COT6930: Data Mining Meta Learning Schemes Bagging, Boosting, CostBoosting

Erik Geleyn

Empirical Software Engineering Laboratory
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
(561)297-2512
egeleyn@cse.fau.edu
http://www.cse.fau.edu/esel.html

For classroom use only, for other use, please contact the authors.

Overview

Introduction to Meta Learning Schemes

Bagging

Boosting

CostBoosting

Summary

Introduction to Meta Learning Schemes

- Foreword
- Concepts
- Advantages
- Drawbacks

Introduction to Meta Learning Schemes Foreword

- Combining several learners
- Analogy with some human decision process

Introduction to Meta Learning Schemes Concepts

- What kind of classifier should be combined?
- Stable and unstable learners
- Stable: CBR, linear regression
- Unstable: Decision Trees, neural nets
- Weak and Strong learners (Decision Stump, C4.5)

Introduction to Meta Learning Schemes Advantages

- Performance
- Less overfitting
- No tuning

Introduction to Meta Learning Schemes Drawbacks

- Combined decisions are harder to interpret
- Computational greediness

Bagging

- Concepts
- Algorithm
- Example

Bagging Concepts

- Simple
- Builds different models by randomly resampling from the original training dataset
- Easy to implement on parallel architectures
- Able to improve weak learners

Bagging Algorithm

Notations

Symbol	Description
h_t	Weak hypothesis on the t^{th} iteration
$h_t(x_i)$	Value of the weak hypothesis on instance i
$h_{fin}(x_i)$	Final hypothesis
$\mid \stackrel{\circ}{m} \mid$	Number of instances in training dataset
S	A Training dataset
T	Number of iterations
X	An instance space
x_i	An instance in an instance space X
Y	Class space
y_i	A class in Y

Bagging

Algorithm

Notations

1. Input:

- A data set S of order pairs $(x_1,y_1),...,(x_m,y_m)$, where $x_i{\in}X$ is an instance space, $y_i{\in}Y=\{-1,+1\}$
- Weak learning algorithm
- An integer T specifying the number of iterations
- 2. Do for t = 1, 2, ..., T
 - ullet Form a data set S_t by sampling n instances with replacement from the training data set S
 - ullet Call Weak Learner, providing it with the distribution S_t
 - Get back a hypothesis $h_t: X \rightarrow Y$.
- 3. Output the final Hypothesis: $h_{fin}(x_i) = sign(\sum_{t=1}^{T} h_t(x_i))$

Bagging Example

Simple voting

x_i	y_i	$h_1(i)$	$h_2(i)$	$h_3(i)$	$h_4(i)$	$h_5(i)$	$h_{fin}(x_i)$
x_1	1	1	1	1	-1	1	
x_2	1	1	-1	1	1	1	
x_3	-1	-1	1	1	1	-1	
x_4	1	-1	1	1	1	1	
x_5	1	1	1	1	-1	1	
x_6	-1	1	-1	-1	-1	-1	
x_7	-1	-1	-1	-1	1	-1	
x_8	-1	-1	-1	1	-1	-1	
x_9	-1	-1	-1	-1	-1	-1	
x_{10}	1	1	1	1	1	1	

- Concepts
- Algorithm
- Weighted Datasets
- Stochastic Sampling with Replacement
- Example

Concepts

- Boosting VS. Bagging
- Uses previous misclassification history
- Uses a weighted dataset to generate the different models
- Increases performances in a more significant way than Bagging
- Still, sometimes can worsen a strong learner

Algorithm

Notation

Symbol	Description
	Parameter choosen as a weight for weak hypothesis h_t
α_t	, · · · · · · · · · · · · · · · · · · ·
$D_t(i)$	Distribution used as a weight for instance i at iteration t
$D_{t+1}(i)$	Distribution used as a weight for instance i at iteration $t+1$
ϵ_t	Error of the weak hypothesis h_t
h_t	Weak hypothesis on the t^{th} iteration
$h_t(x_i)$	Value of the weak hypothesis on instance x_i
$h_{fin}(x_i)$	Final hypothesis
$ \stackrel{\circ}{m} $	Number of instances in training data set
$\mid T \mid$	Number of iterations
X	An instance space
$ x_i $	An instance in an instance space X
Y	Class space
$\mid y_i \mid$	A class in Y
\widetilde{Z}_t	Normalization constant to ensure that D_{t+1} will be a distribution

Algorithm

1. Input:

- A set of order pairs $(x_1, y_1), ..., (x_m, y_m)$, where $x_i \in X$ is an instance space, $y_i \in Y = \{-1, +1\}$
- Weak learning algorithm
- An integer T specifying the number of iterations
- 2. Initialize $D_1(i) = 1/m$ for all i.
- 3. Do for t = 1, 2, ..., T
 - ullet Call Weak Learner, providing it with the distribution D_t
 - Get back a hypothesis $h_t: X \rightarrow Y$.
 - Calculate the error of h_t : $\epsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$. If $\epsilon_t > \frac{1}{2}$, then set T=t-1 and abort loop.
 - Set $\alpha_t = \frac{1}{2} ln \frac{1 \epsilon_t}{\epsilon_t}$
 - Update distribution $D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \left\{ \begin{array}{l} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{array} \right.$ where Z_t is a normalization constant(chosen so that D_{t+1} will be a distribution).
- 4. **Output** the final Hypothesis: $h_{fin}(x_i) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x_i)\right)$

Boosting Weighted Datasets

Two ways to use weights in a meta learning scheme:

- 1. If the algorithm allows it, the weights are used to build the preferred learner. Typically, the weights are used to compute the error of a learner.
- Otherwise, we induce the weights by resampling form the original training dataset. Instances with higher weights are given a higher probability of being resampled.

Stochastic Sampling with Replacement

 Concept: a spinning roulette with slots of different sizes

• Example: weight table

Instance	Weight	Slot Angle (degrees)
1	0.0555	
2	0.0278	
3	0.1111	
4	0.1111	
5	0.4444	
6	0.0278	
7	0.1111	
8	0.0555	
9	0.0278	
10	0.0278	

Stochastic Sampling with Replacement

Spinning roulette

Random numbers: 65, 327, 48, 348, 128, 142, 230, 337, 11, and 106.

Resampled instances:

Example

Weight updates:

$D_1(i)$	x_i	y_i	$h_1(i)$	$e^{\pm lpha_1}$	$D_1(i) imes e^{\pmlpha_1}$	$D_2(i)$
0.1000	x_1	1	1			
0.1000	x_2	-1	1			
0.1000	x_3	1	-1			
0.1000	x_4	1	-1			
0.1000	x_5	1	1			
0.1000	x_6	-1	1			
0.1000	x_7	-1	-1			
0.1000	x_8	-1	-1			
0.1000	x_9	-1	-1			
0.1000	x_{10}	1	1			
					z=	

CostBoosting

- Concepts
- Algorithm
- Example

CostBoosting Concepts

- Cost-Boosting VS. Boosting
- Specificity of Software Quality Modeling
- Inducing cost-sensitivity in the meta learning algorithm

CostBoosting Algorithm

Notation:

Symbol	Description
α_t	Parameter chosen as a weight for weak hypothesis h_t
cost(k,j)	Misclassification cost of classifying a class k instance as class j
$D_t(i)$	Distribution used as a weight for instance i on iteration t
$D_{t+1}(i)$	Distribution used as a weight for instance i on iteration $t+1$
$D_{t+1}^{'}(i)$	Cost adjustment factor used to determine $D_{t+1}(i)$
$\mid h_t \mid$	Weak hypothesis on the t^{th} iteration
$h_t(x_i)$	Value of the weak hypothesis on instance x_i
$egin{array}{c} h_{fin}(x_i) \ K \end{array}$	Final hypothesis
$\mid K \mid$	Total number of classes
$\mid m \mid$	Number of instances in training data set
$\mid T \mid$	Number of iterations
X	An instance space
$ x_i $	An instance in an instance space X
Y	Class space
y_i	A class in Y

CostBoosting

Algorithm

1. Input:

- A set of order pairs $(x_1, y_1), ..., (x_m, y_m)$, where $x_i \in X$ is an instance space, $y_i \in Y = \{-1, +1\}$
- Weak learning algorithm
- An integer T specifying the number of iterations
- 2. Initialize $D_1(i) = 1/m$ for all i.
- 3. Do for t = 1, 2, ..., T
 - ullet Call Weak Learner, providing it with the distribution D_t
 - Get back a hypothesis $h_t: X \rightarrow Y$.
 - Calculate the error of h_t : $\epsilon_t = \sum_{i:h_t(x_i)\neq y_i} D_t(i)$. If $\epsilon_t > \frac{1}{2}$, then set T=t-1 and abort loop.
 - Set $\alpha_t = \frac{1}{2} ln \frac{1-\epsilon_t}{\epsilon_t}$
 - Update distribution $D_t: D_{t+1}(i) = \frac{D'_{t+1}(i)}{\sum_{i}^{m} D'_{t+1}(i)}$ $D'_{t+1}(i) = \begin{cases} cost(actual(i), predicted(i)) & \text{if } actual(i) \neq predicted(i) \\ mD_t(i) & \text{otherwise.} \end{cases}$
- 4. Output the final Hypothesis: $h_{fin}(x_i) = min \sum_{k=t=1}^{K} \sum_{t=1}^{T} |\alpha_t h_t(x_i) cost(k,j)|$,

where K is the total number of classes; and cost(k,j) is the misclassification cost of classifying a class k instance as class j.

CostBoosting Example

Weight updates:

i	y_i	$D_1(i)$	$h_1(i)$	$D_2'(i)$	$D_2(i)$	$h_2(i)$	$D_3'(i)$	$D_3(i)$
1	1	0.067	1			1	-	
2	1	0.067	-1			1		
3	1	0.067	1			1		
4	1	0.067	-1			-1		
5	1	0.067	-1			1		
6	1	0.067	1			-1		
7	1	0.067	1			1		
8	1	0.067	-1			-1		
9	1	0.067	1			1		
10	1	0.067	1			1		
11	-1	0.067	-1			-1		
12	-1	0.067	-1			-1		
13	-1	0.067	-1			1		
14	-1	0.067	1			-1		
15	-1	0.067	-1			-1		

Summary

- Increased performance
- Less prone to overfitting
- No tuning
- Ability to use previous misclassification history
- Cost-sensitive