International Journal of Reliability, Quality and Safety Engineering
© World Scientific Publishing Company

LOGISTIC REGRESSION MODELING
OF SOFTWARE QUALITY

TAGHI M. KHOSHGOFTAAR
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, Florida USA
Email: taghi@cse.fau.edu

and

EDWARD B. ALLEN
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, Florida USA

Email: edward.allen@computer.org

Received (received date)
Revised (revised date)

Reliable software is mandatory for complex mission-critical systems. Classifying modules
as fault-prone, or not, is a valuable technique for guiding development processes, so that
resources can be focused on those parts of a system that are most likely to have faults.

Logistic regression offers advantages over other classification modeling techniques,
such as interpretable coefficients. There are few prior applications of logistic regression
to software quality models in the literature, and none that we know of account for
prior probabilities and costs of misclassification. A contribution of this paper is the
application of prior probabilities and costs of misclassification to a logistic regression-
based classification rule for a software quality model.

This paper also contributes an integrated method for using logistic regression in
software quality modeling, including examples of how to interpret coefficients, how to
use prior probabilities, and how to use costs of misclassifications. A case study of a
major subsystem of a military, real-time system illustrates the techniques.

Keywords: Software Process; Process Measures; Software Metrics; Fault-prone Modules;
Software Reuse; Spiral Life Cycle; Software Quality Modeling; Logistic Regression.

1. Introduction

For mission-critical systems to be highly reliable, embedded software must also
be highly reliable. Software faults are not due to wear and tear during operations,
but result from mistakes in design and coding decisions during development and
enhancement. Early classification of modules as fault-prone or not is a valuable
technique for guiding development processes, so that resources can be focused to
remove faults before the software becomes operational. Software quality models are
a tool for doing this.

2 Logistic Regression Modeling of Software Quality

Logistic regression offers easier interpretation compared to other classification

! There are few prior applications of logistic regression to software

2,3

techniques.
quality models in the literature, and none that we know of that account for
prior probabilities and costs of misclassification. Previous software quality model-
ing classification studies by other researchers have used uniform prior probabilities
and equal costs for all kinds of misclassifications. In a preliminary case study,
prior probabilities and costs of misclassification improved software quality models
based on nonparametric discriminant analysis.* A contribution of this research is
confirmation that the same principles apply to logistic regression.

Another contribution of this research is presentation of an integrated method
for using logistic regression in software quality modeling, including examples of how
to interpret logistic regression coefficients, how to use prior probabilities, and how
to use costs of misclassifications.

A case study was based on a large subsystem of a tactical military system, the
Joint Surveillance Target Attack Radar System, JSTARS. It is an embedded, real
time application. The objective of our software quality model was to predict at the
beginning of integration whether each module will be considered not fault-prone or
fault-prone at the end of the current development cycle. With such predictions,
one can focus review, integration, and testing resources on high risk parts of the
system. The independent variables were measures of development processes prior
to integration.’

The remainder of this paper presents general principles, a case study, and con-
clusions. The case study is a step by step example of how to prepare data and how
to build, interpret, and validate a model.

2. Applying Logistic Regression

Logistic regression is a statistical modeling technique where the dependent vari-
able has only two possible values.® Independent variables may be categorical, dis-
crete, or continuous. In software quality modeling, we usually consider a module
as an “observation”. Our dependent variable is Class, which has only two possible
values: a module is a member of one group or the other. In this paper, we will
use the groups not fault-prone and fault-prone; other groups may be used in other
circumstances.

A classification model predicts membership in one group or the other. However,
since a model is not likely to be perfect, some modules will probably be misclassi-
fied by the model, compared to actual group membership. Being consistent with
terminology in our previously published work,” Type I errors misclassify modules
that are actually not fault-prone as fault-prone. Type Il errors misclassify modules
that are actually fauli-prone as not fault-prone.

There are several possible strategies for encoding categorical independent vari-
ables. For binary categorical variables, we encode the categories as the values zero
and one. Discrete and continuous variables may be used directly. Let z; be the
4** independent variable, and let x; be the vector of the #** module’s independent

International Journal of Reliability, Quality and Safety Engineering 3
variable values.

2.1. Building a Model

We designate a module being fault-prone as an “event”. Let p be the probability
of an event, and thus, p/(1—p) is the odds of an event. The logistic regression model
has the form

10g<lp%p> = Go+bizi+...+ 8z + ...+ Bmtm (1)

where log means natural logarithm and m is the number of independent variables.
Let b; be the estimated value of #;. This model can be restated as

~exp(Bo+ Bz + .+ Brnam)
T T+ exp(Bo+ Brizr+ -+ Pmtm)

(2)

which implies each z; is assumed to be monotonically related to p. Fortunately,
most software engineering measures do have a monotonic relationship with faults
that is inherent in the underlying processes.

Given a list of candidate independent variables and a threshold significance level,
a, some of the estimated coefficients may not be significantly different from zero.
Such variables should not be included in the final model. The process of choos-
ing significant independent variables is called “model selection”. Stepwise logistic
regression is one method of model selection which uses the following procedure.

Initially, estimate a model with only the intercept. Evaluate the significance of
each variable not in the model. Add to the model the variable with the largest chi-
squared p-value which is better than a given threshold significance level. Estimate
parameters of the new model. Evaluate the significance of each variable in the
model. Remove from the model the variable with the smallest chi-squared p-value
whose significance is worse than a given threshold significance level. Repeat until
no variables can be added or removed from the model. Tests for adding or removing
a variable are based on an adjusted residual chi-squared statistic for each variable,
comparing models with and without the variable of interest.®

We calculate maximum likelihood estimates of the parameters of the model, b;,
using the iteratively reweighted least squares algorithm. Other algorithms are also
available to calculate maximum likelihood estimates. The same algorithm is used
both in the stepwise procedure and for the final model. The estimated standard
deviation of a parameter can be calculated, based on the log-likelihood function.®
These calculations are provided by commonly available statistical packages, such as
sas.?

The odds ratio, 1;, is a statistic that indicates the relative effect on the odds
of an event by a one unit change in the j** independent variable.® For example,
suppose z; is a binary variable with values zero or one. Let p(1) be the probability
of an event when z; = 1, and let p(0) be the probability of an event when z; = 0,

4 Logistic Regression Modeling of Software Quality

other things being equal.
_ p()/(1 = p(1))
Y= W0/ p0) ©)

Thus, the odds of an event for an observation with x; = 1 is ¢; times the odds of
an event for ; = 0. The odds ratio is estimated by

W =eb (4)

The odds ratio illustrates how straightforward interpretation is one of logistic re-
gression’s advantages.

2.2. Prior Probabilities

We often model software development as a process that produces modules which
are random samples from a large population of modules that might have been
developed. From a Baysian viewpoint, our knowledge of the population is embodied
in prior probabilities of class membership, i.e., “prior” to knowing the attributes of
any modules in the sample. Logistic regression calculates the probability of being
fault-prone based on module attributes, but this is not enough. A decision rule that
minimizes misclassifications should also take into account the overall proportions of
the underlying populations for each group, as well.1?

Let ms, be the prior probability of membership in the fault-prone group, and let
Tppp be the prior probability of membership in the not fault-prone group. We want
to choose prior probabilities that are appropriate for each set of modules that we
classify. When a large fit data set is representative of the population, we choose the
prior probabilities, ms, and m,fp, to be the proportion of fit modules in each group.
Otherwise, we make adjustments according to our knowledge about the data set.
If we do not have information about the population of modules, we choose the
uniform prior, T = Tpp = 0.5. Most software engineering classification models in
the literature by other researchers use the uniform prior.?*11%13:14 Choosing prior
probabilities for software quality models is a contribution of this research.

There are several module sets of interest: the fit data set, the validation data
set, and application data sets. When judging quality of fit, we use priors based
on the fit data set. When validating a model with an independent data set, we
consider whether or not its proportion of fault-prone modules should be similar to
the fit data set’s. If so, we use prior probabilities based on the fit data set. When
applying the model to other projects or subsequent releases (application data sets),
we may adjust prior probabilities based on our knowledge of project attributes and
plans.

2.3. Costs of Misclassifications

In software engineering, the cost for acting on each type of erroneous prediction
will depend on the process improvement technique that uses the prediction.* For
example, suppose we apply reliability enhancement processes, such as additional

International Journal of Reliability, Quality and Safety Engineering 5

reviews, to modules identified as fault-prone. The cost of a Type I misclassification
is to waste time on additional reviews of a module that is actually not fault-prone.
The cost of a Type II misclassification is the lost opportunity to review a fault-prone
module and detect its faults earlier in development. A fault that might have been
discovered during a review will end up being discovered later in the project, when
the cost of fixing it is much greater.

Let C be the cost of a Type I misclassification, and let Cyr be the cost of a Type
IT misclassification. Logistic regression calculates the probability of being fault-
prone based on attributes of the modules. A classification rule that minimizes the
number of misclassifications may include prior probabilities, but this is not enough.
Not all misclassifications are equivalent. Some types cost more than others. An
optimal classification rule should minimize the expected cost of misclassifications

(ECM), given by

ECM = Crmpgp Pr(fp|nfp) + Crims, Pr(nfp|fp) (5)

where Pr(fp|nfp) and Pr(nfp|fp) are the Type I and Type II misclassification rates,
respectively. When costs of misclassification are unknown or unimportant, we
choose equal costs, Cy/Cyrr = 1.

2.4. Classification

Given a logistic regression model, a module can be classified as fault-prone or
not, by the following procedure:

1. Calculate p/(1 — p) using

1og<1fﬁ) = bo+biait .. b+t by (6)

2. Assign the module by a classification rule that minimizes the expected cost of
misclassification.
3 ™
fault-prone If 1%;3 > (%) (%)
not fault-prone Otherwise

Class(x;) = { (7)

This rule minimizes the expected cost of misclassification (Eq. (5)) as shown

in Johnson and Wichern,'?

and generalizes when priors or costs are unknown or
unimportant. We have found that this rule is valuable in software engineering

applications.

3. Case Study

The Joint Surveillance Target Attack Radar System, JSTARS, was developed
by Northrop Grumman for the U.S. Air Force in support of the U.S. Army.!%?
The system performs ground surveillance, providing real time detection, location,

6 Logistic Regression Modeling of Software Quality

classification, and tracking of moving and fixed objects. The system was developed
under the spiral life cycle model.!® Enhancements are currently being implemented.

We call each prototype of a spiral life cycle a “Build”. Successive versions of
modules are created as development progresses. The “baseline version” of a Build
has all planned functionality implemented but not necessarily integrated and tested.
The “ending version” is the one released for operational testing or the one accepted
by the customer. Development of planned enhancements is done between the ending
version of the prior Build and the baseline version of the current Build.

The following sections illustrate our method for applying logistic regression to
software quality modeling. The major steps are prepare data sets, build a model,
interpret the model, and validate the model. Then the model is ready for application
to similar projects or subsequent spiral life cycle iterations.

We have also successfully applied the same method to other industry projects
which used product and/or process attributes as independent variables.

3.1. Prepare Datla

This major step consists of the following detailed steps: collect configuration
management data, retrieving source code if necessary; analyze source code; collect
problem reporting system data; calculate variables; and prepare fit and test data
sets.

Collect configuration management data. The subject of this case study was
the set of FORTRAN modules from a major subsystem of the final Build, totaling
1,643 modules and accounting for 38% of FORTRAN modules in JsTARS. Each mod-
ule was a source file with one compilation unit, such as a subroutine. The project’s
configuration management system identified module versions for the baseline and
ending versions of the system. Only modules under study that existed in both of
these versions were selected.

Analyze source code. The configuration management system also retrieved
archived source code for this case study. A source code analysis tool determined
whether declarations or executable statements were changed from one version to
the next. Changes to comments were not considered. Future work will consider
software product metrics.

Collect problem reporting system data. The project uses a problem report-
ing system to track and control modifications to software, documents, and other
software development objects. The primary raw data for the case study were Soft-
ware Trouble Reports (STR). STRs are generated as problems are discovered by
reviews, integration, and testing. Whenever source code is changed, the reason for
the change and the version of the affected module is recorded in the STR.

One of the sTR attributes is its “Activity”. We categorized Activities of inter-
est into four general reasons that a module was modified.> FAULTS means code

International Journal of Reliability, Quality and Safety Engineering 7

changed due to developer errors; REQUIREMENT means code changed due to un-
planned requirements changes; PERFORMANCE means code changed due to inade-
quate speed or capacity; and DOCUMENTATION means code changes were mandated
during documentation changes. Our study included only those STRs that resulted
in modification to declarations or executable statements of the code.

Calculate variables. Let Faults be the number of FAULTS STRs that caused
updates to a module’s source code between the baseline version and the ending
version of the Build. This is essentially the number of faults discovered during
integration and testing.

The dependent variable of the model was defined as class membership where

| not fault-prone If Faults < threshold
Class = { fault-prone If Faults > threshold (8)

where threshold was chosen according to project-specific criteria. After discussions
with project engineers, a classification threshold of two faults was selected. In other
words, the project engineers considered approximately one quarter of the modules
to be fault-prone. Another threshold might be appropriate for another project.
Class is known at the time of the ending version.

The cumulative numbers of sTRs that affected code prior to the baseline version
are attributes of a module’s process history as follows. Let BaseFlts, BaseReq,
BasePerf, and BaseDoc be the number of FAULTS, REQUIREMENT, PERFORMANCE,
and DOCUMENTATION STRs, respectively.

Since each selected STR resulted in changes to code, and changes to code are
opportunities for faults, a statistical relationship to Faulis is plausible. A fault
may be caused by various kinds of human mistakes. Each STR’s reason entails
different kinds of mental processes to implement a change to code. Diagnosis and
correction of a fault occurs in the context of familiar requirements, specifications
and designs. Analysis of new or changed requirements involves creating a new
design that balances minimal disruption to the existing design, conformance to
requirements, and flexibility for the future. Improving performance depends on an
analysis of run-time behavior, rather than functionality. Diagnosing and correcting
implementation discrepancies discovered during documentation revisions entails a
detailed view of the code. Thus, these baseline variables are related to various
aspects of software engineering which may affect the occurrence of faults.

We define categorical variables to model reuse from the prior Build. New mod-
ules were created during development of the current Build.

1 If module did not exist in ending version of prior Build

]sNew:{ 0 Otherwise)

Preexisting modules with some changed code were reused with modifications. If a
module had no code changed between the ending version of the prior Build and the

8 Logistic Regression Modeling of Software Quality

baseline version of the current Build, then it was reused as an object.

0 If no changed code since prior Build

IsChg:{ 1 Otherwise (10)

Since modules with a long history may be more reliable, we define the age of a
module in terms of the number of Builds it has existed.

0 If module is new
Age = { 1 If module was new in the prior Build (11)
2 Otherwise

Our data did not include information on whether a module’s age was more than
two Builds.

This project had data to support calculating the above variables. Other projects
might have data for other process variables.

Prepare data sets. Data splitting is a technique for evaluating model accuracy
when data on a similar subsequent project is not available. We impartially divided
the modules into fit and test data sets. The fit data set was used to build a model,
and the test data set was used to validate it. The fit data set had two thirds of the
modules (1,096), and the test data set had the remaining third (547). (Other split
ratios may be appropriate in other studies.)

3.2. Build Model

This major step consists of the following detailed steps: select significant inde-
pendent variables; and estimate parameters of the final logistic regression model.

Select significant independent variables. The candidate independent vari-
ables represent the history of each module, known at the time of the baseline ver-
sion, namely, the cumulative number of sTRs for each reason, and its reuse from
previous Builds (BaseFlts, BaseReq, BasePerf, BaseDoc, IsNew, IsChg, Age). Inde-
pendent variables were selected in the order shown in Equation (12) below, using
stepwise logistic regression at the a = 0.15 significance level. In this study, we did
not consider interactions among independent variables. This is a topic for further
research.

Estimate parameters of the final logistic regression model. Recall that
p is the probability that a module is a member of the fauli-prone class. Logistic
regression estimated the following model based on the fit data set.

log (1 P) = —1.611+0.247 BaseFlts+ 0.728 IsNew+ 0.779 BaseReq
- D

—0.560 Age + 0.457 IsChg (12)

International Journal of Reliability, Quality and Safety Engineering 9

Table 1 shows each estimated parameter, b;, its standard deviation, s;, and its
odds ratio, t;. This model with these coefficients is only applicable to our case
study project. The modeling method is generally applicable, but each software
development project must build and calibrate its own model.

Table 1. Model
Coefft StdDev OddsRatio

Variable b; S5 Py

Intercept -1.611 0.337 —

BaseFlts +0.247 0.032 1.280
BaseReq +0.779 0.206 2.180
IsNew +0.728 0.323 2.070
IsChg +0.457 0.242 1.580
Age -0.560 0.187 0.571

Other variables were not significant at 15% level.

3.3. Interpret the Model

This major step interprets the following aspects of a model: the significance of
selected independent variables, the signs of coefficients, and the odds ratios of the
independent variables.

Interpret the significance of selected variables. Basellts was the first vari-
able selected, implying that it was more closely correlated to Class than the other
variables. This is also indicated by fact that it has the smallest standard deviation
relative to the size of the coefficient. Its relationship to Class may be due to several
factors. For example, code changed in fixing faults are opportunities for more mis-
takes. Moreover, the underlying software attributes that cause human errors are
probably not removed by fixing bugs.

The significance of BaseReq confirms conventional wisdom and earlier research
on the relationship between enhancements and faults.'” Unplanned requirements
changes often disrupt the development process, resulting in more faults to be dis-
covered later.

IsNew, IsChg, and Age were also significant. New modules have not been tested
as much as older modules, and changed modules are often changed by someone
other than the original designer, risking misunderstandings.

BasePerf and BaseDoc were not included in this model at significance level
a = 0.15, and thus, are not strongly related to faults discovered during integration
and testing.

Interpret the sign of coefficients. Since p was defined as the probability of
being fault-prone, a negative intercept, by, means that if we ignore the other vari-
ables, we expect a typical module to be not fault-prone, which is consistent with the
small proportion of fault-prone modules in the fit data set. A positive coefficient,

10 Logistic Regression Modeling of Software Quality

bi,..., by, means that larger values of that variable were associated with worse
reliability. Age was the only variable with a negative coefficient. This implies that
older modules were more reliable; because the probability of being fault-prone was
less. This was expected since they have had more testing and operational use.

Interpret the odds ratio of variables. The odds ratio for IsChg was 1.580.
This indicates that the odds of being fault-prone for changed modules was about
58% more than the odds for unchanged modules.

The odds ratios for BaseFlis and BaseRegq indicate the influence of an additional
baseline STR on the likelihood of faults during integration and testing. Suppose
modules A and B had the same process history except B had one more REQUIRE-
MENT STR than A. The odds ratio of BaseReq was 2.180. Therefore, the odds of B
being fault-prone would be more than twice the odds of A. Since the odds ratio of
BaseReq was larger than that of BaseFlts, we conclude that a requirements change
prior to the baseline version had a greater expected impact on the likelihood of
faults during integration and testing than fixing a bug.

3.4. Validate the Model

This major step consists of these detailed steps: select priors ratio and cost
ratio; classify each module in the test data set; and compare the predicted values
with the actual values.

Select the ratio of prior probabilities and the ratio of costs of misclas-
sification. We considered both uniform and nonuniform priors. For nonuniform
priors, we assumed the probability of fauli-prone modules in the test data set was
the same as the proportion in the fit data set. We considered a wide range of mis-
classification cost ratios. The fit data set had 809 not fault-prone modules and 287
fault-prone modules.

Classify each module in the test data set. Once parameters are estimated,
one can input values for the independent variables into Equation (12) and then
apply the decision rule in Equations (7) to classify a module. Validation of a model
should be done with an independent test data set which also contains values for both
the dependent variable and independent variables. Validation tells us the level of
accuracy to expect when applying the model to a similar data set at the beginning
of integration, when the actual class memberships are not known.

Compare the predicted values with the actual values. The model was
applied to the test data set. Table 2 and Figure 1 compare the actual with the
predicted classifications for a range of values of C;/Cjy.

Since only about one quarter of the modules in the fit data set were actually
fault-prone, the case of uniform priors (7np/7f = 0.5/0.5) and equal misclassifi-
cation costs (Cy/Crr = 1/1) was similar to the case of (mnp/7p = 809/287) and

International Journal of Reliability, Quality and Safety Engineering

Table 2. Validation

test data set

Number of modules/percent

Misclassifications
ﬂ'nfp/ﬂ'fp C1/Crr (ﬂ'nfp/ﬂ'fp)(C]/C]]) Type I Type II Overall |
0.5/0.5 1/1 1.000 23 106 129
5.69% 74.13% = 23.58%
809/287 1/1 2.829 5 123 128
1.24% 86.01% 23.40%
809/287 1/2 1.409 13 116 129
3.22% 81.12% 23.58%
809/287 1/3 0.940 24 104 128
5.94% 72.73% 23.40%
809/287 1/4 0.705 37 90 127
9.16% 62.94% 23.22%
809/287 1/5 0.564 94 60 154
23.27% 41.96% 28.15%
809/287 1/6 0.470 99 55 154
24.50% 38.46% 28.15%
809/287 1/7 0.403 102 48 150
25.25% 33.57T% 27.42%
809/287 1/8 0.352 119 39 158
20.46% 27.27% 28.88%
809/287 1/9 0.313 119 39 158
29.46% 27.27% 28.88%
809/287 1/10 0.282 137 29 166
33.91% 20.28% 30.35%
809/287 1/15 0.188 194 22 216
48.02% 15.38% 39.49%
809/287 1/20 0.141 227 9 236
56.19% 6.20% 43.14%
809/287 1/30 0.094 296 4 300
73.27% 2.80% 54.84%
809/287 1/50 0.056 404 0 404
100.00% 0.00% 73.86%

404 not fault-prone modules (base of Type I %)
143 fault-prone modules (base of Type II %)

547 modules, total (base of Overall %) in the test data set

11

12 Logistic Regression Modeling of Software Quality

100% T

—— % Type | —8—% Type |l

80% -

60% -

40% -

Misclassifications

20% A

A &

0% -
0.000 0.500 1.000 1.500 2.000 2.500 3.000

Priors ratio x Cost ratio

Figure 1: The Effects of Costs on Misclassification Rates

(Cr/Crr = 1/3). For this data, uniform priors and equal costs was not a satisfac-
tory classification rule for practical use because the Type II misclassification rate
(74.13%) is so large that a reliability enhancement effort would miss most of the
fault-prone modules.

When we use nonuniform priors and let misclassification costs be equal, our
classification rule minimized the overall misclassification rate for the fit data set.
This model was also not useful due to a high Type II misclassification rate (86.01%).

The models on each end of the range of cost ratios shown in Table 2 were not
useful to the project, because one type of misclassification rate or the other was
so extreme. For a cost ratio of 1/2, the Type II misclassification rate was 81.12%,
and for a cost ratio of 1/30, the Type I misclassification rate was 73.27%. The
cost ratios in the middle are probably often more realistic. The cost of reliability
enhancement early in the life cycle is on the order of man-hours, but late in the life
cycle, is on the order of man-days per module. For example, a cost ratio of 1/8 has
balanced misclassification rates of 29.46% for Type I and 27.27% for Type II, for
an overall rate of 28.88%. Future work will seek to improve model performance by
adding software product metrics and variable interactions to the list of candidate
independent variables.

Another study with this data set found that a nonparametric discriminant anal-
ysis model had similar accuracy.* Similar to this study, the classification rule with
C1/Crr = 1 had poor accuracy. The rule with C;/Cr; = 1/10 had a Type I mis-
classification rate of 32.4%, a Type II rate of 26.6%, and an overall misclassification
rate of 30.9%. In Table 2, the logistic regression model had a Type I misclassifi-
cation rate of 33.9%, a Type II rate of 20.3%, and an overall misclassification rate
of 30.4%. Even though nonparametric discriminant analysis and logistic regression
balanced the misclassification rates differently for a given cost ratio, overall accu-
racy was similar. On the one hand, nonparametric discriminant analysis does not

International Journal of Reliability, Quality and Safety Engineering 13

assume a functional form as logistic regression does, but on the other hand, logistic
regression is more easily interpreted than nonparametric discriminant analysis.

Apply the model to a current project. Having validated the model, one can
then use it to predict whether each module in a current similar project is fault-
prone or not. Validation results indicate the level of accuracy one can expect.
The predictions, in turn, may be the basis for extra reviews or other reliability
enhancement measures.

Consider the accuracy of our model at Cy/Crr = 1/8. Suppose a current project
actually has 738 not fault-prone modules and 262 fault-prone modules for a total of
1,000 (i.e., similar proportions to mnp and mp,). The expected cost of enhancement
efforts would be (738)(0.2946) = 217 cost units wasted on not fault-prone modules,
and (262)(1 — 0.2727) = 191 cost units invested in fault-prone modules, for a total
investment of 408 cost units. The expected cost avoidance for the enhanced fault-
prone modules would be (191)(8) = 1,528 cost units for a profit of 1,528-408=1,120

cost units. Thus, this level of accuracy could be useful to a similar current project.

4. Conclusions

Reliable software is mandatory for mission-critical software such as tactical mil-
itary systems. During development, reliability enhancement processes try to find
faults before the system becomes operational. Classifying modules as fault-prone,
or not, is a valuable technique for guiding such development processes.

This research contributes an integrated method for using logistic regression in
software quality modeling to predict whether each module will be fault-prone or not.
A case study of a major subsystem of JSTARS, a tactical real-time system, illustrates
the techniques. We saw that logistic regression parameters can be interpreted,
and that using prior probabilities and costs of misclassification can improve model
accuracy. This is the first research that we know of that uses prior probabilities
and costs of misclassification in a logistic regression model of software quality.

The case study’s model validation showed misclassification rates over a range of
the ratios. Prior probabilities were set to the proportions of being fault-prone or
not in the fit data set. At one end of the range, the costs of Type I and Type 11
misclassifications were equal, and the model was not useful due to excessive Type
IT misclassifications. At the other extreme, Type I misclassifications were excessive.
We suspect that the typical relative costs of Type I to Type II misclassifications
is on the order of 1:10, which, for this data, gave approximately balanced model
accuracy. This case study gives empirical evidence that logistic regression, with
thoughtful consideration to prior probabilities and costs of misclassification, can be
used for software quality modeling. This case study also illustrates the utility of
process measures alone in such models.

Future research will seek to improve model accuracy by combining software prod-
uct metrics, process measures, and interaction terms in the same logistic regression
models. A detailed comparison of classification modeling methods is also a research

14 Logistic Regression Modeling of Software Quality

goal.

Acknowledgments

We thank Robert Halstead for his support and encouragement, and Ronald Flass

and Gary P. Trio for helpful discussions regarding collected data and the software

development process. We thank Lionel C. Briand for discussion regarding logistic

regression. We thank the anonymous reviewers for their thoughtful comments. This

work was supported in part by a grant from Northrop Grumman. The findings and

opinions in this paper belong solely to the authors, and are not necessarily those

of the sponsor. Moreover, our results do not in any way reflect the quality of the

sponsor’s software products.

References

1.

10.

11.

12.

13.

14.

T. M. Khoshgoftaar and E. B. Allen. Classification techniques for predicting software
quality: Lessons learned. In Proceedings of the Annual Oregon Workshop on Soft-
ware Metrics, Coeur d’Alene, Idaho USA, May 1997. University of Idaho.

. V. R. Basili, L. C. Briand, and W. Melo. A validation of object-oriented design metrics

as quality indicators. [EEE Transactions on Software Engineering, 22(10):751-761,
October 1996.

. P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of

branch testing and data flow testing. TEEE Transactions on Software Engineering,
19(8):774-787, August 1993.

T. M. Khoshgoftaar and E. B. Allen. The impact of costs of misclassification on soft-
ware quality modeling. In Proceedings of the Fourth International Software Met-
rics Symposium, pages 54-62, Albuquerque, New Mexico USA, November 1997. IEEE
Computer Society.

. T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. Flass. Process measures

for predicting software quality. Computer, 31(4):66-72, April 1998.

. D. W. Hosmer, Jr. and S. Lemeshow. Applied Logistic Regression. John Wiley &

Sons, New York, 1989.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality pre-
diction: A case study in telecommunications. IEEE Software, 13(1):65-71, January
1996.

. R. H. Myers. Classical and Modern Regression with Applications. Duxbury Series.

PWS-KENT Publishing, Boston, 1990.

. M. E. Stokes, C. S. Davis, and G. G. Koch. Categorical Data Analysis Using the

SAS System. SAS Institute, Cary, North Carolina USA, 1995.

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pren-
tice Hall, Englewood Cliffs, NJ, 3d edition, 1992.

C. Ebert. Classification techniques for metric-based software development. Software
Quality Journal, 5(4):255-272, December 1996.

T. M. Khoshgoftaar and D. L. Lanning. A neural network approach for early detection
of program modules having high risk in the maintenance phase. Journal of Systems
and Software, 29(1):85-91, April 1995.

N. F. Schneidewind. Methodology for validating software metrics. [EEFE Transactions
on Software Engineering, 18(5):410-422, May 1992.

R. W. Selby and A. A. Porter. Learning from examples: Generation and evaluation of

International Journal of Reliability, Quality and Safety Engineering 15

decision trees for software resource analysis. [EEE Transactions on Software Engi-
neering, 14(12):1743-1756, December 1988.

15. T. M. Khoshgoftaar, E. B. Allen, R. Halstead, and G. P. Trio. Detection of fault-
prone software modules during a spiral life cycle. In Proceedings of the International
Conference on Software Maintenance, pages 69-76, Monterey, CA, November 1996.
IEEE Computer Society.

16. B. W. Boehm. A spiral model of software development and enhancement. Computer,
21(5):61-72, May 1988.

17. D. L. Lanning and T. M. Khoshgoftaar. The impact of software enhancement on soft-
ware reliability. IEEE Transactions on Reliability, 44(4):677-682, December 1995.

About the Authors

Taghi M. Khoshgoftaar is a professor of the Dept. of Computer Science and
Engineering, Florida Atlantic University. He is also the Director of the Empirical
Software Engineering Laboratory, established through a grant from the National
Science Foundation. His research interests are in software engineering, software
complexity metrics and measurements, software reliability and quality engineering,
computational intelligence, computer performance evaluation, multimedia systems,
and statistical modeling. He has published more than 150 refereed papers in these
areas. He has been a principal investigator and project leader in a number of
projects with industry, government, and other research-sponsoring agencies. He is
a member of the Association for Computing Machinery, the American Statistical
Association, and the IEEE (Computer Society and Reliability Society). He is the
general chair of the 1999 International Symposium on Software Reliability Engi-
neering (ISSRE’99). He has served on technical program committees of various
international conferences, symposia, and workshops. He has served as North Amer-
ican editor of the Software Quality Journal and is on the editorial board of the
Journal of Multimedia Tools and Applications.

Edward B. Allen received the B.S. degree in engineering from Brown University
in 1971, the M.S. degree in systems engineering from the University of Pennsylvania
in 1973, and the Ph.D. degree in computer science from Florida Atlantic Univer-
sity in 1995. He is currently a Research Associate in the Department of Computer
Science and Engineering at Florida Atlantic University. He began his career as a
programmer with the U.S. Army. From 1974 to 1983, he performed systems engi-
neering and software engineering on military systems, first for Planning Research
Corp. and then for Sperry Corp. From 1983 to 1992, he developed corporate data
processing systems for Glenbeigh, Inc., a specialty health care company. His re-
search interests include software measurement, software process modeling, software
quality, and computer performance modeling. He has more than 50 refereed pub-
lications in these areas. He is a member of the IEEE Computer Society and the
Association for Computing Machinery.

