COT6930: Data Mining
Meta Learning Schemes

Bagging, Boosting, CostBoosting

Erik Geleyn

Empirical Software Engineering Laboratory
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
(561)297-2512
egeleyn@cse.fau.edu
http://www.cse.fau.edu/esel.html

For classroom use only, for other use, please contact
the authors.

Overview

Introduction to Meta Learning Schemes
Bagging

Boosting

CostBoosting

Summary

Introduction to Meta Learning Schemes

e Foreword

e Concepts

e Advantages

e Drawbacks

Introduction to Meta Learning Schemes

Foreword

e Combining several learners

e Analogy with some human decision process

Introduction to Meta Learning Schemes

Concepts

What kind of classifier should be combined?

Stable and unstable learners

Stable: CBR, linear regression

Unstable: Decision Trees, neural nets

Weak and Strong learners (Decision Stump, C4.5)

Introduction to Meta Learning Schemes

Advantages

e Performance

e Less overfitting

e NO tuning

Introduction to Meta Learning Schemes

Drawbacks

e Combined decisions are harder to interpret

e Computational greediness

Bagging

e Concepts

e Algorithm

e Example

Bagging
Concepts

Simple

Builds different models by randomly resampling
from the original training dataset

Easy to implement on parallel architectures

Able to improve weak learners

Bagging
Algorithm

Notations
Symbol Description
h¢ Weak hypothesis on the #* iteration
he(x;) Value of the weak hypothesis on instance i
hfin(z;) | Final hypothesis
m Number of instances in training dataset
S A Training dataset
T Number of iterations
X An instance space
T; An instance in an instance space X
Y Class space
Yi A classinY

Bagging
Algorithm

Notations

1. Input:

e A data set S of order pairs (z1,v1),..., (xm,ym), Where
z;€X is an instance space, y;cY = {-1,+1}

e Weak learning algorithm

e An integer T specifying the number of iterations

2. Dofort=1,2,...,T

e Form a data set S; by sampling n instances with replace-
ment from the training data set S

e Call Weak Learner, providing it with the distribution S;
e Get back a hypothesis h; : X—Y.

T

3. Output the final Hypothesis: (i) = sign()_ hi(z:))
t=1

Bagging

Example
Simple voting
i | yi | hi(@) | ha(d) | h3(2) | ha(d) | hs(3) | hyin(zi)
1 | 1 1 1 1 -1 1
o | 1 1 -1 1 1 1
z3 | -1 -1 1 1 1 -1
za | 1 -1 1 1 1 1
zs | 1 1 1 1 -1 1
ze | -1 1 -1 -1 -1 -1
z7 | -1 -1 -1 -1 1 -1
zg | -1 -1 -1 1 -1 -1
zg | -1 -1 -1 -1 -1 -1
10 | 1 1 1 1 1 1

Boosting

Concepts

Algorithm

Weighted Datasets

Stochastic Sampling with Replacement

Example

Boosting

Concepts

Boosting VS. Bagging

Uses previous misclassification history

Uses a weighted dataset to generate the different
models

Increases performances in a more significant way
than Bagging

Still, sometimes can worsen a strong learner

Boosting

Algorithm

Notation
Symbol Description
o Parameter choosen as a weight for weak hypothesis h;
Dy(7) Distribution used as a weight for instance i at iteration ¢
D.y1(¢) | Distribution used as a weight for instance i at iteration ¢t + 1
€t Error of the weak hypothesis h;
hy Weak hypothesis on the t*" iteration
ht(x;) Value of the weak hypothesis on instance z;
hyin(x;) | Final hypothesis
m Number of instances in training data set
T Number of iterations
X An instance space
T; An instance in an instance space X
Y Class space
Yi AclassinY
Zy Normalization constant to ensure that D,;; will be a distribution

Boosting

Algorithm

1. Input:

e A set of order pairs (z1,y1),..., (Tm,ym), Where z;€X is an instance
space, y;€Y = {-1,41}

e Weak learning algorithm

e An integer T specifying the number of iterations
2. Initialize D;(i) = 1/m for all 4.

3. Dofort=1,2,...,T
e Call Weak Learner, providing it with the distribution Dy
e Get back a hypothesis h; : X—Y.

e Calculate the error of hy : ¢ = Zizht(x_)#y_ Dy(i). If e > %, then set
T =t—1 and abort loop.

o Set oy = %lnle;:t

e Update distribution Dy : Dt+1(i) — DtT(tZ) < { Z;tat :: Zigi’g ; zz
i 1

where Z; is a normalization constant(chosen so that D;y; will be a
distribution).

T
4. Output the final Hypothesis: hfpn(x;) = sign Zatht(wi)
t=1

Boosting

Weighted Datasets

Two ways to use weights in @ meta learning scheme:

1. If the algorithm allows it, the weights are used to
build the preferred learner. Typically, the weights
are used to compute the error of a learner.

2. Otherwise, we induce the weights by resampling
form the original training dataset. Instances with
higher weights are given a higher probability of
being resampled.

Boosting

Stochastic Sampling with
Replacement

e Concept: a spinning roulette with slots of different
sizes

e Example: weight table

Instance | Weight | Slot Angle (degrees)

0.0555
0.0278
0.1111
0.1111
0.4444
0.0278
0.1111
0.0555
0.0278
0 0.0278

H OO ~NODOTPA~PWNNR

Boosting

Stochastic Sampling with
Replacement

Spinning roulette

Random numbers: 65, 327, 48, 348, 128, 142, 230,
337, 11, and 106.
Resampled instances:

Boosting

Example

Weight updates:

D1 (4) x; | yi | ha(@) [e | D1(z) x e | Da(3)
0.1000 | =z 1 1
0.1000 | x> | -1 1
0.1000 | =z3 | 1 -1
0.1000 | z4 | 1 -1
0.1000 | =zs 1 1
0.1000 | =z | -1 1
0.1000 | =z7 | -1 -1
0.1000 | =z5 | -1 -1
0.1000 | =z | -1 -1
0.1000 | z10 | 1 1
7=

CostBoosting

e Concepts

e Algorithm

e Example

CostBoosting
Concepts

e Cost-Boosting VS. Boosting

e Specificity of Software Quality Modeling

e Inducing cost-sensitivity in the meta learning al-
gorithm

CostBoosting
Algorithm

Notation:
Symbol Description
oy Parameter chosen as a weight for weak hypothesis h;
cost(k,7) | Misclassification cost of classifying a class k instance as class j
Dy (1) Distribution used as a weight for instance 7 on iteration ¢
Dyy1(2) Distribution used as a weight for instance 7 on iteration t 4+ 1
D;Jrl(i) Cost adjustment factor used to determine D, (%)
hy Weak hypothesis on the ¢ iteration
ht(x;) Value of the weak hypothesis on instance z;
hfin(;) Final hypothesis
K Total number of classes
m Number of instances in training data set
T Number of iterations
X An instance space
T; An instance in an instance space X
Y Class space

<

A classinY

CostBoosting
Algorithm

1. Input:

e A set of order pairs (z1,%1),..., (Tm,ym), Where x;€X is an instance

space, y;€Y = {-1,41}

e Weak learning algorithm

e An integer T specifying the number of iterations

2. Initialize D;(i) = 1/m for all i.

3. Dofort=1,2,..T

Call Weak Learner, providing it with the distribution Dy
Get back a hypothesis h; : X—>Y.

Calculate the error of h; : ¢ = Zi:ht(w,)#y_ Dy(3). If ¢ > 2, then set
T =1t—1 and abort loop.

Set oy = %lnIE;tEt

Update distribution Dy : Dyy1(i) = w2 —

> i Dia (@)
D (i) = cost(actual(z),predicted(z)) if actual(i) # predicted(?)
t+1\" = 1 mD(3) otherwise.

K T

4. Output the final Hypothesis: hygp(z;) = minzzmtht(:pi)cost(k,j)|,

k t=1

where K is the total number of classes; and cost(k,j) is the misclassifi-
cation cost of classifying a class k instance as class j.

CostBoosting

Example
Weight updates:
i | yi | D1(3) | ha(d) | D5(@) | D2(3) | ha(d) | D3(3) | D3(4)
1 [1]0.067 1 1
2 | 11]0.067]| -1 1
3|1 0.067 1 1
4 |1]0.067]| -1 -1
5110067 -1 1
6 | 1 | 0.067 1 -1
7 | 1]0.067 1 1
8 | 1]0.067]| -1 -1
9 | 1 |0.067 1 1
10| 1 | 0.067 1 1
11 | -1 | 0.067 | -1 -1
12 | -1 | 0.067 | -1 -1
13 | -1 0.067 | -1 1
14 | -1 | 0.067 1 -1
15 | -1 | 0.067 | -1 -1

Summary

Increased performance

Less prone to overfitting

No tuning

ADbility to use previous misclassification history

Cost-sensitive

