Predicting Fault-Prone Modules In Embedded
Systems Using Analogy Based Classification Models:

Taghi M. Khoshgoftaar'
Bojan Cukic
Naeem Seliya

Abstract

Embedded systems have become ubiquitous and essential entities in our ever
growing high-tech world. The backbone of today’s information-highway infrastruc-
ture are embedded systems such as telecommunication systems. They demand high
reliability, so as to prevent severe consequences of failures including costly repairs
at remote sites. Technology changes mandate that embedded systems evolve, re-
sulting in a demand for techniques for improving reliability of their future system
releases. Reliability models based on software metrics can be effective tools for
software engineering of embedded systems, because quality improvements are so
resource consuming that it is not feasible to apply them to all modules. Identifi-
cation of the likely fault-prone modules before system testing, can be effective in
reducing the likelihood of faults discovered during operations.

A software quality classification model is calibrated using software metrics from
a past release, and is then applied to modules currently under development to esti-
mate which modules are likely to be fault-prone. This paper presents and demon-
strates an effective case-based reasoning approach for calibrating such classification
models. It is attractive for software engineering of embedded systems, because it
can be used to develop software reliability models using a faster, cheaper, and easier
method. We illustrate our approach with two large-scale case studies obtained from
embedded systems. They involve data collected from telecommunication systems
including wireless systems. It is indicated that the level of classification accuracy
observed in both case studies would be beneficial in achieving high software relia-
bility of subsequent releases of the embedded systems.

Keywords: high assurance, embedded systems, software reliability, case-based rea-
soning, classification models, software metrics

*For review only. Do not distribute.

tReaders may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineering
Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL
33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu.

1 Introduction

Embedded software systems have become ubiquitous and essential entities in today’s
technology-based world. The backbone of the modern world’s information-highway in-
frastructure are embedded systems, such as telecommunication systems. Many mission-
critical systems [22] such as military tactical systems, have powerful embedded computers.
Success of such high-assurance embedded systems is very critical and depends on high re-
liability, i.e., failure free operations of these systems, so as to prevent severe consequences
of failures including costly repairs at remote sites and expensive down-time periods. High
security and reliability mandates for embedded systems often result in constant updates
and multiple releases of the underlying embedded software. Logic would dictate that
subsequent releases of embedded systems must be more reliable than their respective
predecessors.

Effective techniques and methods for improving reliability of software systems are
being developed to aid in achieving high system reliability. This is because quality
enhancement activities are so expensive that it is practically not feasible to apply them
to all modules. For example, specialized modeling, verification and validation, extra
reviews, extra testing, and re-engineering can be expensive, and yet, may be beneficial
only to high-risk modules. Early (pre-testing phases) identification [11] of fault-prone
modules during the development life-cycle is effective in reducing the likelihood of faults
being discovered during system operations.

Reliability models based on software metrics [23] can be efficient tools for software
engineering of embedded systems, because they can assist in reducing development and

maintenance costs [2]. Software product metrics can quantify the size and complexity of

software artifacts in many ways. Software process metrics, such as inspection metrics,
can capture significant features of a module’s history as it evolves. Software execution
metrics quantify opportunities for faults to be detected during operations. A software
reliability model [19] can be developed using measurements and fault data from a past
release. A fault is a defect in an executable product that causes a software failure. The
calibrated model can then be applied to modules currently under development, yielding
a quality prediction on a module-by-module basis.

Software quality classification models can be used as reliability models for embedded
systems, by identifying fault-prone (or not fault-prone) modules early in the life-cycle.
Various classification techniques have been proposed and investigated, such as discrimi-
nant analysis [11, 20|, optimized set reduction [1], regression and classification trees [9],
artificial neural networks [14], fuzzy logic [3, 4], and logistic regression [7]. This paper
examines case-based reasoning (CBR) [16, 21], an automated reasoning approach which
attempts to resolve problems of a current case based on instances of past cases, which
are stored in a “case library”. CBR systems have demonstrated important applications in
numerous fields, including software cost estimation, software reuse, software quality esti-
mation [5, 17], and software design. In comparison to other software reliability modeling

techniques, CBR has several advantages, including:

e CBR systems can be designed to alert users when a new case is outside the bounds
of current experience. This is attractive when a solution of “I don’t know” is better
than a guess. In contrast, a typical prediction model always gives some kind of

decisive solution, even in extreme situations.

e Cases can be added or deleted as new information becomes available, without the

hassle of model re-estimation to track new information.

e CBR is scalable to very large case libraries with fast retrieval, even as the case

library scales up.

e Users of CBR systems can be easily convinced that the solution was derived in a
reasonable way, i.e., they are not “black boxes”, and hence, the CBR system lends

itself to user acceptance.

e CBR systems are attractive, because they are modeled with the premise of human

intuition in mind. It relies on learned experiences of the past to analyze new issues.

We present and demonstrate an effective CBR software quality classification modeling
technique [17, 21]. A high assurance embedded systems such as telecommunication sys-
tems, often have very few fault-prone modules. Due to this low proportion of fault-prone
modules, software quality classification modeling methods in literature, such as [13] are
inappropriate for such systems.

The software quality classification method illustrated in this paper, is attractive for
software engineering of embedded systems, because it can be used to develop useful soft-
ware reliability models using a faster, cheaper, and easier method. A CBR classification
model provides a fast prediction retrieval, without having to re-calibrate every time new
modules are added to the case library. This feature makes the CBR software quality mod-
eling process faster, and unlike other classification techniques, extra resources needed for
re-calibration, if any, are minimal.

Useful and effective software quality classification models can be built with CBR

using few primitive metrics as well as many complex metrics. Data collection efforts can

be minimized by obtaining only few relevant metrics data for modeling purposes. CBR
classification models are easy to understand and interpret, because the model is based on
the premise of human intuition in mind, and hence does not need high technical expertise
for model interpretation and application.

Classification models using the CBR approach were designed for two large-scale case
studies of software measurement and fault data obtained from embedded software sys-
tems. The first case study, denoted as LLTS, involves software metrics collected over four
historical releases of a very large legacy telecommunications system. The first release,
i.e., Release 1 is used to train and calibrate the classification model, whereas the subse-
quent releases, i.e., Releases 2, 3, and 4, are used to evaluate the classification accuracy
of the calibrated model.

The second case study, denoted as WLTS, was performed to further validate the use-
fulness of CBR as a software quality modeling technique, especially in embedded systems.
It involves software metrics data obtained from initial releases of two large Windows-
based embedded system applications used primarily for customizing the configuration
of wireless telecommunications products. An impartial data splitting technique [17] is
employed to obtain the training and evaluation data sets.

The working hypothesis of our modeling approach, when applied to software quality
estimation, is that a module currently under development will probably be fault-prone
if previously developed modules with similar attributes were fault-prone. Classification
accuracy of a model is measured in terms of its Type I and Type II misclassification error
rates. A Type I error occurs when a not fault-prone module is classified as fault-prone,
whereas a Type II error occurs when a fault-prone module is classified as not fault-prone.

An analyst seeks a classification model that has the minimum expected cost of

misclassifications. The actual costs of rectifying the two misclassifications are not known
until quite late in the life-cycle. A Type II error is relatively more expensive than a
Type I error, because it may involve repairs to embedded systems at remote sites, and
costly down-time periods during operations. In contrast, Type I errors may involve
costs of extra reviews of the falsely identified not fault-prone modules. Consequently,
a classification model must provide an appropriate simulation that reflects an effort of
minimizing the two costs.

The costs of the two misclassifications are generally not the same, hence the accuracy
and usefulness of a classification model is affected by the cost ratio, CC_III’ where C7 is the
cost of rectifying a Type I misclassification, and Cy; is the cost of rectifying a Type II
misclassification. Factors besides cost ratio may determine the preferred balance between
the misclassification rates. For example, in high assurance embedded systems, where the
proportion of fault-prone modules is very small and Type II errors have more severe
consequences, one may prefer equal misclassification rates. In this paper, we present
a practical generalized classification rule [21] in the context of CBR software quality
classification modeling that allows appropriate emphasis on each type of misclassification
according to the needs of the project. A similar classification rule was proposed by our
research team [8] in the context of classification tree based software quality estimation
models [9].

The results of our case studies indicate that models designed using the illustrated
case-based reasoning approach, yielded useful classification accuracy that can be used for
software reliability control of their respective embedded systems. The calibrated models

can be applied to modules currently under development, thereby assisting in obtaining

high software reliability of the subsequent system releases. A similar approach of model

calibration and application, can be universally adopted for software engineering of other
embedded systems.

The layout of the rest of the paper is as follows. In Section 2 we present the theoret-
ical details of the classification technique adopted for our case-based reasoning approach.
Section 3 discusses the details and procedures of the experiments performed. The system
descriptions and results of the two case studies examined in this paper are presented in
Sections 4 and 5, respectively. Finally, we conclude with inferences based on our case

studies with suggestions for related future work in Section 6.

2 Analogy-Based Classification Models

The past experience(s) of a CBR classification system is represented by “cases” in a “case
library”. The case library and the associated retrieval and decision rules constitute a
CBR model [16]. The past instances or cases are well-known project data from previously
developed systems or projects, and contain all relevant information pertaining to each
case. When associating with software quality modeling based on software metrics, a case
in the case library is composed of a set of predictors or independent variables (x;), and a
response or dependent variable (y;).

In our study the response variable is a class membership, i.e., either fault-prone or not
fault-prone. The definition of whether a module is fault-prone or not fault-prone depends
on the pre-set threshold value of the quality factor, which in our studies is the number
of faults. Consequently, if the number of faults is fewer than the threshold value, the
module is deemed as not fault-prone, and fault-prone otherwise. Suppose each case in the

library has known attributes and class membership. Then, given a case with unknown

class, we predict its class to be the same as the class of the most similar case(s) in the
case library, where similarity is defined in terms of the case attributes.

A CBR classification model uses a similarity function to determine the most similar
cases to the current case, from the case library (fit or training data). The function
computes the distance d;;, between the current case x;, and every other case c; in the
case library. The cases with the smallest possible distances are of primary interest, and
the set of similar cases forms the set of nearest neighbors, N. Model parameter ny,
represents the number of the best (most similar to current case) cases selected from N
for case analysis and class estimation. ny can be varied during model calibration to
obtain different classification models. Once ny is selected, a classification technique is
used to classify the current case as either fault-prone or not fault-prone.

There are several types of similarity functions available including, City Block dis-
tance, Euclidean distance, and Mahalonobis distance. Our previous research [21], in-
dicated that the Mahalonobis distance similarity function yielded better classification
accuracy than the other two functions. Consequently, we use this distance function in

our case studies. The Mahalonobis distance similarity function is given:
di; = (¢ — xi)'S ™ (¢; — xy) (1)

where, S is the variance-covariance matrix of the independent variables for the case
library and S ! is its inverse. Prime (/) indicates the transpose. Unlike the Fuclidean
and Cuty Block distance functions, the Mahalonobis distance function explicitly accounts
for the correlation [12] among the attributes, and does not require standardization or
normalization of the independent variables [17, 21].

A classification model may be sensitive to the ratio of the costs of the Type I and

Type II misclassifications. This is because in practice actual costs of the two misclassi-
fications (Cy and Cpy) are not known during the modeling period. Practically speaking,
the costs of the two misclassifications are not the same. Hence, the use of equal costs for
C; and Cp; during model calibration is not realistic. Moreover, other factors besides cost
ratio may determine the best balance between the Type I and Type II error rates. For
example, when the proportion of fault-prone modules (as compared to not fault-prone
modules) is very small and Type II misclassifications have much more severe consequences
than Type I, one may prefer equal misclassification rates. The cost ratio, CC—III, can be
varied during modeling to obtain a preferred balance [15] between the misclassification
error rates.

In the context of CBR software classification models, we proposed [21] two methods
of classification, i.e., majority voting and data clustering. It was indicated that the data
clustering technique yielded better classification accuracy. Consequently, we use it as
the classification technique for our case studies. In the data clustering method, the
case library is partitioned into two clusters, fault-prone (fp) and not fault-prone (nfp),
according to the class of each case. For a currently unclassified case x;, let d,, s,(x;) be the
average distance to the not fault-prone nearest neighbor cases, and dy,(x;) be the average
distance to the fault-prone nearest neighbor cases. The number of nearest neighbor cases
to be used for analysis, can be varied (as a model parameter) during modeling.

Once the average distances to the nearest neighbor cases are computed, our pro-

posed generalized classification rule for data clustering is then used to estimate the class,

10

Class(x;), of the unclassified case. The classification rule is given by:

nfp If df”(’;",) > L
Class(x;) = dngp(i) = Crr (2)

fp otherwise

£r

A CBR software quality classification model therefore, consists of the following: o

the modeling cost ratio; ny, the number of nearest neighbor cases for analysis and
class estimation; a similarity function, such as Mahalonobis distance function and, a

classification method, such as data clustering.

3 Methodology

The generalized modeling methodology adopted for both the LLTS and WLTS case studies
is presented briefly in this section. Further details and discussions of the experiments
are presented in [17, 21]. Classification modeling studies using CBR were performed
with SMART, the Software Measurement Analysis and Reliability Toolkit [10]. SMART is
an empirical software quality modeling tool that has been developed at the Empirical
Software Engineering Research Laboratory, Florida Atlantic University.

The algorithm for model calibration and selection used during our empirical inves-
tigations is summarized in Figure 1. The modeling methodology used for the two case

studies is presented below.

1. Case library: A fit (or training) data set is selected as the case library. For the
LLTS case study, Release 1 is used as the training data set. In the case of the wrLTS

study, an impartial data splitting is performed to obtain the fit and test data sets.

2. Target data: Release 2, 3, and 4 are used as test or evaluation data sets for the

11

Preprocess software metrics and
fault data if necessary

Select a Similarity Function,
such as Mahalonobis Distance

Select a Classification Rule,
such as Data Clustering

Build classificaiton models by
varying cost ratio, C,/C;,

cross-validation
results of fit data

Compute Type | and Type I
misclassification error rates

Select the preferred model for Ny=ny+1

this value of ny

For equality of
error rates, with
Type Il lowest
possible

For equality of
error rates, with
Type Il lowest

possible

No

Select the final model among
the ones selected for each ny

Test and evaluate the final
classification model selected

Figure 1: Model Calibration and Selection Flowchart

LLTS case study. For the wLTS case study the appropriate test data set obtained

in the above step is used.

3. Classification technique: The Mahalonobis distance similarity function together

with the data clustering classification method is used for both case studies.

4. Parameter ny: Values, with increments of 1, starting from 1 and as high as 100

were considered for both case studies. Other higher values were considered, but did

not yield better results.

5. Parameter CC—I’I: Cost ratios ranging from as low as 0.0001 to as high as 5.0 were

12

considered. Other values were also used during modeling, but did not yield bet-
ter results. These cost ratios are used for modeling purposes, and should not be

confused with the actual cost ratios.

. Build models: For each ny value, the cost ratios were varied to build different
classification models. The Type I and Type IT misclassification rates for the training
data sets are computed using a v-fold cross-validation technique, where v is the
number of iterations used for model building and evaluation. For our case studies,
v is the number of cases in the case library (fit data). In our approach, at each
iteration, one observation is removed from the training data set and is used for
evaluation of the model built using the (v — 1) observations. The Type I and
Type II misclassification rates for the fit data set are then summarized across all v

iterations.

. Select final model: A preferred balance of equality between the misclassification

rates is desired as per the requirements of the two case studies. Among the models
built using the different combinations of ny and C%, a model with a good balance
between the Type I and Type II errors with Type II as low as possible, is selected
as the final model. These error values are based on the cross-validation results of

the fit data set.

. Evaluate model: The test data sets are used to validate the accuracy of the models

calibrated using the fit data set. Type I and Type II errors are computed for the
test data sets, and are then compared with those of the fit data set. A stable
classification model exhibits a small error-rate variation (absolute value) across its

training and evaluation data sets.

13

4 A Large Legacy Telecommunications System

4.1 System Description

The data for this case study (denoted as LLTS) was collected over four historical releases
from a very large legacy embedded software system written in a high-level language,
using the procedural paradigm, and maintained by professional programmers in a large
organization. We label the releases 1 through 4. This telecommunications system had
over ten million lines of code and included numerous finite-state machines and interfaces
to various kinds of equipment.

A software module was considered as a set of related source-code files. A module
was considered fault-prone if any faults were discovered during operations, and not fault-
prone otherwise. Faults in deployed embedded systems are extremely expensive because,
in addition to down-time due to failures, visits to remote sites are usually necessary
to repair them. Fault data, collected at the module-level by the problem reporting
system, comprised of faults discovered during post unit testing phases. Post unit testing
phases recorded faults that were discovered before and after the product was released to
customers.

There were too few faults in unchanged modules for effective statistical reliability
modeling. Approximately 99% of the unchanged modules had no faults. Consequently,
this case study considered modules that were new or had at least one source code up-
date since the prior release. Configuration management data analysis identified software
modules that were unchanged from the prior release.

The system had several million lines of code in a few thousand modules per release.

Each release has approximately 3500 to 4500 updated software modules. The number of

Table 1: LLTS: Software Product Metrics

Symbol | Description
Call Graph Metrics
CALUNQ Number of distinct procedure calls to others.
CAL2 Number of second and following calls to others.
CAL2= CAL— CALUNQ where CAL is the total number of calls.
Control Flow Graph Metrics
CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs, i.e., if-then constructs.
LOP Number of loop constructs.
CNDSPNSM | Total span of branches of conditional arcs. The unit of measure is arcs.
CNDSPNMX | Maximum span of branches of conditional arcs.
CTRNSTMX | Maximum control structure nesting.
KNT Number of knots. A “knot” in a control flow graph is where arcs cross due to a violation of
structured programming principles.
NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).
NDSENT Number of entry nodes.
NDSEXT Number of exit nodes.
NDSPND Number of pending nodes, i.e., dead code segments.
LGPATH Base 2 logarithm of the number of independent paths.
Statement Metrics
FILINCUQ Number of distinct include files.
Loc Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.
VARGLBUS | Number of global variables used.
VARSPNSM | Total span of variables.
VARSPNMX | Maximum span of variables.
VARUSDUQ | Number of distinct variables used.
VARUSD2 Number of second and following uses of variables.

VARUSD2 = VARUSD — VARUSDUQ where VARUSD is the total number of variable uses.

small set is often difficult for a reliability modeling technique to identify.

14

modules considered in Release 1, 2, 3, and 4 were 3649, 3981, 3541, and 3978 respectively.
The proportion of modules with no faults among the updated modules of the first release

was Tnp = 0.937, and the proportion with at least one fault was 7y = 0.063. Such a

The set of available software metrics is usually determined by pragmatic consider-

to a predetermined set of research questions.

ations. A data mining approach is preferred in exploiting software metrics data [4], by

which a broad set of metrics are analyzed rather than limiting data collection according

Data collection for this case study involved extracting source code from the configu-

15

Table 2: LLTS: Software Process Metrics

Symbol Description
DES_PR Number of problems found by designers.
BETA_PR Number of problems found during beta testing.
DES_FIX Number of problems fixed that were found by designers.
BETA_FIX | Number of problems fixed that were found by beta testing in the prior release.
CUST_FIX | Number of problems fixed that were found by customers in the prior release.
REQ_UPD | Number of changes to the code due to new requirements.
TOT_-UPD | Total number of changes to the code for any reason.
REQ Number of distinct requirements that caused changes to the module.
SRC_GRO Net increase in lines of code.
SRC_MOD | Net new and changed lines of code.
UNQ@_DES | Number of different designers making changes.
VLO_UPD | Number of updates to this module by designers who had 10 or less total updates in entire
company career.
LO_UPD Number of updates to this module by designers who had between 11 and 20 total updates in
entire company career.
UPD_CAR | Number of updates that designers had in their company careers.

Table 3: LLTS: Software Execution Metrics

Symbol Description

USAGE Deployment percentage of the module.
RESCPU | Execution time (microseconds) of an average transaction on a system serving consumers.
BUSCPU | Execution time (microseconds) of an average transaction on a system serving businesses.
TANCPU | Execution time (microseconds) of an average transaction on a tandem system.

ration management system. Measurements were recorded using the EMERALD (Enhanced
Measurement for Early Risk Assessment of Latent Defects) software metrics analysis tool,
which includes software-measurement facilities and software quality models [6]. Prelimi-
nary data analysis selected metrics (aggregated to the module level) that were appropriate
for our modeling purposes. The software metrics considered included 24 product metrics,
14 process metrics, and 4 execution metrics. Consequently, this case study consists of
42 independent variables that are used to predict the response variable, i.e., Class: fp or
njfp.

The software product metrics in Table 1 are based on call graph, control flow graph,

and statement metrics. The number of procedure calls by each module (CALUNQ and

16

CAL2) are derived from a call graph depicting calling relationships among procedures.
A module’s control flow graph, consists of nodes and arcs depicting the flow of control of
the program. Statement metrics are measurements of the program statements without
expressing the meaning or logic of the statements.

Process metrics in Table 2 may be associated with either the likelihood of inserting
a fault during development, or the likelihood of discovering and fixing a fault prior to
product release. The configuration management systems tracked each change to source
code files, including identity of the designer and the reason of the change, e.g., a change
to fix a problem or to implement a new requirement. The problem reporting system
maintained records on past problems. Execution metrics listed in Table 3 are associated
with the likelihood of executing a module, i.e., operational use. The proportion of instal-
lations that had a module, USAGE, was approximated by deployment data on a prior
release. Execution times were measured in a laboratory setting with different simulated

workloads.

4.2 Empirical Results

The case library for this case study consisted of modules from the Release 1 data set. If
the modules in the training and evaluation data sets had more than one fault they were
classified as fault-prone, and not fault-prone otherwise. This threshold value was deter-
mined as per the modeling requirements of the embedded system. The faults associated
with modules, were those discovered by customers during system operations.

The aim of calibrating classification models was to obtain a model with a good

balance (for equality) between the Type I and Type II errors, with Type II being as low

17

Release 1

27.000% ~

26.000% ﬁ
—Type |

25.000% \

—Type |l
24.000% + \4/ \><
23.000% -

22.000%

21.000% T T T T T T T T T T T T T T T T T T T 1
1 35 6 7 8 9 11131517 192123252729 313335

Figure 2: LLTS: Misclassification Rates vs. ny

as possible. It was observed that for a given cost ratio, the Type I and Type II error
rates showed lower variation as ny increased. Figure 2 demonstrates this observation.
The figure represents the variation for our selected classification model. Other values
of ny than those shown in Figure 2 were considered. However, they did not show any
improvements in the results and are hence, not presented.

The variation of misclassification rates (for a given ny) with respect to the cost
ratio, is demonstrated in Table 4. For a given ny, as the cost ratios are increased, the
Type I error decreases, whereas the Type II error increases. Subsequently, at a particular
cost ratio the errors are the most balanced, and that model is selected as the preferred
model for the given ny.

The values shown in Table 4 are for ny = 7, and the row highlighted in bold is the
model with the preferred balance between the Type I and Type II errors. The model
with % = 0.95 represents the value for our selected classification model. Other cost
ratio values besides those shown in Table 4 were considered. However, they did not yield

better results and hence, are not presented. It should be noted that these cost ratios

18

Table 4: LLTS: Misclassification Rates vs. CC_II,

‘ Cost Ratio ‘ Type I Error ‘ Type II Error ‘

0.10 90.175% 0.000%
0.20 81.287% 0.873%
0.30 73.655% 1.310%
0.40 66.257% 2.620%
0.50 58.041% 4.803%
0.60 50.760% 8.734%
0.70 42.310% 12.227%
0.80 34.181% 17.904%
0.90 26.754% 21.834%
0.91 26.053% 22.271%
0.92 25.322% 22.271%
0.93 24.561% 22.271%
0.94 23.860% 22.2711%
0.95 23.158% 23.144%
0.96 22.427% 24.454%
0.97 21.988% 24.891%
0.98 21.579% 25.328%
0.99 20.936% 26.201%
1.00 20.526% 27.948%

Table 5: LLTS Model: ny = 7, £& = 0.95

‘ Data Set ‘ Type I Error ‘ Type II Error ‘

Release 1 23.158% 23.144%
Release 2 25.132% 26.984%
Release 3 28.792% 27.660%
Release 4 28.667% 25.000%

are modeling cost ratios, and not the actual cost ratios for the embedded system. As
mentioned earlier, the actual costs of misclassifications are unknown until very late in
the system life-cycle.

The selected model and its classification accuracy across the multiple releases of the

19

LLTS case study are presented in Table 5. This model demonstrated the best balance of
the two error rates. Classification models are susceptible to over-fitting [18], in which the
model performs significantly better for the training data set as compared to the evaluation
data sets. The LLTS model does not show excessive over-fitting, because the maximum
difference in the Type I and Type II releases across the different system releases is only
about 5% and 4%, respectively.

The model also reflects good stability, in terms of maintaining the preferred balance
between the Type I and Type II error rates, across the different releases. Thus, the
classification model calibrated in this study using the illustrated CBR approach, can
successfully be used for software engineering and reliability control of subsequent releases

of the telecommunication system.

5 Wireless Configurations Systems

5.1 System Description

This case study (denoted as WLTS) involved data collection efforts [17] from initial re-
leases of two large Windows-based embedded system applications used primarily for
customizing the configuration of wireless telecommunications products. The two embed-
ded applications (written in C++) provide similar functionalities, and contain common
source code. The main difference between them is the type of wireless product that each
supports. Both systems comprised of over 1400 source code files and contained more
than 27 million lines of code each.

Software inspection metrics were obtained by observing the configuration manage-

20

Table 6: WLTS: Product and Process Metrics

Product Metrics Description

BASE_LOC Number of lines of code for the source file version
prior to the coding phase, i.e, auto-generated code.

SYST_LOC Number of lines of code for the source file version

delivered to system tests.
BASE COM Number of lines of commented code for source file
version prior to coding phase, i.e, auto-generated code.

SYST_COM Number of lines of commented code for source file
version delivered to system tests.

Process Metrics Description

INSP Number of times the source file was inspected prior

to system tests.

ment systems of the applications. The problem reporting system tracked and recorded
problem statuses. Information such as, how many times a source file was inspected prior
to system tests, were logged in its database. Software metrics obtained reflected aspects
of source files, and consequently, a module in this case study comprised of a source file.
Many software metrics were collected to record information such as, fault severity, inspec-
tion time, and major/minor errors. However, only a few primitive metrics were selected
for modeling purposes since they provided the most relevant and concise information
pertaining to the project. Further details of the data collection and metrics selection
processes are presented in [17].

The fault data collected for this case study, represent the faults discovered during
system tests. Upon preprocessing and cleaning the collected data, i.e., removal of outliers
and illogical data points, 1211 modules remained. Over 66% of modules (809) were
observed to have no faults, and the remaining 402 modules had at least 1 or more faults.

The five software metrics used for reliability modeling for this case study are presented

21

in Table 6. The product metrics used are statement metrics for the source files. They
primarily indicated the number of lines of source code prior to the coding phase (i.e.,
auto-generated code) and just before system tests. The inspection metric, INSP, was
obtained from problem reporting systems of the two embedded applications.

Classification models are dependent on the chosen threshold value that identifies
modules as fault-prone or not fault-prone. The main stimulus for selecting the appro-
priate threshold value is to build the most useful and system-relevant software quality
model possible. If the threshold of number of faults is set too low, all modules may be
classified as fault-prone, whereas if it is set too high, all modules may be classified as not
fault-prone. The consideration of different thresholds was part of a CBR classification
model-sensitivity study performed for the wWLTS case study.

Since data from subsequent releases was not available, an impartial data splitting
was performed on the data set in order to obtain the fit and test data sets. Consequently,
the fit and test data sets had 807 and 404 observations, respectively. In order to avoid
biased results due to a lucky split, the original data set was randomly split 50 times,
i.e., fifty pairs of the fit and test data sets were obtained. Empirical studies were then

performed on all 50 split combinations.

5.2 Empirical Results

Prior to adopting a particular software quality classification technique, it would be greatly
beneficial to an embedded system development team, if they knew how sensitive a par-
ticular classification technique is with respect to the chosen threshold value. It should

be noted that the best threshold value may be dependent on the requirements of the

Table 7: WLTS Classification Models: Threshold 1

Split nN cc—,’, Fit Data Set Test Data Set
Typel | TypeIl | TypelI | Type Il
1 4 0.6 | 16.14% | 16.79% | 14.44% | 13.43%
2 1 0.5 | 14.47% | 14.93% | 18.52% | 15.67%
3 1 0.6 | 16.51% | 16.79% | 17.41% | 14.93%
4 1 0.6 | 16.51% | 16.79% | 17.41% | 14.93%
5 2 0.6 | 13.57% | 13.38% | 14.39% | 22.56%
6 6 0.6 | 16.33% | 16.79% | 18.52% | 20.15%
7 3 0.5 | 15.77% | 14.18% | 14.44% | 14.18%
8 9 0.6 | 17.22% | 16.11% | 17.47% | 18.52%
9 2 0.6 | 15.58% | 13.81% | 18.89% | 14.93%
10 2 0.55 | 14.60% | 15.04% | 15.30% | 18.38%
11 3 0.6 | 15.86% | 15.87% | 19.41% | 12.98%
12 5 0.6 | 16.24% | 15.85% | 15.36% | 21.17%
13 1 0.55 | 17.07% | 16.05% | 9.63% | 13.43%
14 1 0.55 | 15.80% | 15.24% | 17.71% | 18.05%
15 2 0.6 | 15.86% | 16.24% | 16.48% | 14.50%
16 2 0.55 | 16.27% | 16.54% | 12.31% | 12.50%
17 1 0.55 | 16.36% | 16.35% | 14.34% | 20.14%
18 1 0.55 | 17.25% | 16.05% | 11.48% | 14.18%
19 2 0.55 | 14.31% | 14.13% | 18.08% | 18.05%
20 1 0.55 | 16.79% | 15.87% | 16.12% | 18.32%
21 1 0.55 | 16.57% | 15.56% | 13.97% | 14.39%
22 3 0.6 | 16.57% | 15.56% | 11.11% | 20.98%
23 1 0.5 | 15.71% | 16.17% | 15.67% | 11.77%
24 1 0.55 | 15.46% | 14.07% | 15.44% | 21.97%
25 1 0.6 | 17.07% | 17.15% | 13.41% | 13.28%
26 2 0.5 | 13.92% | 13.41% | 16.73% | 15.60%
27 5 0.65 | 16.30% | 15.33% | 12.93% | 24.82%
28 2 0.55 | 15.77% | 14.93% | 15.56% | 13.43%
29 3 0.55 | 16.36% | 14.13% | 20.30% | 12.78%
30 1 0.5 | 16.24% | 15.47% | 17.23% | 14.60%
31 1 0.5 | 16.24% | 15.47% | 21.72% | 18.25%
32 2 0.6 | 14.60% | 15.04% | 12.31% | 22.06%
33 2 0.55 | 16.61% | 15.47% | 16.61% | 15.47%
34 2 0.6 | 15.95% | 14.60% | 12.68% | 19.53%
35 1 0.55 | 16.24% | 16.60% | 13.70% | 12.69%
36 1 0.55 | 14.63% | 15.73% | 13.38% | 16.30%
37 4 0.55 | 15.75% | 15.71% | 20.91% | 19.15%
38 2 0.6 | 15.95% | 15.69% | 13.77% | 14.84%
39 1 0.6 | 16.57% | 17.41% | 18.38% | 13.64%
40 3 0.55 | 17.64% | 16.79% | 19.12% | 12.88%
41 3 0.6 18.11% | 16.25% | 14.34% | 11.20%
42 5 0.55 | 16.06% | 16.22% | 18.39% | 18.88%
43 2 0.55 | 15.57% | 14.96% | 15.22% | 17.97%
44 1 0.5 | 15.31% | 15.09% | 14.23% | 15.33%
45 5 0.6 | 14.95% | 15.09% | 17.23% | 16.79%
46 2 0.6 | 15.61% | 15.24% | 15.87% | 19.55%
47 2 0.6 | 16.36% | 15.59% | 13.21% | 17.27%
48 2 0.6 | 15.95% | 15.69% | 13.77% | 14.84%
49 2 0.55 | 14.89% | 15.21% | 17.33% | 10.24%
50 1 0.55 | 14.15% | 15.21% | 15.00% | 17.27%
Average | 2.28 | 0.57 | 15.91% | 15.55% | 15.75% | 16.37%
STD 1.629 | 0.037 | 0.95% | 0.94% | 2.62% | 3.30%

22

Table 8 WLTS Classification Models: Threshold 2

Split nN cc—,’, Fit Data Set Test Data Set
Typel | TypeIl | TypelI | Type Il
1 1 0.4 15.19% | 14.86% | 15.77% | 13.79%
2 2 0.4 13.74% | 14.37% | 16.46% | 22.73%
3 3 0.45 | 12.95% | 12.64% | 13.20% | 19.32%
4 2 0.45 | 13.90% | 14.94% | 13.20% | 20.46%
5 2 0.35 | 15.82% | 16.00% | 14.51% | 14.94%
6 2 0.45 | 13.63% | 14.21% | 16.04% | 16.28%
7 1 0.35 | 15.48% | 15.52% | 14.56% | 14.77%
8 2 0.4 14.40% | 14.29% | 13.57% | 19.46%
9 1 0.4 14.53% | 14.94% | 14.87% | 11.36%
10 1 0.4 14.29% | 14.12% | 17.24% | 16.47%
11 3 0.4 16.43% | 14.94% | 15.19% | 13.64%
12 1 0.35 | 14.49% | 13.37% | 14.65% | 13.33%
13 7 0.45 | 17.35% | 16.19% | 14.92% | 13.48%
14 1 0.4 14.01% | 13.97% | 18.38% | 15.66%
15 1 0.35 | 15.37% | 14.77% | 15.72% | 16.28%
16 1 0.35 | 15.64% | 15.52% | 16.46% | 18.18%
17 1 0.4 14.69% | 12.64% | 14.87% | 18.18%
18 3 0.4 17.09% | 16.57% | 12.93% | 14.94%
19 2 0.45 | 11.57% | 10.80% | 16.35% | 24.42%
20 2 0.35 | 16.35% | 14.62% | 16.61% | 15.39%
21 3 0.45 | 13.97% | 15.29% | 15.39% | 13.04%
22 1 0.3 14.96% | 15.12% | 16.88% | 13.33%
23 2 0.4 13.61% | 14.29% | 14.83% | 19.54%
24 2 0.4 14.44% | 14.77% | 16.04% | 18.61%
25 3 0.4 15.24% | 13.56% | 12.23% | 17.65%
26 2 0.4 13.52% | 13.45% | 16.29% | 23.08%
27 2 0.4 15.13% | 14.46% | 11.04% | 18.75%
28 3 0.4 16.93% | 16.57% | 14.51% | 9.20%
29 4 0.45 | 15.56% | 15.82% | 16.30% | 15.29%
30 1 0.3 16.77% | 15.39% | 18.97% | 7.53%
31 3 0.45 | 14.83% | 14.44% | 13.98% | 15.85%
32 2 0.4 15.14% | 16.19% | 13.02% | 22.47%
33 2 0.4 13.90% | 14.94% | 18.04% | 14.77%
34 1 0.4 16.48% | 17.05% | 12.89% | 17.44%
35 3 0.4 16.09% | 15.03% | 11.43% | 11.24%
36 1 0.4 15.24% | 14.69% | 13.79% | 15.29%
37 1 0.35 | 14.38% | 13.77% | 15.21% | 18.95%
38 2 0.4 15.31% | 14.44% | 14.91% | 14.63%
39 1 0.35 | 15.32% | 15.52% | 16.46% | 14.77%
40 1 0.4 15.39% | 13.53% | 13.78% | 18.48%
41 2 0.35 | 16.19% | 14.12% | 14.42% | 12.94%
42 6 0.45 | 14.51% | 14.45% | 17.46% | 21.35%
43 2 0.4 16.22% | 14.61% | 15.31% | 11.91%
44 1 0.4 13.92% | 14.29% | 15.14% | 20.69%
45 2 0.4 16.19% | 16.95% | 14.42% | 14.12%
46 3 0.4 15.53% | 14.47% | 14.47% | 19.77%
47 1 0.4 15.19% | 15.43% | 14.20% | 14.94%
48 2 0.35 | 14.51% | 14.45% | 16.83% | 12.36%
49 3 0.4 16.69% | 15.70% | 15.61% | 12.22%
50 4 0.4 16.30% | 13.50% | 14.57% | 16.16%
Average | 2.1 0.4 15.09% | 14.71% | 15.08% | 16.19%
STD 1.249 | 0.037 | 1.17% 1.15% 1.66% 3.62%

23

Table 9: WLTS Classification Models: Threshold 3

Split nN cc—,’, Fit Data Set Test Data Set
Typel | TypeIl | TypelI | Type Il
1 2 0.3 | 15.13% | 14.29% | 15.13% | 14.93%
2 3 0.4 | 14.86% | 15.67% | 18.34% | 19.70%
3 3 0.35 | 14.96% | 14.39% | 13.99% | 16.18%
4 2 0.35 | 14.67% | 15.91% | 13.39% | 20.59%
5 4 0.45 | 14.71% | 13.43% | 13.02% | 24.24%
6 5 0.4 | 16.02% | 17.20% | 14.54% | 13.43%
7 3 0.35 | 16.02% | 14.29% | 14.84% | 19.40%
8 3 0.35 | 16.62% | 14.29% | 14.84% | 17.91%
9 3 0.35 | 16.00% | 15.91% | 15.77% | 10.29%
10 2 0.35 | 12.84% | 13.87% | 16.13% | 17.46%
11 3 0.35 | 17.75% | 17.56% | 15.22% | 14.49%
12 3 0.45 | 11.72% | 12.03% | 14.84% | 22.39%
13 3 0.35 | 15.90% | 17.91% | 13.91% | 9.09%
14 3 0.4 | 14.78% | 16.06% | 16.42% | 12.70%
15 2 0.3 | 15.24% | 15.27% | 15.82% | 17.39%
16 1 0.25 | 17.06% | 16.54% | 17.22% | 17.81%
17 3 0.4 | 14.18% | 13.87% | 15.25% | 19.05%
18 5 0.45 | 14.24% | 14.29% | 12.46% | 20.90%
19 5 0.4 | 16.87% | 13.87% | 13.78% | 12.70%
20 1 0.3 | 14.92% | 16.15% | 15.27% | 20.00%
21 2 0.35 | 17.67% | 16.41% | 15.36% | 11.11%
22 3 0.4 | 15.88% | 14.29% | 15.43% | 11.94%
23 3 0.35 | 16.79% | 14.93% | 17.46% | 18.18%
24 4 0.4 | 14.52% | 14.39% | 16.96% | 16.18%
25 4 0.4 | 14.67% | 15.91% | 13.69% | 20.59%
26 4 0.4 | 15.73% | 13.53% | 15.73% | 20.90%
27 1 0.3 | 15.17% | 14.84% | 13.25% | 20.83%
28 5 0.4 | 18.69% | 17.29% | 16.02% | 7.46%
29 4 0.4 | 17.26% | 16.30% | 15.63% | 9.23%
30 5 0.4 | 15.42% | 14.29% | 14.24% | 17.57%
31 3 0.4 | 15.44% | 14.29% | 15.12% | 11.67%
32 3 0.35 | 15.13% | 15.79% | 14.54% | 19.40%
33 1 0.25 | 15.73% | 16.54% | 18.99% | 13.43%
34 5 0.45 | 15.90% | 15.67% | 10.65% | 19.70%
35 2 0.3 | 17.16% | 16.03% | 13.73% | 14.49%
36 4 0.45 | 14.44% | 14.82% | 11.21% | 16.290%
37 2 0.35 | 15.68% | 13.74% | 15.82% | 18.84%
38 5 0.45 | 15.74% | 15.71% | 14.54% | 18.33%
39 3 0.3 | 17.83% | 15.67% | 18.94% | 9.09%
40 4 0.45 | 16.02% | 15.04% | 12.76% | 13.43%
41 3 0.35 | 17.39% | 18.66% | 14.79% | 21.21%
42 2 0.35 | 13.08% | 14.93% | 15.39% | 25.76%
43 4 0.4 | 16.62% | 14.29% | 15.73% | 14.93%
44 2 0.35 | 13.76% | 14.50% | 14.03% | 15.94%
45 4 0.45 | 14.88% | 15.56% | 12.98% | 16.92%
46 4 0.35 | 18.48% | 16.91% | 15.88% | 14.06%
47 3 0.4 | 13.13% | 15.33% | 15.25% | 11.11%
48 1 0.25 | 17.66% | 16.54% | 20.48% | 17.91%
49 4 0.4 | 15.46% | 14.84% | 13.55% | 22.22%
50 5 0.4 | 16.64% | 14.06% | 15.66% | 18.06%
Average | 3.16 | 0.37 | 15.65% | 15.28% | 15.08% | 16.55%
STD | 1.201 | 0.054 | 1.46% | 1.30% | 1.84% | 4.21%

24

25

Table 10: WLTS Classification Models

Threshold Fit Data Set Test Data Set Average
TypelI | TypeIl | Typel | Type Il | ny CC—III
1 15.91% | 15.55% | 15.75% | 16.37% | 2.28 | 0.57
2 15.09% | 14.71% | 15.08% | 16.19% | 2.10 | 0.40
3 15.65% | 15.28% | 15.08% | 16.55% | 3.16 | 0.37

respective system. The WLTS case study comprised of three classification experiments,
each with a different threshold value for module classification. If a module had number
of faults, discovered during system tests, greater than or equal to the threshold value, it
was classified as fault-prone. The threshold values considered for the WLTS case study are
— Threshold 1: number of faults = 1; Threshold 2: number of faults = 2; and Threshold
3: number of faults = 3.

Similar to the LLTS case study, for each ny value, the cost ratio, CC_III’ was varied
with different values. Such classification models were built for all three threshold values
listed above. Moreover, for each threshold value, experiments with different ny and CC—I’I
were performed for all of the 50 data splits. For each pair of the fit and test data sets,
a model with a good balance between the Type I and Type II errors is selected, and its
ny and c% are recorded.

Tables 7, 8, and 9 display the model parameters and misclassification errors of the
selected model for each data split. The misclassification error rates for the fit data set

are based on cross-validation results obtained during the model building process. It

can be observed that many models with ny = 1 gave best results, i.e., good balance

26

of error rates. This indicates that within the case library, there were several groups of
cases that contained the same exact values of all five of the independent variables used
during modeling. As a result, a classification match is perfect in this case. Such a perfect
classification is unique to CBR, and further validates its attractiveness as a modeling
technique for embedded systems.

Selecting the best model (based on balance and error rates) out of these 50 as the
final classification model may not be appropriate, because the associated data split may
be biased. Computing the average values across all splits gives a more realistic picture
of the performance of the modeling technique. The average values of ny and CC_III and
their standard deviation (abbreviated as STD) over the 50 data splits is presented at the
bottom of Tables 7, 8, and 9. These values along with the average Type I and Type II
errors for the fit and test data sets are summarized in Table 10.

For each of the respective threshold values, our empirical findings suggest that the
Type I and Type II errors of the fit and test data sets were quite similar, i.e., very low
overfitting. Also, a relatively small number of cases were needed to classify modules. For
example, an average of 2.10 cases were needed when the threshold value was 2 faults.
Thus, for the wLTS case study about 2 to 4 cases (out of 807 cases in the library) may
be required to identify an unclassified module.

Similar to the LLTS case study, the CBR classification models for the WLTS case
study demonstrated good model stability with almost no over-fitting. For example, the
difference between the Type I and Type II errors of the fit and test data sets (Threshold
2) were approximately 0.2% and 0.7%, respectively. Further more, despite the different
threshold values considered, the classification accuracy of the WLTS CBR model were very

similar. This indicates that a CBR classification model may not be too sensitive to the

27

threshold value selected during model calibration.

6 Conclusion

Reliability of embedded systems such as telecommunications systems demands utmost
scrutiny, because system failures may have severe and sometimes even catastrophic con-
sequences. Rectifying problems at remote sites can be exhaustive on both monetary and
human resources of the embedded system’s organization. Software engineering techniques
for embedded systems must reflect the needs of the operational environment, and desir-
ably be compatible with the evolution of the software over subsequent system releases.

Software quality modeling tools that aid in focussing improvement efforts on the
high-risk system modules, can be valuable in reliability estimation and quality control of
embedded systems. This is because, some quality improvements are so expensive that
it is not practically feasible to apply them to all modules. Targeting such improvement
techniques is an effective way to reduce the likelihood of faults discovered during op-
erations. A software quality classification model can be used to detect the fault-prone
modules early in their life-cycle, thereby facilitating focused cost-effective quality en-
hancement activities to the high-risk areas. Embedded systems can benefit greatly from
such classification models, if an accurate and stable modeling technique is used for the
purpose.

In this paper, we examined the effectiveness of a case-based reasoning approach for
calibrating software quality classification models. To illustrate this, two large-scale case
studies of embedded software systems were used. The first study, a legacy telecommuni-

cations system, involved measurement and fault data over multiple system releases. The

28

second study consisted of data from two wireless telecommunications systems.

The first case study illustrated that the CBR model designed in this paper indicated
good model stability across the system releases. The classification model may be useful
for software engineering of its subsequent system releases as the embedded system evolves.
Despite the use of 42 software metrics as independent variables, model calibration using
the illustrated CBR classification technique was relatively faster and easier than other
classification methods [9, 14].

The second case study further validated the effectiveness of building classification
models using the CBR technique illustrated. Further more, it was demonstrated that
the CBR classification model was robust with respect to the chosen fault-prone thresh-
old value. The good classification accuracy obtained for this case study, suggests that
with CBR one can obtain useful software quality models by using a few (inexpensive
to obtain) software metrics. The subsequent system release of the embedded software
for the WLTS case study is currently under development. Our current and future work
will involve data collection efforts for software measurement and fault data of the newly
developed /updated modules. The CBR classification model calibrated in our WLTS case
study will be validated using the data collected for the second release. The effect of
system evolution on the classification model will be investigated further.

The achieved accuracy and stability of the CBR classification models for the two case
studies would be beneficial to developers of an embedded system, especially those of a
telecommunications system. Fault-prone modules of the system would be identified prior
to system testing, and developers could then focus cost-effective efforts on those modules.
Consequently, almost all software faults of the embedded system may be detected and

rectified prior to system operations. Future research may concentrate on expanding the

29

use of the illustrated CBR approach for effective software engineering of other embedded

systems.

Acknowledgments

We thank John P. Hudepohl, Wendell D. Jones and the EMERALD team for collecting
the necessary case-study data (LLTS). We also thank Michelle Lim and Linda Lim for
their data collection efforts (WLTS), and Fletcher Ross for his assistance with experi-
ments and data analysis. We also thank Kenneth McGill for his helpful suggestions.
This work was supported in part by Cooperative Agreement NCC 2-1141 from NASA
Ames Research Center, Software Technology Division, and Center Software Initiative for
the NASA software Independent Verification and Validation Facility at Fairmont, West
Virginia.

References

[1] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable models
with optimized set reduction for identifying high-risk software components. IEEE
Transactions on Software Engineering, 19(11):1028-1044, Nov. 1993.

[2] L. C. Briand, T. Langley, and I. Wieczorek. A replicated assessment and comparison
of common software cost modeling techniques. International Conference of Software
Engineering, pages 377-386, June 2000.

[3] C. Ebert. Classification techniques for metric-based software development. Software
Quality Journal, 5(4):255-272, Dec. 1996.

[4] U. M. Fayyad. Data mining and knowledge discovery: Making sense out of data.
IEEE FEzpert, 11(4):20-25, Oct. 1996.

[6] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality pre-
diction. International Journal of Software Engineering and Knowlegde Engineering,
10(2):139-152, 2000.

[6] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand.
EMERALD: Software metrics and models on the desktop. IEEE Software, 13(5):56—
60, Sept. 1996.

[7] T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of software quality.
International Journal of Reliability, Quality and Safety Engineering, 6(4):303-317,
Dec. 1999.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

30

T. M. Khoshgoftaar and E. B. Allen. A practical classification rule for software
quality models. IEEE Transactions on Reliability, 49(2), June 2000.

T. M. Khoshgoftaar and E. B. Allen. Modeling software quality with classification
trees. In H. Pham, editor, Recent Advances in Reliability and Quality Engineering,
chapter 15, pages 247-270. World Scientific Publishing, Singapore, 2001.

T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom. Modeling software quality:
The software measurement analysis and reliability toolkit. In Proceedings: Interna-
tional Conference on Tools with Artificial Intelligence, pages 54-61, Nov 2000.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. IEEE Software, 13(1):65-71, Jan.
1996.

T. M. Khoshgoftaar, E. B. Allen, and R. Shan. Improving tree-based models of
software quality with principal components analysis. In Proceedings or the Eleventh

International Symposium on Software Reliability Engineering, pages 198-209, San
Jose, California USA, Oct. 2000. IEEE Computer Society.

T. M. Khoshgoftaar, K. Ganesan, E. B. Allen, F. D. Ross, R. Munikoti, N. Goel, and
A. Nandi. Predicting fault-prone modules with case-based reasoning. In Proceedings
of the Eighth International Symposium on Software Reliability Engineering, pages
27-35, Albuquerque, NM USA, Nov. 1997. IEEE Computer Society.

T. M. Khoshgoftaar and D. L. Lanning. A neural network approach for early de-
tection of program modules having high risk in the maintenance phase. Journal of
Systems and Software, 29(1):85-91, Apr. 1995.

T. M. Khoshgoftaar, X. Yuan, and D. L. Lanning. Balancing misclassification rates
in classification tree models of software quality. Empirical Software Engineering,
5:313-330, 2000.

J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, 1993.

L. Lim. Developing accurate software quality models using a faster, easier, and
cheaper method. Master’s thesis, Florida Atlantic University, Boca Raton, FL. USA,
May 2001. Advised by T. M. Khoshgoftaar.

R. S. Michalski, I. Brato, and M. Kubat. Machine Learning and Data Mining. John
Wiley and Sons, 1998.

31

[19] J. C. Munson and T. M. Khoshgoftaar. Software metrics for reliability assessment.
In M. Lyu, editor, Handbook of Software Reliability Engineering, chapter 12, pages
493-529. McGraw-Hill, New York, 1996.

[20] N. Ohlsson, M. Zhao, and M. Helander. Application of multivariate analysis for
software fault prediction. Software Quality Journal, 5:51-66, 1998.

[21] F. D. Ross. An empirical study of analogy based software quality classification
models. Master’s thesis, Florida Atlantic University, Boca Raton, FL USA, Aug.
2001. Advised by T. M. Khoshgoftaar.

[22] N. F. Schneidewind. Software metrics validation: Space shuttle flight software ex-
ample. Annals of Software Engineering, 1:287-309, 1995.

[23] N. F. Schneidewind. Software metrics model for integrating quality control and
prediction. In Proceedings of the FEighth ISSRE, pages 402-415, Albuquerque, NM
USA, Nov. 1997. IEEE Computer Society.

