing order of average entropy

while (there is a subset X that has not yet been expanded AND all

subsets expanded so far are leaves)

expand-subset(X)

if (all the subsets expanded are leaves AND

estimated error for subtree >= estimated error for node)

undo expansion into subsets and make node a leaf

10/25/2000 39

Example

10/25/2000 40

Example (continued)

10/25/2000 41

Notes on PART
� Leaf with maximum coverage is made into a rule
� Missing values are treated using C4.5’s procedure

� I.e. instance is split into pieces

� Time complexity for generating a rule:
� Worst case: same as for building a pruned tree

�Occurs when data is noisy

� Best case: same as for building a single rule
�Occurs when data is noise free

10/25/2000 42

Rules with exceptions
� Assume we have a method for generating a single

good rule
� Then it’s easy to generate rules with exceptions
� First: default class is selected for top-level rule
� Then we generate a good rule for one of the

remaining classes
� Finally we apply this method recursively to the two

subsets produced by the rule
� I.e. instances that are covered/not covered

10/25/2000 43

Iris data example

Exceptions are represented as
Dotted paths, alternatives as
solid ones.

10/25/2000 44

Extending linear classification
� Linear classifiers can’t model nonlinear class

boundaries
� Simple trick to allow them to do that:

� Map attributes into new space consisting of
combinations of attribute values

� E.g.: all products of n factors that can be
constructed from the attributes

� Example with two attributes and n = 3:
3
23

2
2132

2
12

3
11 awaawaawawx +++=

10/25/2000 45

Problems with this approach
� 1st problem: speed

� With 10 attributes and n = 5 we have to determine
more than 2000 coefficients

� Linear regression (with attribute selection) running
time is cubic in the number of attributes

� 2nd problem: overfitting
� Number of coefficients is large relative to the

number of training instances
� Curse of dimensionality kicks in

10/25/2000 46

Support vector machines
� Support vector machines are algorithms for

learning linear classifiers
� They are resilient to overfitting because they learn

a particular linear decision boundary:
� The maximum margin hyperplane

� They are fast in the nonlinear case
� They employ a clever mathematical trick to avoid

the creation of “pseudo-attributes”
� The nonlinear space is created implicitly

10/25/2000 47

The maximum margin hyperplane

10/25/2000 48

Support vectors
� The instances closest to the maximum margin

hyperplane are called support vectors
� Important observation: the support vectors define

the maximum margin hyperplane!
� All other instances can be deleted without changing

the position and orientation of the hyperplane!

� This means the hyperplane
can be written as

22110 awawwx ++=

aa •+= ∑)(
 vectorsupp. is

iybx
i

iiα

10/25/2000 49

Finding support vectors
� Support vector: training instance for which
� Determining all and is a constrained quadratic

optimization problem
� There are off-the-shelf tools for solving these

problems
� However, special-purpose algorithms are faster

�Example: Platt’s sequential minimal optimization
algorithm (implemented in WEKA)

� Note: all this assumes separable data!

0>iα

iα b

10/25/2000 50

Nonlinear SVMs
� Same trick can be applied here: “pseudo

attributes” representing attribute combinations
� Overfitting not (such) a (big) problem because the

maximum margin hyperplane is stable
� There are usually few support vectors relative to the

size of the training set

� Computation time still seems to be a problem
� Every time the dot product is computed we need to

go through all the “pseudo attributes”

10/25/2000 51

A mathematical trick
� We can avoid computing the “pseudo attributes”!
� We can compute the dot product before the

nonlinear mapping is performed
� Example: instead of computing

we can compute

� This corresponds to a map into the instance space
spanned by all products of n attributes

aa •+= ∑)(
 vectorsupp. is

iybx
i

iiα

n

i
ii iybx))((

 vectorsupp. is

aa •+= ∑α

10/25/2000 52

Other kernel functions
� The mapping is performed by the kernel function
� We can use kernel functions other than the

polynomial kernel from above

� Only requirement:
� Examples:

))((
 vectorsupp. is

aa •+= ∑ iKybx
i

iiα

)()(),(jijiK xxxx φφ •=

()
2

2

2),(σ
ji

eK ji

xx

xx
−−

=

d
jijiK)1(),(+•= xxxx

)tanh(),(bK jiji +•= xxxx β

10/25/2000 53

Noise
� So far we have assumed that the data is

separable (in original or transformed space)
� SVMs can be applied to noisy data by introducing

a “noise” parameter C
� C bounds the influence of any one training

instance on the decision boundary
� Corresponding constraint:

� Still a quadratic optimization problem
� C has to be found by experimentation

Ci ≤≤α0

10/25/2000 54

Sparse data
� SVM algorithms can be sped up dramatically if the

data is sparse (i.e. many values are 0)
� Why? Because they compute lots and lots of dot

products
� With sparse data dot products can be computed

very efficiently
� We just need to iterate over the values that are

non-zero
� SVMs can process sparse datasets with tens of

thousands of attributes

10/25/2000 55

Applications
� Machine vision: e.g face identification

� Outperforms alternative approaches (1.5% error)
� Handwritten digit recognition: USPS data

� Comparable to best alternative (0.8% error)
� Bioinformatics: e.g. prediction of protein secondary

structure
� Text classifiation
� Algorithm can be modified to deal with numeric

prediction problems

10/25/2000 56

Instance-based learning
� Practical problems of 1-NN scheme:

� Slow (but: fast tree-based approaches exist)
�Remedy: removing irrelevant data

� Noise (but: k-NN copes quite well with noise)
�Remedy: removing noisy instances

� All attributes deemed equally important
�Remedy: attribute weighting (or simply selection)

� Doesn’t perform explicit generalization
�Remedy: rule-based NN approach

10/25/2000 57

Edited NN
� Edited NN classifiers discard some of the training

instances before making predictions
� Saves memory and speeds-up classification
� IB2: incremental NN learner that only incorporates

misclassified instances into the classifier
� Problem: noisy data gets incorporated

� Other approach: Voronoi-diagram-based
� Problem: computationally expensive
� Approximations exist

10/25/2000 58

Dealing with noise
� Excellent way: cross-validation-based k-NN

classifier (but slow)
� Different approach: discarding instances that don’t

perform well by keeping success records (IB3)
� Computes confidence interval for instance’s

success rate and for default accuracy of its class
� If lower limit of first interval is above upper limit of

second one, instance is accepted (IB3: 5%-level)
� If upper limit of first interval is below lower limit of

second one, instance is rejected (IB3: 12.5%-level)

10/25/2000 59

Weighting attributes
� Problem: irrelevant attributes
� Simple solution: attribute selection
� More sophisticated: attribute weighting

� Class-specific weights may be used (can result in
unclassified instances and multiple classifications)

� Euclidean d. w. weights:
� Updating of weights based on nearest neighbor

� Class correct/incorrect: weight increased/decreased
� |xi-yi| small/large: amount large/small

222
11

2
1)(...)(nnn yxwyxw −++−

10/25/2000 60

Generalized exemplars
� Instances can be generalized into hyperrectangles

� Online version incrementally modifies rectangles

� Offline version tries to find small set of rectangles
covering given set of instances

� Important design decisions:
� Overlapping rectangles allowed?

�Conflict resolution required

� Nested rectangles allowed?

� Distance for instances that are not covered?

10/25/2000 61

An example

10/25/2000 62

Generalized distance functions
� K*: distance is measured as probability of

transforming instance A into B by chance
� Has to average over all transformation paths (by

weighting paths according their probability)
� Requirement: set of elementary transformation

operations (and way of measuring the probabilities)
� Uniform way of dealing with different types of

attributes
� Can easily be generalized to compute the distance

between sets of instances

10/25/2000 63

Numeric prediction
� Counterparts exist for all schemes that we

previously discussed
� Decision trees, rule learners, SVMs, etc.

� All classification schemes can be applied to
regression problems using discretization
� Prediction: weighted average of intervals’ midpoints

(weighted according to class probabilities)

� Regression more difficult than classification (i.e.
percent correct vs. mean squared error)

10/25/2000 64

Regression trees
� Differences to decision trees:

� Splitting criterion: minimizing intra-subset variation

� Pruning criterion: based on numeric error measure
� Leaf node predicts average class values of training

instances reaching that node

� Can approximate piecewise constant functions
� Easy to interpret
� More sophisticated version: model trees

10/25/2000 65

Model trees
� Regression trees with linear regression functions

at each node
� Linear regression applied to instances that reach a

node after full regression tree has been built
� Only a subset of the attributes is used for LR

� Attributes occurring in subtree (+maybe attributes
occurring in path to the root)

� Fast: overhead for LR not large because usually
only a small subset of attributes is used in tree

10/25/2000 66

Smoothing
� Naïve method for prediction outputs value of LR

for corresponding leaf node
� Performance can be improved by smoothing

predictions using internal LR models
� Predicted value is weighted average of LR models

along path from root to leaf

� Smoothing formula:
� Same effect can be achieved by incorporating the

internal models into the leaf nodes

kn

kqnp
p

+
+=′

10/25/2000 67

Building the tree
� Splitting criterion: standard deviation reduction

� Termination criteria (important when building trees
for numeric prediction):
� Standard deviation becomes smaller than certain

fraction of sd for full training set (e.g. 5%)

� Too few instances remain (e.g. less than four)

)()(i
i

i Tsd
T

T
TsdSDR ×−= ∑

10/25/2000 68

Pruning
� Pruning is based on estimated absolute error of

LR models
� Heuristic estimate:
� LR models are pruned by greedily removing terms

to minimize the estimated error
� Model trees allow for heavy pruning: often a single

LR model can replace a whole subtree
� Pruning proceeds bottom up: error for LR model at

internal node is compared to error for subtree

orsolute_erraverage_ab×
−
+

vn

n ν

10/25/2000 69

Nominal attributes
� Nominal attributes are converted into binary

attributes (that can be treated as numeric ones)
� Nominal values are sorted using average class val.
� If there are k values, k-1 binary attributes are

generated
�The ith binary attribute is 0 if an instance’s value is

one of the first i in the ordering, 1 otherwise

� It can be proven that the best split on one of the
new attributes is the best binary split on original

� But M5‘ only does the conversion once

10/25/2000 70

Missing values
� Modified splitting criterion:

� Procedure for deciding into which subset the
instance goes: surrogate splitting
� Choose attribute for splitting that is most highly

correlated with original attribute
� Problem: complex and time-consuming

� Simple solution: always use the class

� Testing: replace missing value with average









×−×= ∑)()(i

i

i Tsd
T

T
Tsd

T

m
SDR

10/25/2000 71

Surrogate splitting based on class
� Instances with known values are used to compute split

point
� Given the split point, instances can be divided into two

subsets L and R
� Assume L has smaller average class value than R
� Let m be the average of the two averages
� Then, if an instance with a missing value has class value

smaller than m it goes into L, otherwise into R
� After full tree has been built, missing values are replaced

with average values from corresponding leaf nodes

10/25/2000 72

Pseudo-code for M5’
� Four methods:

� Main method: MakeModelTree()

� Method for splitting: split()
� Method for pruning: prune()
� Method that computes error: subtreeError()

� We’ll briefly look at each method in turn
� Linear regression method is assumed to perform

attribute subset selection based on error

10/25/2000 73

MakeModelTree()
MakeModelTree (instances)
{

SD = sd(instances)
for each k-valued nominal attribute
convert into k-1 synthetic binary attributes

root = newNode
root.instances = instances
split(root)
prune(root)
printTree(root)

}

10/25/2000 74

split()
split(node)
{

if sizeof(node.instances) < 4 or
sd(node.instances) < 0.05*SD
node.type = LEAF

else
node.type = INTERIOR
for each attribute
for all possible split positions of the attribute

calculate the attribute’s SDR
node.attribute = attribute with maximum SDR
split(node.left)
split(node.right)

}

10/25/2000 75

prune()
prune(node)
{

if node = INTERIOR then
prune(node.leftChild)
prune(node.rightChild)
node.model = linearRegression(node)
if subtreeError(node) > error(node) then
node.type = LEAF

}

10/25/2000 76

subtreeError()
subtreeError(node)
{

l = node.left; r = node.right
if node = INTERIOR then
return (sizeof(l.instances)*subtreeError(l)

+ sizeof(r.instances)*subtreeError(r))
/sizeof(node.instances)

else return error(node)
}

10/25/2000 77

Model tree for servo data
Result
of merging

10/25/2000 78

Locally weighted regression
� Numeric prediction using instance-based learning

combined with linear regression
� Lazy learning scheme: linear regression function is

computed at prediction time
� Training instances are weighted according to

distance to test instance
� Requires a weighted version of linear regression
� Advantage: nonlinear approximation, incremental
� Disadvantage: slow

10/25/2000 79

Design decisions
� Type of weighting function:

� Inverse of Euclidean distance

� Gaussian kernel applied to Euclidean distance
� Triangular kernel used the same way, etc.

� More important: smoothing parameter used to
scale the distance function
� Distance is multiplied by inverse of this parameter
� Possible choice: distance of kth nearest training

instance (makes it data dependent)

10/25/2000 80

Discussion
� Regression trees were introduced in CART
� Quinlan proposed the M5 model tree inducer
� M5’: slightly improved version that’s publicly

available
� Quinlan also investigated combining instance-

based learning with M5
� CUBIST: Quinlan’s commercial rule learner for

numeric prediction
� Interesting comparison: Neural nets vs. M5

10/25/2000 81

Clustering
� Unsupervised: no target value to be predicted
� Differences between models/algorithms:

� Exclusive vs. overlapping
� Deterministic vs. probabilistic
� Hierarchical vs. flat
� Incremental vs. batch learning

� Evaluation problematic: usually done by inspection
� But: if clustering is treated as a density estimation

problem, then it can be evaluated on test data!

10/25/2000 82

Hierarchical clustering
� Bottom up: at each step join the two closest

clusters (starting with single-instance clusters)
� Design decision: distance between clusters

�E.g. two closest instances in clusters vs. distance
between means

� Top down: find two clusters and then proceed
recursively for the two subsets
� Can be very fast

� Both methods produce a dendrogram

10/25/2000 83

The k-means algorithm
� Clusters the data into k groups where k is

predefined
� 1st step: cluster centers are chosen (e.g. at

random)
� 2nd step: instances are assigned to clusters based

on their distance to the cluster centers
� 3rd step: centroids of clusters are computed
� 4th step: go to 1st step until convergence

10/25/2000 84

Discussion
� Result can vary significantly based on initial choice

of seeds
� Algorithm can get trapped in a local minimum

� Example: four instances at the vertices of a two-
dimensional rectangle
�Local minimum: two cluster centers at the midpoints

of the rectangle’s long sides

� Simple way to increase chance of finding a global
optimum: restart with different random seeds

10/25/2000 85

Incremental clustering
� COBWEB/CLASSIT: incrementally forms a

hierarchy of clusters
� In the beginning tree consists of empty root node
� Instances are added one by one, and the tree is

updated appropriately at each stage
� Updating involves finding the right leaf for an

instance (possibly restructuring the tree)
� Updating decisions are based on category utility

10/25/2000 86

Clustering the weather data

N

M

L

K

J

I

H

G

F

E

D

C

B

A

ID code

TrueHighMildRainy

FalseNormalHotOvercast

TrueHighMildOvercast

TrueNormalMildSunny

FalseNormalMildRainy

FalseNormalCoolSunny

FalseHighMildSunny

TrueNormalCoolOvercast

TrueNormalCoolRainy

FalseNormalCoolRainy

FalseHighMildRainy

FalseHighHot Overcast

TrueHigh Hot Sunny

FalseHighHotSunny

WindyHumidityTemp.Outlook

10/25/2000 87

Steps 1-3

10/25/2000 88

Steps 3-4
Best host and
runner-up have
been merged

Note: splitting the best host is considered if merging doesn’t help

10/25/2000 89

The final hierarchy

a and b are actually very similar

10/25/2000 90

Clustering (parts) of the iris data

10/25/2000 91

Clustering the iris data with cutoff

10/25/2000 92

Category utility
� Category utility is a kind of quadratic loss function

defined on conditional probabilities:

� If every instance gets put into a different category
the numerator becomes (m = #attributes):

k

vaCvaC

CCCCU l i j
ijilijil

k

∑ ∑∑ =−=
=

)]Pr[]|(Pr[]Pr[

),...,,(

22

21

2]Pr[iji vam =− maximum

10/25/2000 93

Numeric attributes
� We assume normal distribution:
� Then we get:
� Thus

is

� Acuity parameter: prespecified minimum variance

2

2

2

)(

2
1

)(σ
µ

σπ

−

=
a

eaf

∫∑ =⇔=
i

iiij
j

i daafva
σπ2

1
)(]Pr[22

k

vaCvaC

CU l i j
ijilijil∑ ∑∑ =−=

=
)]Pr[]|(Pr[]Pr[22

k

C

CU l i iil
l∑ ∑ 



 −

=
σσπ
11

2
1

]Pr[

10/25/2000 94

Probability-based clustering
� Problems with above heuristic approach:

� Division by k?
� Order of examples?
� Are restructuring operations sufficient?
� Is result at least local minimum of category utility?

� From a probabilistic perspective, we want to find
the most likely clusters given the data

� Also: instance only has certain probability of
belonging to a particular cluster

10/25/2000 95

Finite mixtures
� Probabilistic clustering algorithms model the data

using a mixture of distributions
� Each cluster is represented by one distribution

� The distribution governs the probabilities of
attributes values in the corresponding cluster

� They are called finite mixtures because there is
only a finite number of clusters being represented

� Usually individual distributions are normal distribut.
� Distributions are combined using cluster weights

10/25/2000 96

A two-class mixture model
A 51
A 43
B 62
B 64
A 45
A 42
A 46
A 45
A 45

B 62
A 47
A 52
B 64
A 51
B 65
A 48
A 49
A 46

B 64
A 51
A 52
B 62
A 49
A 48
B 62
A 43
A 40

A 48
B 64
A 51
B 63
A 43
B 65
B 66
B 65
A 46

A 39
B 62
B 64
A 52
B 63
B 64
A 48
B 64
A 48

A 51
A 48
B 64
A 42
A 48
A 41

data

model

µA=50, σA =5, pA=0.6 µB=65, σB =2, pB=0.4

10/25/2000 97

Using the mixture model
� The probability of an instance x belonging to

cluster A is:

with

� The likelihood of an instance given the clusters is:

]Pr[
),;(

]Pr[
]Pr[]|Pr[

]|Pr[
x

pxf

x

AAx
xA AAA σµ==

2

2

2

)(

2
1

),;(σ
µ

σπ
σµ

−

=
x

exf

∑=
i

xx]clusterPr[]cluster|Pr[]onsdistributi the|Pr[ii

10/25/2000 98

Learning the clusters
� Assume we know that there are k clusters
� To learn the clusters we need to determine their

parameters
� I.e. their means and standard deviations

� We actually have a performance criterion: the
likelihood of the training data given the clusters

� Fortunately, there exists an algorithm that finds a
local maximum of the likelihood

10/25/2000 99

The EM algorithm
� EM algorithm: expectation-maximization algorithm

� Generalization of k-means to probabilistic setting

� Similar iterative procedure:
1. Calculate cluster probability for each instance

(expectation step)
2. Estimate distribution parameters based on the

cluster probabilities (maximization step)

� Cluster probabilities are stored as instance
weights

10/25/2000 100

More on EM
� Estimating parameters from weighted instances:

� Procedure stops when log-likelihood saturates
� Log-likelihood:

n

nn
A www

xwxwxw

+++
−++−+−=

...
)(...)()(

21

22
22

2
112 µµµσ

n

nn
A www

xwxwxw

+++
+++=

...
...

21

2211µ

])|Pr[]|Pr[(log BxpAxp iBiA
i

+∑

10/25/2000 101

Extending the mixture model
� Using more then two distributions: easy
� Several attributes: easy if independence is

assumed
� Correlated attributes: difficult

� Modeled jointly using a bivariate normal distribution
with a (symmetric) covariance matrix

� With n attributes this requires estimating n+n(n+1)/2
parameters

� Nominal attributes: easy if independent

10/25/2000 102

More on extensions
� Correlated nominal attributes: difficult

� Two correlated attributes result in v1 v2 parameters
� Missing values: easy
� Distributions other than the normal distribution can

be used:
� “log-normal” if predetermined minimum is given
� “log-odds” if bounded from above and below
� Poisson for attributes that are integer counts

� Cross-validation can be used to estimate k!!

10/25/2000 103

Bayesian clustering
� Problem: overfitting possible if number of

parameters gets large
� Bayesian approach: every parameter has a prior

probability distribution
� Gets incorporated into the overall likelihood figure

and thereby penalizes introduction of parameters

� Example: Laplace estimator for nominal attributes
� Can also have prior on number of clusters!
� Actual implementation: NASA’s AUTOCLASS

10/25/2000 104

Discussion
� Clusters can be interpreted by using supervised

learning in a post-processing step
� Can be used to fill in missing values
� May be advantageous to make attributes more

independent in pre-processing step
� I.e. using principal component analysis

� Big advantage of probabilistic clustering schemes:
� Likelihood of data can be estimated and used to

compare different clustering models

