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Summary & Conclusions — A “practical” classification rule for a software qual-
ity model is one that considers the needs of the project to use a model to
guide targeting software reliability-enhancement efforts, such as extra reviews
early in development. Such a rule will often prove more useful than alterna-
tive rules. The contribution of this paper is discussion of several classification
rules for software quality models, and recommendation of a generalized clas-
sification rule, where the effectiveness and efficiency of the model for guiding
software reliability-enhancement efforts can be explicitly considered. This is
the first application of this rule to software quality modeling that we know
of.

Two case studies illustrate application of the generalized classification
rule. A case study of a telecommunications system models membership in
the class of fault-prone modules as a function of the number of interfaces to
other modules. A case study of a military system models membership in the
class of fault-prone modules as a function of a set of process metrics that
depict the development history of a module. These case studies are examples
where balanced misclassification rates resulted in more useful and practical

software quality models than the other classification rules.



1 Introduction

Correcting software faults early in development is much more effective and less expen-
sive than waiting until they become evident later. Consequently, software developers
of mission-critical systems often apply various techniques throughout the life cycle to
improve reliability. Reliability improvement techniques include design and code reviews,
automatic test-case generation, more extensive testing, and strategic assignment of tasks
to personnel. These are often guided by reliability modeling and prediction.

However, it may not be practical to apply some techniques to every software module.
For example, the lead architect may not have time to participate in a detailed design
review of every module. In such cases, our goal is to target reliability-enhancement efforts
to those modules considered fault-prone by the project. Unfortunately, one often does
not know whether a module is fault-prone until faults are discovered late in development,
or even after release.

We use the term “reliability” in a broad sense, rather than as the probability of
failure-free execution. Thus, “reliability-enhancement techniques” are simply processes
that developers use to find faults early. This paper does not recommend any particular
practices over others. According to standard terminology, a “fault” is a defect in a
program that may cause incorrect execution [1]. Frankl et al. [2] discuss “delivered
reliability” as the probability of failure under operational conditions. In contrast, we

focus on the absence of faults recorded by a problem reporting system during the period



of interest as an indicator of reliability, in a broad sense, irrespective of whether a failure
resulting from a fault would be frequent or rare during operations. Even rare failures can
be very important in mission-critical systems.

Software quality classification models can be a valuable guide for cost-effective qual-
ity improvement efforts by early identification of the modules which have high risk of
faults. A model is built based on a historical project’s data, i.e., a fit data set. Ideally,
it i1s validated using an s-independent test data set, to indicate its expected accuracy.
Thereafter, it can be applied to each module of a similar current project. The model pre-
dicts the class of each module based on its known attributes. With predictions in hand,
one can then target reliability-enhancement efforts on those predicted to be fault-prone.

We [3] and others [4] have observed that published modeling methods may not always
produce models with useful accuracy. Consistent with our previously published work, a
Type [ misclassification is when a model classifies a software module as fault-prone which
is actually not fault-prone, and a Type Il misclassification is when a model classifies
a software module as not fault-prone which is actually fault-prone. Because practical
interpretation of Type I and Type Il misclassification rates may be difficult, we propose
in this paper to translate these into measures of the effectiveness and efficiency of a
classification model, which are more closely related to project management concerns [5].
We define effectiveness of a model as the proportion of fault-prone modules correctly
identified. We define efficiency of a model as the proportion of modules predicted to be

fault-prone that actually are. If either type of misclassification rate is large, the model



is generally not useful to guide reliability improvement efforts. This paper argues that a
“practical” classification rule is one that considers both the effectiveness and efficiency of
using model predictions according to the needs of the project. To this end, this research is
the first that we know of to apply the proposed generalized classification rule to software
quality models.

Prior software quality classification models have used several other classification
rules. Many studies, using a variety of modeling techniques, classify a module into its
most likely class [6, 7, 8, 9, 10, 11, 12]. Our research group and some others have
published case studies using a rule that maximizes the number of correct classifications
[13, 14]. More recently, we have advocated a rule that minimizes the expected cost
of misclassifications [15, 16]. In this paper, we discuss these classification rules and
then present a generalized rule designed to give practical results for targeting reliability-
enhancement efforts. Two industrial case studies illustrate the effect of the new rule.

Future research may investigate the application of quantitative models to identifica-
tion of fault-prone modules.

Acronyms*

ECM Expected Cost of Misclassification
JSTARS Joint Surveillance Target Attack Radar System

STR Software Trouble Report

!The singular and plural of an acronym are always spelled the same.
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the prior probability of membership in G

the posterior probability of membership in Gy

the cost of a Type I misclassification
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the probability that a model correctly classifies a module as in Gy
the probability that a model correctly classifies a module as in G
the probability that a model misclassifies a module as in G5 which is

actually in GGy, i.e., the Type I misclassification rate.

the probability that a model misclassifies a module as in G which is

actually in (5, i.e., the Type II misclassification rate.



Other standard notation is given in “Information for Readers and Authors” in the rear

of each issue.

2 Classification Rules

This section presents several alternative classification rules for use with software quality

models, to predict the class of the i** module, Class(x;).

2.1 Most likely class

Suppose a software quality modeling technique produces a likelihood function, fi, for
each class, k = 1, 2. For example, in nonparametric discriminant analysis, each likelihood
function is a probability density function. In logistic regression, each likelihood function
is a probability of an event, or non-event. A decision rule that chooses the most likely

class is the following [17, 18].

Class(x;) = Gy if fi(x) > fa(xi) ()

(G; otherwise

In our case studies, (G; is the class not fault-prone and G5 is the class fault-prone.

2.2 Maximum correct classifications

The most-likely-class rule does not consider the characteristics of the population of mod-

ules from which the data set is drawn. If module attributes, x;, imperfectly separate the



classes, and if the population is predominantly not fault-prone, then the most-likely-class
rule will probably result in a Type I misclassification rate, Pr{2|1}, that is too high.
For example, suppose the population is 80% not fault-prone and 20% fault-prone. If a
module’s attributes, x;, are in the region where both classes have likelihood functions
greater than zero, fy(x;) > 0,k = 1,2, then the most-likely-class rule will give equal
consideration to the two classes, even though 80% are not fault-prone. Thus, too many
not fault-prone modules will be classified as fault-prone. An improved classification rule
should take into account the overall class proportions of the underlying population.
From a Bayesian viewpoint, the class proportions of the population are information
which is known prior to applying a model, i.e., the prior probabilities of class membership.
When prior probabilities, 7, k = 1,2, are known, a classification rule should assign an
observation, x;, to the class with the greater posterior probability of membership [18],

which is given by

fk(Xi)Wk

fi(xi)m + fo(xi)m2 (2)

qr(x;) =
for £k = 1,2. The corresponding classification rule is

Cluss(xs) = G if (%) > qa(xi) 3)

(#; otherwise

By Equation (2), this is equivalent to

Gy if fd >
Class(x;) = 2 ! (4)

(#; otherwise



This classification rule maximizes the expected number of correct classifications [17, 18].

The maximum-correct-classification rule may result in a large Type II misclassifica-
tion rate, Pr{1|2}, when fault-prone modules are rare, 73 < 71, for example 7 = 0.20
and m; = 0.80. This means there are few misclassifications, but a large Type II rate
means that a large percentage of the fault-prone modules are misclassified. In this case,
such a rule is not practical, because it does not achieve the goal of early detection of the

fault-prone modules.

2.3 Minimum expected cost of misclassifications

The maximum-correct-classifications rule assumes that the penalties for all kinds of mis-
classifications are the same. In software engineering practice, the penalty for acting on a
Type II misclassification is often much more severe than for a Type I. Thus, an improved
classification rule should take into account the costs of each kind of misclassification.
The cost of a Type I misclassification, Cy, is the direct cost wasted trying to enhance
a module that is already not fault-prone. A reliability-enhancement technique, such as
extra reviews, typically has modest direct cost per module. On the other hand, the
cost of a Type II misclassification, Cpy, is the lost opportunity to correct faults early.
In other words, let Cj; be the benefit (cost avoidance) of using the model to guide
reliability-enhancement of a fault-prone module. Calculation of Cj; may consider the
costs of distributing and installing fixes at customer sites after release, and perhaps even

the cost of consequential damages due to software faults. In this paper we model C; and
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(71 as constants, and we assume the cost of a correct classification is zero. The cost of
modeling is also assumed to be already budgeted, and thus, is not considered here. A
more sophisticated cost model is a topic for future research.

The expected cost of misclassification of one module is

ECM = C;Pr(2]1)7 + Cypp Pr(1)2) 7y (5)

—

A classification rule that minimizes the expected cost of misclassification [17, 18] is
Gy it &

fo 2 (@) ()

Class(x;) = z (6)

(#; otherwise

~—

Note that Equation (4) is a special case of Equation (6), where costs are equal (Cy;/C; =
1). Equation (1) is also a special case where prior probabilities are uniform (7y/7; = 1)
and costs are equal.

This rule is appealing because costs are always very interesting to management.
However, if C;;/Cy is very large, the rule may result in such a large Type I misclassifi-
cation rate, Pr{2|1}, that the model would recommend applying reliability-enhancement
processes to almost all the modules in the system. In other words, the model would
say that discovering a fault-prone module is so valuable that wasting effort on many not
fault-prone modules is worthwhile for the sake of finding a few fault-prone modules that a
less extreme rule would miss. In this paper, we assume that reliability enhancements are
given to some modules, but not all. Some enhancement processes may be so expensive

or time-consuming that they must be applied judiciously. Reliability-enhancement treat-
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ments for practically all modules may not be affordable, no matter how large Cy;/Cy is.

Similarly, schedule constraints may limit the amount of reliability-enhancement activity.

2.4 Generalized classification

In many projects, costs of misclassification are difficult to estimate. Similarly, prior
probabilities may also be unknown or difficult to estimate. The minimum-expected-cost
rule may be impractical in such cases. Thus, a more general rule that does not require
these parameters is needed.

In a standard development process, the expected proportion of fault-prone modules
is m3. Following the model’s recommendation, the proportion of modules that receive
reliability enhancement that are actually fault-prone is Pr{2|2}m;. Let us define effec-
tiveness as the proportion of fault-prone modules that received reliability-enhancement
treatment out of all the fault-prone modules.

Pr{22}m,

T2

effectiveness =

1 - Pr{12} (7)

This means that we can maximize effectiveness by minimizing Pr{1|2}.

When we apply a reliability-enhancement process to a not fault-prone module, it will
probably be a waste of time, because the reliability is already satisfactory. Let us define
efficiency as the proportion of reliability-enhancement effort that is not wasted, namely,
the proportion of fault-prone modules among those recommended for enhancement.

Pr{2|2}m, ()
Pr{2|1} 7 + Pr{2|2}m,

efficiency =
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This means that we can maximize efficiency by minimizing Pr{2|1}, for given Pr{2|2},
71, and 7.

There is a tradeoff between Pr{2|1} and Pr{1|2}. We have observed that as one
goes down, the other goes up. Our goal is to design a practical, flexible classification rule
that allows appropriate emphasis on effectiveness and efficiency according to the needs
of the project. The following rule enables a project to select the best balance between

the misclassification rates, and consequently, between effectiveness and efficiency.

—

e fi(xs
G, if e >

Class(x;) = (9)

(G; otherwise

~—

where ¢ is a constant which we can choose. We have observed in several empirical studies
that the misclassification rates, which range in value from zero to one, are approximately
monotonic functions of ¢. Accordingly, we have observed a monotonic empirical rela-
tionship between ¢ and both effectiveness and efficiency as well. We estimate these
functions by repeated calculations with a fit data set. Given a candidate value of ¢, we
estimate Pr{2|1} and Pr{l]|2}. We repeat for various values of ¢. Determining the ¢
that corresponds to a project’s preferred balance between effectiveness and efficiency is
straightforward when they are monotonic functions of c.

The generalized classification rule does not depend on our knowledge of 7; and my,
nor of C7 and Cyy, and thus, is useful when these quantities are difficult to estimate.
However, if information is available, having selected a preferred ¢, one can interpret the

value of ¢ in terms of the priors ratio times the cost ratio, as in the minimum-expected-
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cost rule.

If one chooses ¢ such that Pr{2|1} = Pr{1|2}, then both misclassification rates
are minimized [18]. It is especially appropriate when 7, < 71, e.g., LeGall et al. [19]
identified only 4% to 6% of modules as high-risk. In such cases, the maximum-correct-
classification rule is often unsatistfactory. Equal misclassification rates may also be ap-
propriate when C;;/Cy is so large that the minimum-expected-cost rule is unaffordable.

In practice, we can achieve only approximate equality due to finite discrete data sets.

3 Evaluation of Models

In the case studies, we used three methods for estimating Pr{2|1} and Pr{1|2} [20]. In
each method, a fit data set is used to estimate model parameters, and a test data set is
used to evaluate model accuracy.

Resubstitution uses the same data set for fit and test. The results may be biased,
because the evaluation is based on the same data as parameter estimates.

Cross-validation works in the following way [21, 22]: Suppose there are n observations
available in a single data set. Let one observation be the test data set and all the others
be the fit data set. Build a model, and evaluate it for the current observation. Repeat
for each observation, resulting in » models. Let the misclassification rates summarize
the n evaluations of the models. This is not biased like resubstitution, but requires more

computation. For the generalized-classification rule, we prefer cross-validation rather
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than resubstitution as an evaluation method when choosing ¢, whenever practical [20, 16].
Data splitting derives fit and test data sets from a single data set by impartially

sampling from available observations.

4 Case Studies

4.1 Methodology

The following steps describe the modeling methodology used in our case studies.

1. Collect configuration management data and problem reporting system data from a

past project.

2. Determine the class of each module.
not fault-prone 1If Faults < threshold

Class = (10)
fault-prone If Faults > threshold

where thresholdis chosen according to project-specific criteria. For example, project
management may consider how model predictions will be used, and whether there
are enough modules in each class for adequate sample sizes. Other projects may

choose different thresholds.

3. Prepare fit and test data sets by data splitting.

Derive fit and test data sets from the data by impartially sampling from the set

of modules studied. In the case studies, the fit data set had two thirds of the
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modules, and the test data set had the remaining third. These proportions were
chosen, considering sample sizes. Other proportions may be appropriate for other

studies.

. Select s-significant independent variables [23] using stepwise discriminant analysis

on the fit data set [18]. See Appendix A for details.

. Estimate likelihood functions of the final model using nonparametric discriminant

analysis on the fit data set.

Nonparametric discriminant analysis estimates each within-class probability density
as a function of the independent variables for each class. We used the normal kernel
method of nonparametric density estimation with smoothing parameter A [14]. The
smoothing parameter, A, was chosen to optimize the results of cross-validation with

the fit data set. See Appendix B for details.

. Predict the class of each module to evaluate model accuracy.

Each model was evaluated by the generalized-classification rule in Equation (9)
with various values of ¢. Evaluation was based on resubstitution of the fit data
set, cross-validation with the fit data set, and the test data set generated by data
splitting. The test data set result tells us the level of accuracy to expect when
applying the model to a similar project or subsequent release when the actual class

membership is not known.
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Table 1: System Profile

Application Telecommunications
Language Pascal-like
Lines of Code 1.3 million
Executable Statements 1.0 million
CFG Edges 364 thousand
Source Files 25 thousand
Functional Modules 2 thousand

4.2 Telecommunications System

This case study examined a very large telecommunications system written by professional
programmers in a large organization [3, 13, 24]. This embedded computer application
included numerous finite state machine algorithms and interfaces to various kinds of
equipment. A random sample of 1,980 modules was taken for analysis. As shown in
Table 1, the sample represented about 1.3 million lines of code. It was written in a
proprietary procedural high level language similar to Pascal.

In this study, we focused on the number of faults found in the current version,
Faults, during the period from entry of a module into the source code control system
in the Coding phase until the end of data collection in the Operational phase. Table 2

shows the distribution of faults among modules.
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Table 2: Distribution of Faults

Quantity Faults

Modules Total Zeros Fault-Prone Mean Std Dev

All 1980 1103 239 193  4.52
New 194 53 54 343  4.35
Changed 917 274 177 3.22 5.86
Unchanged 869 776 8 0.22  0.99

Project engineers defined the not fault-prone group, (G, as those modules with
Faults < 5, and the fault-prone group, G;, as those with Faults > 5. G, had about
12% of the modules. Another criterion for fault-prone group membership might be ap-
propriate in other situations. Statistical techniques can evaluate the sensitivity of results
to the choice of threshold [5]. Class membership was the dependent variable of the model.

Various product metrics were collected from source code at the module level. A
module may consist of multiple files. We built a nonparametric discriminant model,
with the single best-correlated design metric, the number of Modules Used, MU, as the
independent variable [3]. MU is related to the number of interfaces to other modules.

Using the generalized-classification rule, Table 3 shows the effect of various values of ¢
on the accuracy of the single variable model. The fit data set was used for resubstitution

and for cross-validation. The test data set generated by data splitting was used for
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Figure 1: Misclassification Rates for Single Variable Model (data splitting)

evaluation. Figure 1 depicts the effect of ¢ on misclassification rates for the data-splitting
columns in Table 3. The fit data set had 1,320 observations, consisting of 1,161 not fault-
prone modules (base of Type I per cent) and 159 fault-prone modules (base of Type 11 per
cent). The test data set had 660 observations, consisting of 580 not fault-prone modules
(base of Type I per cent) and 80 fault-prone modules (base of Type II per cent).

Figure 2 depicts the effect of ¢ on the associated effectiveness and efficiency shown
in Table 4.

A value of ¢ = 1 corresponded to the most-likely-class rule according to Equations (1)
and (9). This rule would probably be satisfactory in this case, having data-splitting
column results of Pr{2|1} = 24.31% and Pr{l1|2} = 26.25%. This translated to an

effectiveness of 73.75% and an efficiency of 29.5%.



Table 3: Misclassification Rates for Single Variable Model

Telecommunications System

MU was the single independent variable

Prior probabilities: proportions of fit data

Misclassification rates (%)

Resubstitution Cross-validation Data Splitting

Pr{2|1} Pr{1]2} | Pe{2]1} Pr{1]2} | Pr{2|1} Pr{1]2}

c A Typel Typell | Typel Typell | Typel Typell
0.14 0.005 0.34  82.39 1.03  86.16 1.38  80.00
0.40 0.50 6.72  62.26 6.72  62.26 6.90 56.25
0.60 0.40 12,75 47.80 12.75  47.80 14.83  43.75
0.80 0.40 16.97  39.62 16.97  39.62 19.48  33.75
1.00 0.40 21.53  35.22 21.53  35.22 24.31  26.25
1.20 0.40 25.15  32.70 25.15  32.70 28.62  23.75
1.40 0.30 33.16  21.38 33.16  21.38 37.24  10.00
1.60 0.15 40.83  13.84 40.91 13.84 43.45 8.75
2.00 0.10 43.67  12.58 4376 12.58 46.90 6.25
4.00 0.15 72.78 3.14 72.87 3.14 72.41 1.25
6.00 0.15 81.22 1.26 81.31 1.26 81.90 0.00
10.00 0.10 85.01 1.26 85.10 1.26 85.17 0.00
15.00 0.20 | 100.00 0.00 100.00 0.00 100.00 0.00

19



Table 4: Effectiveness and Efficiency for Single Variable Model

Telecommunications System

Test data set
c effectiveness (%)  efficiency (%)

0.14  20.00 66.66
0.40  43.75 46.65
0.60  56.25 34.35
0.80 66.25 31.93
1.00  73.75 29.50
1.20  76.25 26.87
1.40  90.00 25.00
1.60  91.25 22.46
2.00 93.75 21.61
4.00  98.75 15.83
6.00 100.00 14.41
10.00  100.00 13.94

15.00 100.00 12.12
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Figure 2: Effectiveness and Efficiency for Single Variable Model

A value of ¢ = 0.14 corresponded to the maximum-correct-classifications rule accord-
ing to Equations (4) and (9). This rule was not practical, because Pr{1|2} = 80% in the
data-splitting column. In other words, it was ineffective in finding fault-prone modules.
For the test data set, it had an effectiveness of only 20.00% and an efficiency of 66.66%.

A value of 1.2 < ¢ < 1.4 had approximately equal cross-validation misclassifica-
tion rates from Pr{2|1} = 25.15% and Pr{1|2} = 32.70% to Pr{2|1} = 33.16% and
Pr{1|2} = 21.38%. Exactly equal misclassification rates were not empirically feasible.
The corresponding data-splitting column results ranged from Pr{2|1} = 28.62% and
Pr{1]2} = 23.75% to Pr{2|1} = 37.24% and Pr{1|2} = 10.00%. When equality is not
achievable in practice, we prefer that Pr{1]|2} < Pr{2|1}, because usually C;; > C7. A

value of ¢ = 1.4 = (0.137)(10.2) corresponded to the minimum-expected-cost rule at a
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cost ratio of Cy;/Cy = 10.2 according to Equations (6) and (9). For the test data set,
this translated to an effectiveness of 90% and an efficiency of 25%.

Even though this model was not necessarily the most accurate possible for this
system, and even though we do not generally recommend single variable models [3], this
case study is a simple example of how the value of ¢ can influence model accuracy. In
this case, if one chose an appropriate value of ¢, then the model could be of practical

value to target extra reviews of module designs early in development.

4.3 Military System

The Joint Surveillance Target Attack Radar System, JSTARS, was developed by Northrop
Grumman for the U.S. Air Force in support of the U.S. Army [25, 26]. The system
consists of an E-8 aircraft with a multimode radar system and mobile ground stations.
Computer systems are both in the aircraft and on the ground. The system performs
ground surveillance, providing real-time detection, location, classification, and tracking
of moving and fixed objects for a real-time tactical view of the battlefield. The system
was developed under the spiral life cycle model [27].

We call each prototype of a spiral life cycle a “Build”. Successive versions of modules
are created as development progresses. The “baseline version” of a Build has all planned
functionality implemented but not necessarily integrated and tested. The “ending ver-
sion” is the one released for operational testing or the one accepted by the customer.

Development of planned enhancements is done between the ending version of the prior
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Build and the baseline version of the current Build.

For this case study, we selected the FORTRAN modules from a major subsystem of
the final Build, accounting for 38% of FORTRAN modules in JSTARS (1,643 modules).
Each module was a source file with one compilation unit, such as a subroutine.

The project uses Software Trouble Reports (STR) to track and control modifications
to software. One of the attributes of an STR is its “Activity” code, which describes
the reason a module was modified. Detailed activity codes were aggregated into the
following reasons: FAULTS means the STR was due to developer errors; REQUIREMENT
means the STR was due to unplanned requirements changes; PERFORMANCE means the
STR was due to inadequate speed or capacity; and DOCUMENTATION means the STR
was mandated during documentation changes. Other Activity codes were not related to
software reliability.

Let the variable Faults be the number of FAULTS STRs that caused updates to a
module’s source code between the baseline version and the ending version of the Build.
This is essentially the number of faults discovered during integration and testing. Table 5
summarizes the distribution of Faults. More than half the modules had no faults. The
module at the 75" percentile had two faults, and 16 faults was the maximum in a module.

After discussions with project engineers, a classification threshold of two faults was
selected. Approximately one quarter of the modules were considered fault-prone. Another
threshold might be appropriate for another project.

The cumulative numbers of STRs that affected code prior to the baseline version are



Table 5: Distributions of Process Variables

Percentile Faults BaseFlts BaseReq BasePerf BaseDoc

100 16 36 3 > 3
99 9 14 2 2 2
95 6 8 1 1 1
90 4 6 0 1 1
75 2 3 0 0 0
20 0 1 0 0 0

attributes of a module’s process history as follows.

BaseFlts = Number of FAULTS STRs

BaseReq = Number of REQUIREMENT STRs
BasePerf = Number of PERFORMANCE STRs
BaseDoc = Number of DOCUMENTATION STRs

Table 5 also summarizes the distributions of baseline STRs.

We defined categorical variables to model reuse from the prior Build.

1 If module did not exist in ending version of prior Build

IsNew =
0 Otherwise

24
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Table 6: Distribution of Reuse Variables

Number of Modules
Age: 0 1 2

IsNew: 1 0 0 Total

IsChg:
1 311 418 354 1083

0 — 201 359 260

Total: 311 619 713 1643

0 If no changed code since prior Build
1sChg = (16)

1 Otherwise

Since modules with a long history may be more reliable, we define the age of a module
in terms of the number of Builds it has existed.
0 If module is new
Age =1 1 If module was new in the prior Build (17)

2 Otherwise

Our data did not include information on whether a module’s age was more than two
Builds. Table 6 shows the distribution of reuse variables.

The independent variables represent the history of each module, known at the time
of the baseline version, namely, the cumulative number of STRs for each reason, and its

reuse from previous Builds (BaseFlts, BaseReq, BasePerf, BaseDoc, IsNew, IsChg, Age).
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In this study, we did not consider interactions among independent variables. This is a
topic for further research.

BaseFlts, IsNew, BaseReq, Age, BasePerf were selected as s-significant independent
variables using stepwise discriminant analysis at the o« = 0.15 s-significance level. Non-
parametric discriminant analysis estimated the model based on the fit data set.

Using the generalized-classification rule, Table 7 shows the effect of various values
of ¢ on the accuracy of the multivariate model for each evaluation method. Figure 3
depicts the misclassification rates for the data-splitting columns in Table 7. The fit data
set had 1,096 observations, consisting of 809 not fault-prone modules (base of Type I per
cent) and 287 fault-prone modules (base of Type II per cent). The test data set had 547
observations, consisting of 404 not fault-prone modules (base of Type I per cent) and 143
fault-prone modules (base of Type II per cent).

Figure 4 depicts the associated effectiveness and efficiency in Table 8.

A value of ¢ = 1 corresponded to the most-likely-class rule. This was not a practical
rule, because it had Pr{l1|2} = 72.73% in the data-splitting column. This translated to
an effectiveness of only 27.27% and an efficiency of 58.21%.

A value of ¢ = 0.35 = (287/809) = (7y/%1) corresponded to the maximum-correct-
classifications rule. This was not a practical rule either, because it had Pr{1]2} = 79.72%
in the data-splitting column. This translated to an effectiveness of only 20.28% and an
efficiency of 59.19%. In other words, neither the most-likely-class rule nor the maximum-

correct-classifications rule was effective in identifying fault-prone modules.



Table 7: Misclassification Rates for Multivariate Model

Military System

Prior probabilities: proportions of fit data

Misclassification rates (%)

Resubstitution Cross-validation Data Splitting

Pr{2|1} Pr{1]2} | Pe{2]1} Pr{1]2} | Pr{2|1} Pr{1]2}

c A Typel Typell | Typel Typell | Typel Typell
0.35 0.005 0.00 79.44 4.45  81.88 4.95  79.72
1.00 0.20 1.98  66.20 5.32 T73.17 6.93  72.73
2.00 0.50 6.06  59.23 8.65 61.67 8.91  65.73
3.00 0.60 21.76  30.31 23.61  33.10 25.74  39.86
4.00 0.80 25.09  27.18 26.82  28.92 27.48  33.57
5.00 1.00 30.66  25.09 31.03  25.09 31.19  27.97
6.00 1.20 31.03  25.09 31.03  25.09 31.44 2797
7.00 1.00 35.72  20.21 35.72  20.21 33.91  21.68
8.00 2.30 64.03 5.23 64.03 5.23 64.36 8.39
10.00 2.00 79.73 1.05 79.73 1.05 78.96 1.40
15.00 2.00 | 100.00 0.00 100.00 0.00 100.00 0.00

27
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Figure 4: Effectiveness and Efficiency for Multivariate Model
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Table 8: Effectiveness and Efficiency for Multivariate Model

Military System

Test data set
c effectiveness (%)  efficiency (%)

0.35  20.28 59.19
1.00  27.27 58.21
2.00 34.27 57.65
3.00 60.14 45.27
4.00 66.43 46.11
5.00  72.03 4498
6.00 72.03 44.78
7.00  78.32 44.98
8.00 91.61 33.50
10.00  98.60 30.65
15.00 100.00 26.14

A value of ¢ = 4.0 had approximately equal cross-validation misclassification rates of
Pr{2|1} = 26.82% and Pr{1|2} = 28.92%, and corresponding data-splitting column rates
of Pr{2|1} = 27.48% and Pr{1]2} = 33.57%. This value of ¢ = 4.0 = (11.4)(0.35) =

(Cr1/Cr)(w2/m1) corresponded to the minimum-expected-cost rule at a cost ratio of
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Cr1/Cr = 11.4. For the test data set, this translated to an effectiveness of 66.43%
and an efficiency of 46.11%.

Like the first case study, if the value of ¢ was extreme, the model was not useful.

Although this model can be improved by additional variables, it is sufficient to illustrate

how the appropriate value of ¢ can make the most of the available data. In this case study,

if one chose an appropriate value of ¢, then the model could be practical for targeting

additional reviews and testing during integration.
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Appendices

A Model Selection

We use stepwise model selection at a s-significance level, «;, to choose the independent
variables in the nonparametric discriminant model [18]. The candidate variables are
entered into the model in an incremental manner, based on an F' test from analysis of
variance which is recomputed for each change in the current model. Beginning with no
variables in the model, the variable not already in the model with the best s-significance
level is added to the model, as long as its s-significance is better than the threshold («).
Then the variable already in the model with the worst s-significance level is removed
from the model as long as its s-significance is worse than the threshold («). These steps

are repeated until no variable can be added to the model.

B Nonparametric Density Estimation

We estimate a probability density function based on the fit data set. In addition to the

notation at the beginning of this paper, let Sy be the covariance matrix for all samples
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in G, and let |Si| be its determinant. Let Kji(u|v, ) be a multivariate kernel function

on vector u with modes at v. We select the normal kernel.
Ki(ulv, )= (2 7r)\2)_”’“/2|Sk|_1/2 exp( (—1/2)\2)(u — V)'S,;l(u —-v)) (18)

Let xz;,{ =1,...,n; represent a module in group Gj.
The estimated density function is given by the multivariate kernel density estimation

technique [18].

. 1 2k
fk(Xz|)\) = — Z [(k(xib(kl, )\) (19)
Nk =1

This technique does not make assumptions about the functional form of the density

function.
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