
10/25/2000 1

Machine Learning 
Techniques for 
Data Mining

Eibe Frank
University of Waikato
New Zealand



10/25/2000 2

PART VII

Moving on: 
Engineering the 
input and output



10/25/2000 3

Applying a learner is not all
� Already discussed: scheme/parameter selection

� Important: selection process should be treated as 
part of the learning process

� Modifying the input: attribute selection, 
discretization, data cleansing, transformations

� Modifying the output: combining classification 
models to improve performance
� Bagging, boosting, stacking, error-correcting output 

codes (and Bayesian model averaging)



10/25/2000 4

Attribute selection
� Adding a random (i.e. irrelevant) attribute can 

significantly degrade C4.5’s performance
� Problem: attribute selection based on smaller and 

smaller amounts of data

� IBL is also very susceptible to irrelevant attributes 
� Number of training instances required increases 

exponentially with number of irrelevant attributes

� Naïve Bayes doesn’t have this problem
� Relevant attributes can also be harmful



10/25/2000 5

Scheme-independent selection
� Filter approach: assessment based on general 

characteristics of the data
� One method: find subset of attributes that is 

enough to separate all the instances
� Another method: use different learning scheme 

(e.g. C4.5, 1R) to select attributes
� IBL-based attribute weighting techniques can also 

be used (but can’t find redundant attributes)
� CFS: uses correlation-based evaluation of subsets



10/25/2000 6

Attribute subsets for weather data



10/25/2000 7

Searching the attribute space
� Number of possible attribute subsets is 

exponential in the number of attributes
� Common greedy approaches: forward selection

and backward elimination
� More sophisticated strategies:

� Bidirectional search
� Best-first search: can find the optimum solution

� Beam search: approximation to best-first search
� Genetic algorithms



10/25/2000 8

Scheme-specific selection
� Wrapper approach: attribute selection 

implemented as wrapper around learning scheme
� Evaluation criterion: cross-validation performance

� Time consuming: adds factor k2 even for greedy 
approaches with k attributes
� Linearity in k requires prior ranking of attributes

� Scheme-specific attribute selection essential for 
learning decision tables

� Can be done efficiently for DTs and Naïve Bayes



10/25/2000 9

Discretizing numeric attributes
� Can be used to avoid making normality 

assumption in Naïve Bayes and Clustering
� Simple discretization scheme is used in 1R
� C4.5 performs local discretization
� Global discretization can be advantageous 

because it’s based on more data
� Learner can be applied to discretized attribute or
� It can be applied to binary attributes coding the cut 

points in the discretized attribute



10/25/2000 10

Unsupervised discretization
� Unsupervised discretization generates intervals 

without looking at class labels
� Only possible way when clustering

� Two main strategies:
� Equal-interval binning
� Equal-frequency binning (also called histogram 

equalization)

� Inferior to supervised schemes in classification 
tasks



10/25/2000 11

Entropy-based discretization
� Supervised method that builds a decision tree with 

pre-pruning on the attribute being discretized
� Entropy used as splitting criterion
� MDLP used as stopping criterion

� State-of-the-art discretization method
� Application of MDLP:

� “Theory” is the splitting point (log2[N-1] bits) plus 
class distribution in each subset

� DL before/after adding splitting point is compared



10/25/2000 12

Example: temperature attribute



10/25/2000 13

Formula for MDLP
� N instances and

� k classes and entropy E in original set

� k1 classes and entropy E1 in first subset
� k2 classes and entropy E2 in first subset

� Doesn’t result in any discretization intervals for the 
temperature attribute

N

EkEkkE

N

N k
221122 )23(log)1(log

 gain 
++−−+−>



10/25/2000 14

Other discretization methods
� Top-down procedure can be replaced by bottom-

up method
� MDLP can be replaced by chi-squared test
� Dynamic programming can be used to find 

optimum k-way split for given additive criterion
� Requires time quadratic in number of instances if 

entropy is used as criterion

� Can be done in linear time if error rate is used as 
evaluation criterion



10/25/2000 15

Error-based vs. entropy-based



10/25/2000 16

The converse of discretization
� Scheme used by IB1: indicator attributes
� Doesn’t make use of potential ordering information
� M5’ generates ordering of nominal values and 

codes ordering using binary attributes
� This strategy can be used for any attribute for 

which values are ordered
� Avoids problem of using integer attribute to code 

ordering: would imply a metric
� In general: subsets of attributes coded as binary 

attributes



10/25/2000 17

Automatic data cleansing
� Improving decision trees: relearn tree with 

misclassified instances removed
� Better strategy (of course): let human expert check 

misclassified instances
� When systematic noise is present it’s better not to 

modify the data
� Also: attribute noise should be left in training set
� (Unsystematic) class noise in training set should 

be eliminated if possible



10/25/2000 18

Robust regression
� Statistical methods that address problem of 

outliers are called robust
� Possible way of making regression more robust:

� Minimize absolute error instead of squared error
� Remove outliers (i.e. 10% of points farthest from 

the regression plane)

� Minimize median instead of mean of squares 
(copes with outliers in x and y direction)
�Finds narrowest strip covering half the observations



10/25/2000 19

Example: least median of squares



10/25/2000 20

Detecting anomalies
� Visualization best way of detecting anomalies (but 

often can’t be done)
� Automatic approach: committee of different 

learning schemes 
� E.g. decision tree, nearest-neighbor learner, and a 

linear discriminant function
� Conservative approach: only delete instances 

which are incorrectly classified by all of them
� Problem: might sacrifice instances of small classes



10/25/2000 21

Combining multiple models
� Basic idea of “meta” learning schemes: build 

different “experts” and let them vote
� Advantage: often improves predictive performance
� Disadvantage: produces output that is very hard to 

analyze
� Schemes we will discuss: bagging, boosting, 

stacking, and error-correcting output codes
� The first three can be applied to both classification 

and numeric prediction problems



10/25/2000 22

Bagging
� Employs simplest way of combining predictions: 

voting/averaging
� Each model receives equal weight
� “Idealized” version of bagging:

� Sample several training sets of size n (instead of 
just having one training set of size n)

� Build a classifier for each training set
� Combine the classifier’s predictions

� This improves performance in almost all cases if 
learning scheme is unstable (i.e. decision trees)



10/25/2000 23

Bias-variance decomposition
� Theoretical tool for analyzing how much specific

training set affects performance of classifier
� Assume we have an infinite number of classifiers 

built from different training sets of size n
� The bias of a learning scheme is the expected error 

of the combined classifier on new data
� The variance of a learning scheme is the expected 

error due to the particular training set used
� Total expected error: bias + variance 



10/25/2000 24

More on bagging
� Bagging reduces variance by voting/averaging, 

thus reducing the overall expected error
� In the case of classification there are pathological 

situations where the overall error might increase
� Usually, the more classifiers the better

� Problem: we only have one dataset!
� Solution: generate new datasets of size n by 

sampling with replacement from original dataset
� Can help a lot if data is noisy



10/25/2000 25

Bagging classifiers
model generation
Let n be the number of instances in the training data.
For each of t iterations:

Sample n instances with replacement from training set.
Apply the learning algorithm to the sample.
Store the resulting model.

classification
For each of the t models:

Predict class of instance using model.
Return class that has been predicted most often.



10/25/2000 26

Boosting
� Also uses voting/averaging but models are 

weighted according to their performance
� Iterative procedure: new models are influenced by 

performance of previously built ones
� New model is encouraged to become expert for 

instances classified incorrectly by earlier models
� Intuitive justification: models should be experts that 

complement each other

� There are several variants of this algorithm



10/25/2000 27

AdaBoost.M1
model generation
Assign equal weight to each training instance.
For each of t iterations:
Apply learning algorithm to weighted dataset and store

resulting model.
Compute error e of model on weighted dataset and store error.
If e equal to zero, or e greater or equal to 0.5:
Terminate model generation.

For each instance in dataset:
If instance classified correctly by model:

Multiply weight of instance by e / (1 - e).
Normalize weight of all instances.

classification
Assign weight of zero to all classes.
For each of the t (or less) models:
Add -log(e / (1 - e)) to weight of class predicted by model.

Return class with highest weight.



10/25/2000 28

More on boosting
� Can be applied without weights using resampling 

with probability determined by weights
� Disadvantage: not all instances are used
� Advantage: resampling can be repeated if error 

exceeds 0.5
� Stems from computational learning theory
� Theoretical result: training error decreases 

exponentially
� Also: works if base classifiers not too complex and 

their error doesn’t become too large too quickly



10/25/2000 29

A bit more on boosting
� Puzzling fact: generalization error can decrease 

long after training error has reached zero
� Seems to contradict Occam’s Razor!
� However, problem disappears if margin

(confidence) is considered instead of error
�Margin: difference between estimated probability for 

true class and most likely other class (between –1, 1)

� Boosting works with weak learners: only condition 
is that error doesn’t exceed 0.5

� LogitBoost: more sophisticated boosting scheme 



10/25/2000 30

Stacking
� Hard to analyze theoretically: “black magic”
� Uses meta learner instead of voting to combine 

predictions of base learners
� Predictions of base learners (level-0 models) are 

used as input for meta learner (level-1 model)

� Base learners usually different learning schemes
� Predictions on training data can’t be used to 

generate data for level-1 model!
� Cross-validation-like scheme is employed



10/25/2000 31

More on stacking
� If base learners can output probabilities it’s better 

to use those as input to meta learner
� Which algorithm to use to generate meta learner?

� In principle, any learning scheme can be applied
� David Wolpert: “relatively global, smooth” model

�Base learners do most of the work
�Reduces risk of overfitting

� Stacking can also be applied to numeric prediction 
(and density estimation)



10/25/2000 32

Error-correcting output codes
� Very elegant method of transforming multiclass 

problem into two-class problem
� Simple scheme: as many binary class attributes as 

original classes using one-per-class coding

� Idea: use error-correcting codes instead
0001d

0010c

0100b

1000a

class vectorclass



10/25/2000 33

More on ECOCs
� Example:

� What’s the true class if base classifiers predict 
1011111?

� We want code words for which minimum hamming 
distance between any pair of words d is large
� Up to (d-1)/2 single-bit errors can be corrected

0101010d

0011001c

0000111b

1111111a

class vectorclass



10/25/2000 34

A bit more on ECOCs
� Two criteria for error-correcting output codes:

� Row-separation: minimum distance between rows

� Column-separation: minimum distance between 
columns (and columns’ complements)
�Why? Because if columns are identical, base 

classifiers will make the same errors
�Error-correction is weakened if errors are correlated

� Only works for problems with more than 3 classes: 
for 3 classes there are only 23 possible columns



10/25/2000 35

Exhaustive ECOCs
� With few classes exhaustive codes can be build (like the 

one on an earlier slide)
� Exhaustive code for k classes:

� The columns comprise every possible k-string
� Except for complements and all-zero/one strings
� Each code word contains 2k-1-1 bits

� Code word for 1st class: all ones
� 2nd class: 2k-2 zeroes followed by 2k-2-1 ones
� ith class: alternating runs of 2k-i zeroes and ones, the last 

run being one short



10/25/2000 36

One last slide on ECOCs
� With more classes, exhaustive codes are 

infeasible
� Number of columns increases exponentially

� Random code words have good error-correcting 
properties on average!

� More sophisticated methods exist for generating 
ECOCs using a small number of columns

� ECOCs don’t work with NN classifier
� But: works if different attribute subsets are used to 

predict each output bit


