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Summary & Conclusions — Software developers apply various techniques early in
development to improve software reliability, such as extra reviews, additional
testing, and strategic assignment of personnel. Due to limited resources and
time, it is often not practical to enhance the reliability of all modules. Our
goal is to target reliability enhancement activities to those modules that would
otherwise have problems later. Prior research has shown that a software
quality model based on software product and process metrics can predict
which modules are likely to have faults.

A module-order model is a quantitative software quality model that is
used to predict the rank-order of modules according to a quality factor, such
as the number of faults. The contribution of this paper is definition of module-
order models and a method for their evaluation and use. Two empirical case
studies of full-scale industrial software systems provide empirical evidence of
the usefulness of module-order models for targeting reliability enhancement.
Multiple linear regression models were the underlying quantitative models of
the case studies; other techniques could also be used.

The subject of one case study was a military communications system.
The subject of the other was a large legacy telecommunications system. The
case studies demonstrated that even though an underlying quantitative model
may not accurately predict the quality factor, using such a model for ordering
modules can successfully target reliability enhancement efforts.
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1 Introduction

A significant portion of software development cost is due to rework fixing defects. The
amount of cost depends on when they are discovered. Correcting software faults late
in the development life cycle is often very expensive. Consequently, software developers
apply various techniques to discover faults early in development [7, 23]. Reliability en-
hancement techniques include more rigorous design and code reviews, automatic test-case
generation to support more extensive testing, and strategic assignment of key personnel.

Our goal is to target reliability enhancement activities to those modules that are most
likely to have problems. The goal is to enhance the reliability of modules recommended
by a model earlier enough to prevent problems from poor reliability later in the life cycle.
Software reliability can be directly measured only late in the life cycle, but product and
process metrics can be measured substantially earlier. Prior research has shown that
software product and process metrics [5] collected early in the software development
life cycle can be the basis for reliability predictions using software quality models [9,
16, 20, 22, 27, 31, 33, 36]. Predicting the exact value of a reliability measure for each
module is often not necessary; previous research has focused on classification models to
identify fault-prone and not fault-prone modules [1, 4, 8, 13, 25]. Such models require
that fault-prone be defined as a class before modeling, usually via a threshold on the
number of faults expected. However, due to uncertain resource constraints that limit the
amount of reliability enhancement effort, software development managers often cannot
choose an appropriate threshold at the time of modeling. In such cases, a prediction of
the rank-order of modules, from the least to the most fault-prone, is more useful [18]. In

this paper, we focus on the degree that a module is fault-prone, rather than membership



in a class.

A module-order model has an underlying quantitative software quality model that is
used to predict the rank-order of modules according to a quality factor, such as a measure
of reliability. With a predicted rank-order in hand, one can select as many modules from
the top of the list for reliability enhancement as resources will allow.

A module-order model has the characteristic that it can be used for classification [10];
the modules above a selected cutoff rank are like those classified as fault-prone. When
actual fault data is known and a threshold defining fault-prone is given, one can determine
whether each module was actually fault-prone or not, and thus, evaluate the classification
accuracy of the model. In contrast to conventional classification modeling, one need not
select a threshold that defines a fault-prone class prior to building a module-order model.

The contribution of this paper is definition of module-order models and a method
for their evaluation and use. We also present two empirical case studies of full-scale
industrial software systems that illustrate the use of module-order models for targeting
reliability enhancement. Similar results from the two case studies are evidence that the
technique is robust, in spite of differing organizations, programming languages, software
metrics, and life cycle phases.

To be credible, the software engineering community demands that the subject of an
empirical study be a system with the following characteristics [35]: (1) developed by a
group, rather than an individual programmer; (2) developed by professionals, rather than
students; (3) developed in an industrial environment, rather than an artificial setting;
and (4) large enough to be comparable to real industry projects. The two case studies
presented here fulfill these criteria. Our acronyms for the systems studied are below,

followed by related software engineering nomenclature.



Acronyms

CCCS
LTS

Nomenclature

module

Alberg diagram

code churn

debug code churn
development code churn
fit data set

test data set

fault

fault-prone

software product metric
software process metric

software quality factor
software quality model
domain metric

Command, Control, and Communications System
Legacy Telecommunications System

the unit of software modeled as an observation

a Pareto diagram for software reliability

lines of code added or changed

code churn due to fixing faults

code churn due to development of new features
data used to estimate parameters of a model

data used to evaluate model accuracy

a defect in a software module (a “bug”)

a set of modules that is likely to have many faults
a measure of an attribute of a software product

a measure of an attribute of a module’s development pro-

cess history
a measure of software quality

a model that predicts a software quality factor
a principal component when the underlying variables are
software metrics

In related work, Ohlsson and Alberg introduce Pareto diagrams for software relia-

bility which they call Alberg diagrams [28]. Similarly, Ohlsson, Helander and Wohlin use

Alberg diagrams and Spearman rank-order correlation to evaluate models [29]. Curves

are plotted for an ordering based on the actual number of faults, and an ordering based

on the number of faults predicted by a model. When model predictions are intended for

only ordinal purposes, Ohlsson et al. consider the model with the smallest area between

curves to be the most useful. In case studies, they also compared models by the dis-

tance between the curves at selected percentages of modules. We have employed Alberg

diagrams in this paper as an informal depiction of model accuracy.



Future work will investigate additional modeling techniques underlying the module-
order model concept, such as genetic programming [15] and Poisson regression [9]. Future

work will also compare the usefulness of module-order models and classification models

[10].

2 Module-Order Modeling

According to Pareto’s Law applied to software engineering, 20% of the modules will typ-
ically account for about 80% of the faults. This was approximately true in our case
studies. Therefore, identifying the top fraction of the fault-prone modules can maximize
the benefit of expending limited resources for reliability enhancement. Our goal is to
develop models that will accurately predict the relative reliability of each module, es-
pecially those which are most fault-prone. A suitable software quality model can make
predictions when it is not too late to take compensatory actions. Such predictions will
be useful for prioritizing reliability enhancement efforts toward those modules offering
the greatest payoff.

We define a module-order model as a software quality model, based on software
product and process metrics, that is used to predict the rank-order of modules according
to a quality factor. Most quality factors are directly measurable only after software has
become operational. For example, the number of faults is known only after testing or
operations. In contrast, software product and process metrics can be measured during
development.

The input to a module-order model is a set of modules with measured product

attributes and process history attributes. A module-order model consists of an underlying



quantitative model that predicts a quality factor for each module in the set followed by
the step of ordering the modules by the predicted values. It is this ordering step that
distinguishes a module-order model, irrespective of the underlying modeling technique
or the specific quality factor. The output of a module-order model is a ranking of the
modules in the set, rather than predicted quality factor values.

We are interested in quality factors that indicate software reliability. The predicted
quality factor must have at least an ordinal scale [2]. This stands in contrast to classifi-
cation models where the dependent variable is nominal scale, such as whether a module
is fault-prone or not. For example, the quality factor could be the expected number of
faults. Even though the number of faults is absolute scale when directly measured, our
recommended use of a predicted value is only ordinal scale. Moreover, our approach is
compatible with independent variables and modeling techniques which are ordinal scale
or higher. Our case studies define software reliability in terms of the number of faults,
or in terms of debug code churn. In the following discussion, we use the number of faults
as an example quality factor. The same method applies to other quality factors, such as
debug code churn.

In general, software quality modeling involves the following steps [32].
1. Build a model using historical data.
2. Evaluate the model using independent historical data.

3. Use the model on a current project’s data.



Notation
n number of modules
? module identifier,z = 1,...,n
X; vector of independent variable values for module 2
Ty 4t independent variable value for module i
F; quality factor for module ¢

Fi total of quality factor values, Fi,; = > " F;
F(x;) estimate of F; by model
R ranking of modules by F;

R; percentile rank of module ¢ in R

&)

ranking of modules by F(x;)

fx’(xz) percentile rank of module 7 in R

c cutoff percentile of ranked modules

C management’s preferred set of cutoff percentiles

G(c)  quality of modules above ¢ percentile under perfect ranking
@(c) quality of modules above ¢ percentile under predicted ranking
é#(c)  performance measure for module-order models

Z n X m matrix of standardized measurements

Z; standardized variables 7 =1,...,m

Aj 7t eigenvalue of the covariance matrix of Z

e; 7t eigenvector of the covariance matrix of Z

T standardized transformation matrix, n x p

t; 3% column of T

D; 4t domain metric

Q@ significance level for hypothesis test

Ys dependent variable value for module 2

s estimate of y;

a; parameter for 5% independent variable

€ error term for observation 2

R? coefficient of determination

AAE  average absolute error
ARE  average relative error

See Tables 1 and 4 for software metrics notation. Other standard notation is given in
“Information for Readers and Authors” in the rear of each issue.



The underlying quantitative model is built according to the applicable modeling
technique. For example, a parametric model is an equation where a software quality fac-
tor, F(Xi), is a function of independent variables, x;1, ..., z;, having a certain functional
form and parameters that need to be estimated.

~

F(XZ) = f(:Ei17"'7$ip) (1)

A modeling technique includes methods for selecting independent variables and for esti-
mating parameters.

Because we do not expect perfect accuracy, we evaluate a model’s usefulness by its
ability to approximately order modules from the most fault-prone to a certain percentile.

We propose the following method for evaluating a module-order model.

1. Determine the perfect ranking of modules in the test data set, R, by ordering

modules according to F;.

2. Determine the predicted ranking, ﬁ, by ordering modules in the test data set

according to ﬁ(xl) from least to most fault-prone.

3. When applying a module-order model, modules are selected for reliability enhance-
ment in predicted order, beginning with the most fault-prone. A cutoff point, c, is

the percentile of the last module enhanced.

For evaluation of a model, we choose a set of cutoff points, C, that might be of
interest to a manager. In the case studies, we chose 50 through 95 percentile, in
5 percent increments. Another project might choose different percentiles, but this

set illustrates our methodology.

For each cutoff percentile value of interest, ¢ € C:



(a) Calculate the sum of actual number of faults, G(¢), in modules above the

cutoff for R.
Gle)= > F (2)

R >c

(b) Calculate the sum of actual number of faults in modules above the cutoff,
G(c), for R.
G(c)

> ki (3)

i:ﬁ(xi)Zc
4. Calculate the percentage of faults accounted for by each ranking, namely, G(¢)/ Fi,:

and G(C)/Ftot. Evaluate the benefit of using the model at selected values of ¢

5. Calculate a measure of model performance that indicates how closely the faults

accounted for by the model ranking match those of the perfect ranking.

(4)
The proportion of the actual faults at ¢, ¢(c), indicates the accuracy of the model’s
ranking at that ¢ compared to a perfect ranking. In the face of uncertain resources
for reliability enhancement, we are interested in consistent accuracy over a range
of ¢. The variation in ¢(c) over a range of ¢ indicates the robustness of the model;

small variation implies a robust model.

In practice, a manager is interested in the model’s accuracy only at the preferred
cutoff point, ¢. Because all modules above the cutoff point get the same treatment,
the distance of the predicted rank-order from the actual is not an appropriate measure
of model accuracy. We do not care about the accuracy of the rank-order within the
enhanced group, nor within the group that was not enhanced. However, we do want ¢(c)

to be high for the ¢ of interest.
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Because the cutoff point may not be known in advance, a manager may also be
interested in the accuracy of the model over a range of cutoff points represented by the
set C. If the accuracy is consistent over a range of interest, we consider the model robust.
Because the set C has few members, a graphical presentation of accuracy and robustness
is preferred instead of summary statistics.

Spearman rank-order correlation represents overall accuracy over the entire data set;
it is not an appropriate measure of accuracy here because a manager is only interested
in the accuracy of the model at his preferred value of c¢. Spearman correlation is also
not a measure of robustness, because it does not measure variation in accuracy. The
area between curves of an Alberg diagram [28] is also a measure of overall accuracy,
and similarly, it is not appropriate for evaluation of module-order models, because it
represents accuracy over the entire data set.

After evaluating the accuracy and robustness of a module-order model, it is ready for
use on a current similar project, or subsequent release. Determine the predicted ranking,

ﬁ, by ordering modules in the current data set according to ﬁ(xz)

3 Case Study Methodology

Because software development is inherently a people-intensive enterprise, software relia-
bility is influenced by many factors that vary tremendously among organizations. Conse-
quently, credible controlled experiments to validate an analysis method are not practical
[30]. Therefore, we take a case-study approach to illustrate the usefulness of module-
order models in a real-world setting. Case studies provide “weight of evidence”, rather

than scientific proof of propositions.



11

A case study is based on data from one or more past development projects. The case
study builds software quality models that could have been built at an early point in the
life cycle and calculates predictions of the rank-order. The predictions are compared to
the rank-order based on the actual reliability experienced in a later phase of the life cycle.
Thus, a case study simulates what could have been predicted during the development
project, and evaluates the result.

The case study results indicate the accuracy that one can expect from the model
when applied to a similar current project. The following is a summary of our case study

methodology which is applicable to a wide variety of modeling techniques.

1. Preprocess measurements, if necessary.

If incompatible units of measure complicate interpretation of the model, standardize
measurements to a mean of zero and a variance of one for each metric, so that
the unit of measure becomes one standard deviation. If multicollinearity could
degrade the stability of the model, perform principal components analysis on the

standardized product metrics to produce domain metrics.

2. Choose a model validation strategy. A validation strategy evaluates the accuracy
of a model by estimating model parameters with a fit data set, predicting the
dependent variable of each observation in the test data set, and then evaluating the

results. However, each of the following methods defines the test data set differently

3].

(a) Resubstitution. This method uses the fit data set as a test data set. Since the

fit and test data sets are not at all independent, this is the least realistic of
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the methods discussed here. This assessment of model accuracy is often overly

optimistic.

(b) Data splitting. This is sometimes called the “Holdout” method [26]. Fit and
test data sets are derived from a single data set by impartially partitioning
available observations. Statistical similarity of the fit and test data set is as-
sured by the partitioning method. Data splitting may be appropriate when
data on a similar subsequent project is not available. The proportion of ob-
servations in each data set is chosen according to sample sizes needed for
the statistical techniques to be employed. Consequently, this method often

requires large samples of data. Our first case study used this method.

(¢) Cross-validation. This is sometimes called the “U-Method” [26]. Suppose
there are n observations available. Let one observation be the current test data
set and all the others be the current fit data set. Build a model with the current
fit data set, and evaluate it for the current test data set. Repeat for each
observation, resulting in n models. Let the results summarize the n evaluations
of the models. In contrast to resubstitution, this does not have serious bias.
This method is appropriate for smaller data sets than data splitting, but

involves more computation.

(d) Subsequent project. This method uses data from one past project as a fit data
set and data from a similar past project or subsequent release as a test data
set. This is a realistic simulation of applying a software quality model in

practice. Our second case study used this method.

3. Prepare fit and test data sets according to the model validation strategy.
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A quality factor is the dependent variable and software product metrics, process

metrics, and/or their transformations are the independent variables.

4. Select significant independent variables from a set of candidates, based on the fit

data set.

5. Estimate parameters of the model on the selected independent variables, based on

the fit data set.

6. Evaluate the accuracy of the model using the test data set and the method presented
in Section 2. The results indicate the accuracy and robustness that one can expect

when applying the model to a similar project or subsequent release.

Each case study of this paper used a simple quantitative modeling technique, mul-
tiple linear regression, to predict a measure of software reliability. The simple models
adequately fulfill the purposes of this paper, without resorting to refinements of mul-
tiple linear regression, such as identification of outliers. Other quantitative modeling
techniques could be used, such as nonlinear regression [14], regression trees [6], or com-
putational intelligence techniques [1, 19, 21]. The following is a summary of the technique
used here.

The first step is to select independent variables. Even though we may have a long list
of candidate independent variables, it is possible that some do not significantly influence
the dependent variable. If an insignificant variable is included in the model, it may add
noise to the results and may cloud interpretation of the model. In particular, if a coeffi-
cient, a;, for the 7' variable in a linear model is not significantly different from zero, then

it is best to omit that term from the model. The process of determining which variables
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are significant is called model selection. Of several model selection techniques available
for multiple linear regression, we use the stepwise regression method [26]. Stepwise
model selection is an iterative procedure. All the candidate independent variables are
specified. Significant variables are added and insignificant variables are removed from the
model on each iteration, based on an F' test. The test is recomputed on each iteration,
until no variable can be added to or removed from the model.

Many models have a general mathematical form with parameters that must be chosen
so that the fit data set matches the model as closely as possible. The second step consists
of estimating the values of such parameters. In general, a multivariate linear model has

the following form.

Ui = ao+airat ...+ apTip (5)
yi = do+azat+ ...+ apry e (6)
where ¢; = y; — 9; is the error for the i"* observation. We estimate the parameters,
g, . ..,a,, using the least squares method. This method chooses a set of parameter

values that minimizes 37, e? [26]. Other estimation techniques could be used [17].
When the parameters have been estimated, and given a set of independent variable
values, a model can calculate a value of the dependent variable. Since the independent
variables are known earlier than the actual value of the dependent variable, the calculated
value is a prediction.
When we know the actual dependent variable value, y;, for the i** module, we validate
that the predictions, gy;, are sufficiently accurate for the needs of the current project.

Two common statistics for evaluating quantitative predictions are average absolute error,
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AAFE, and average relative error, ARF.

1 )

AAE = = |y — 9 (7)
ni:l
L& |y — 0

ARE = = 8
Ly yﬁl\ )

where the denominator of ARFE has one added to avoid dividing by zero [17]. A lower
average error is better. Results based on the fit data set indicate quality of fit. Results
based on the test data set indicate the accuracy of predictions one can expect for a similar

current project or a subsequent release.

4 A Military Communications System

4.1 System Description

We studied a large military system written in Ada for command, control, and commu-
nications which we call “cccs”. Generally, a module was an Ada package, consisting of
one or more procedures. A problem reporting system collected data on faults during the
system integration and test phase and during the first year of deployment. Each fault
was attributed to a module. The top 20% of the modules contained 82.2% of the faults.
52% of the modules had no faults, and over three quarters of the modules had two or
fewer faults. The maximum number of faults in one module was 42. The developers
collected software product metrics from the source code of each module. The number
and selection of metrics was determined by available data collection tools. Table 1 lists
the software product metrics used in this study. Another project might collect a different

set [12].
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Table 1: Software Product Metrics for CCCS

Symbol Description

7 Number of unique operators
Ny Total number of operators
72 Number of unique operands
Ny Total number of operands

V(G) McCabe’s cyclomatic complexity
V/(G)  Extended cyclomatic complexity
V'(G) = V(G) + number of logical operators
LOC Lines of code
ELOC  Executable lines of code

We used the 282 modules measured by the developers for our experiment. Applying
data splitting, we impartially partitioned this data into two subsets, two thirds of the
modules (188) for fitting models, and the remaining third (94 modules) for validating

their predictive accuracy. This yielded adequate sample sizes for statistical purposes.

4.2 Model

We applied multiple linear regression to cccs data. The predicted dependent variable,
ﬁ(xi), was the number of faults. Candidate independent variables, x;, were eight product
metrics. Based on the fit data set, stepwise regression selected n,, V(G), V'(G), and m

at the 5% significance level. The intercept was not significantly different from zero. The

following model was estimated using the least squares technique.
F = 0.03067; — 0.2632 V(G) +0.2314 V'(G) — 0.0425 1, (9)

Each variable was significant at o < 0.04. The metrics V() and V'(G) together

indicate the amount of program logic. The numbers of distinct operators (1;) and distinct
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operands (7)z) are correlated with overall size of the module. Thus, modules with intricate
program logic and large size are more likely to have faults.

The quality of fit was indicated by an R? = 0.738, and by resubstitution of the fit
data set, which yielded average absolute error of AAFE = 1.5 faults, and average relative
error of ARE = 0.62. Application of the model to the test data set yielded AAE = 2.2
faults and ARE = 0.70.

Evaluating this model as a conventional quantitative model, the quality of fit was
satisfactory. AAFE and ARF for the test data set indicated that the model was accurate
enough to be useful to the project. Even so, we did not use this model in a conventional

manner. We used it only to order the modules.

4.3 Evaluation

We applied the evaluation method presented in Section 2. Table 2 lists results for the
module-order model of cccs. Since over half of the modules had no faults, reliability
enhancement of more than half of the modules would have had minimal payoff here.
Therefore, we did not analyze the model for the first and second quartiles, ¢ < 0.50.
Suppose the project manager planned to enhance the reliability of modules in the
order recommended by the model. When done, software engineers would have found that
enhanced modules contained a certain fraction of the faults. Figure 1 depicts this with an
Alberg diagram [28] for a perfect ordering of modules (G(¢)/Fi,: in Table 2) and for the
cccs model (@(C)/Fm in Table 2). The cumulative percentage of faults in modules is

plotted as a function of the percentage of modules recommended (1 — ¢), where modules

are ordered from most fault-prone to least. Figure 2 shows the ratio of the two lines in
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Table 2: Results of CCCS Model

¢ G(c¢)/Fir G(&)/Fior  &(c)

0.950 0.419 0.361 0.861
0.900 0.631 0.544 0.862
0.850 0.751 0.697 0.928
0.800 0.822 0.772 0.939
0.750 0.884 0.830 0.939
0.700 0.925 0.846 0.915
0.650 0.942 0.871 0.925
0.600 0.963 0.884 0.918
0.550 0.983 0.909 0.924
0.500 1.000 0.913 0.913
100%
80% -
o 60% -
=}
& 40% -
20% | —&— actual
—e—predicted
0% ‘ ‘ ‘ ‘
0% 10% 20% 30% 40% 50%

Modules

Figure 1: Alberg Diagram for CCCS Model

Figure 1, which is a measure of model performance (¢(c¢) in Table 2). In other words,
it shows how close the model came to a perfect ordering of the modules for the most
fault-prone half of the modules.

The most fault-prone 5% of the modules that the model recommended for reliability
enhancement (¢ = 0.95) accounted for 36.1% of the faults. This corresponded to 86.1% of

the faults that a perfect recommendation would account for. Even a modest investment
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100%

95%

90% -

85% -

Model Performance

80% T T T T
0% 10% 20% 30% 40% 50%

Modules

Figure 2: Performance of CCCS Model

in reliability enhancement, i.e., 5% of the modules, would yield early detection of many
faults, i.e., up to 36.1%.

Figure 2 illustrates that model performance, ¢(c), is about the same for the range of
¢ of interest; we consider the model very robust. Model accuracy was not substantially
affected by how many modules would be actually given reliability enhancement. We used
a simple well-known quantitative modeling technique in this case study, namely, multiple
linear regression, to show that a module-order model is useful and robust, even though

the underlying quantitative model may be less than ideal.

5 A Legacy Telecommunication System

5.1 System Description

We studied a large legacy telecommunications system (LTS) written by professional pro-
grammers in a large organization [11]. This embedded computer application included

numerous finite state machines and interfaces to other kinds of equipment. It was writ-



20

Table 3: Debug Code Churn Statistics for LTS

Lines new/changed due to bug fixes, FIX_NC

Release
Statistic 0 1
Obs 97 171
Mean 154.7  331.6
Std Dev ~ 300.0 734.9
Min 0 0
Q1 11 12
Median 7 68
Q3 199 294

Max 2439 5066

ten in a proprietary procedural high level language similar to Pascal. The entire system
(Release 1) had over 50 thousand procedures; the portion we studied had over 38 thou-
sand procedures in 171 modules.

Prior research has shown that the reuse history of a module can be a significant input
to software quality models [13]. This case study considered only those modules that were
new or changed since the prior release. The unchanged modules were extremely reliable,
i.e., all had no changes due to debugging. Development code churn, DEV_NC, quantified
the amount of code that was not reused from the previous release. DEV_NC can be
measured at the same point in the life cycle as software metrics.

In this study, we focused on debug code churn, FIX_NC. Bug fixes generally occur
after development coding is complete. Table 3 gives summary statistics on debug code
churn for both releases. This data was available at the module level.

Software product metrics were collected by a Logiscope® metric analyzer at the

procedure level, and were aggregated to the module level. Metrics missing relevant data,



Table 4: Software Product Metrics for LTS

Symbol Description

N_STMTS Number of statements.

N_COM Number of comments.

TOT_OPTR Total operators. (i.e., Ny in ¢CCS case study)

N_EDGES Number of edges in control flow graph.

N_NODES Number of nodes in control flow graph.

P_NODES Number of pending nodes. The number of nodes that
begin a sequence of unreachable code (dead code).

MAX_DEG Maximum degree of node. The maximum number of
edges going in or out of a node.

N_PATHS Number of independent paths.

N_IN Number of entries. Since each procedure has only
one entry point, this is equivalent to the number of
procedures in the module.

N.STRUC Number of control structures. (e.g., IF, WHILE, or DO)

MAX_LVLS Maximum nesting levels.

N_SEQ Number of sequential nodes.

MAX_NODES  Maximum nodes in a control structure.

MAX STMTS  Maximum statements in control structure.

DRCT_-CALLS Direct calls. This is the total number of procedure or
function calls.

ESS_CPX McCabe essential complexity. This measures the de-
gree a module has constructs due to branching in/out
of control structures. A well structured module has
ESS_CPX = 1.

DES_CPX McCabe design complexity [24], which is intended to

measure the cyclomatic complexity related to proce-
dure calls

21

constant metrics, and metrics that are linear combinations of others were excluded. Many
of the metrics are defined on a control flow graph of the module, consisting of nodes and
directed edges. Table 4 lists the software product metrics used in this study.

Data for each module consisted of product metrics, development code churn, DEV_NC
and debug code churn, FIX_NC. New or changed modules from Release 0 were used as

a fit data set (97 observations), and new or changed modules from Release 1 were used
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as a test data set (171 observations).

5.2 Preprocess Measurements

The first case study took a very simple approach to quantitative modeling. In this case
study, we added preprocessing of data to reduce the large number of product metrics to
a few principal components.

Software product metrics have a variety of units of measure, which are not readily
combined in a multivariate model. In this case study, we transformed all product metric
variables, so that each standardized variable had a mean of zero and a variance of one.
Thus, the common unit of measure became one standard deviation.

Principal components analysis is a statistical technique for transforming multivariate
data into orthogonal variables, and for reducing the number of variables without losing
significant variation. The following summarizes the technique [34].

Suppose we have m measurements on n modules. Let Z be the n x m matrix of stan-
dardized measurements where each row corresponds to a module and each column is a
standardized variable. Our principal components are linear combinations of the m stan-
dardized random variables, Z;,...,Z,,. The principal components represent the same
data in a new coordinate system, where the variability is maximized in each direction
and the principal components are uncorrelated. If the covariance matrix of Z is a real
symmetric matrix with distinct roots, then one can calculate eigenvalues, A;, and eigen-
vectors, e;,7 = 1,...,m, of the covariance matrix of Z. Each eigenvalue is the variance
of the corresponding principal component. Since the eigenvalues form a nonincreasing

series, Ay > ... > ), one can reduce the dimensionality of the data without significant
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loss of explained variance by considering only the first p components, p < m, according
to some stopping rule, such as achieving a threshold of explained variance. For example,
choose the minimum p such that >%_; A;/m > 0.90 to achieve at least 90% of explained
variance.

Let T be the m x p standardized transformation matrix whose columns, t;, are

defined as

€;

Vi

Let D; be a principal component random variable, and let D be an n x p matrix with

t; =

forj=1,...,p (10)

D; values for each column, j =1,...,p.
D; = 1Zt; (11)
D = ZT (12)

When the underlying data is software metric data, we call each D; a domain metric.
Principal components analysis of the combined fit and test software product metrics
of LTS retained five components under the stopping rule that we retain components
accounting for at least 90% of the overall variance. We combined the data sets for this
step to improve the sample size. Table 5 shows the correlation between each original
metric and each domain metric. The largest in each row is shown bold, indicating the
product metrics that dominate each domain metric. The principal components analysis
resulted in a standardized transformation matrix which was separately applied to the fit

and test standardized product metrics to calculate domain metrics, Dy, ..., Ds.



Table 5: Domain Pattern for LTS Product Metrics

Domain Metric

D1 D2 D3 D4 D5
P_NODES 0.933 0.099 0.203 0.054 0.124
ESS_CPX 0.881 0.356 0.236 0.119 0.106
DES_CPX 0.880 0.353 0.238 0.112 0.113
N_STRUC 0.813 0.306 0.255 0.244 0.306
N_NODES 0.752 0.512 0.246 0.212 0.230
N_EDGES 0.733 0.508 0.261 0.226 0.250
N_STMTS 0.699 0.590 0.200 0.193 0.222
N_.COM 0.686 0.533 0.188 0.169 0.201
TOT_-OPTR 0.213 0.921 0.146 0.040 0.003
DRCT_CALLS 0.266 0.918 0.104 0.047 0.010
N_IN 0.460 0.831 0.136 0.102 -0.005
N_SEQ 0.566 0.724 0.231 0.189 0.168
MAX_DEG 0.118 0.586 0.569 -0.229 -0.184
MAX_NODES 0.298 0.154 0.908 0.125 0.126
MAX_STMTS 0.286 0.163 0.887 0.150 0.142
MAX_LVLS 0.272 0.091 0.130 0.922 0.057
N_PATHS 0.408 -0.017 0.145 0.060 0.876
Variance 6.224 4.821 2506 1.248 1.210
% Variance 36.6% 28.4% 14.7% 13% 1.1%
Cumulative 36.6% 65.0% 79.7% 87.0% 94.1%

5.3 Model

24

We applied multiple linear regression to LTS data. The predicted dependent variable,

~

F(x;), was debug code churn, FIX_NC. Candidate independent variables were DEV_NC

and domain metrics Dy through Ds. Based on the fit data set, stepwise regression selected

DEV_NC and D, at the 5% significance level. The following model was estimated using

the least squares technique.

~

F =95.654 +0.289 DEV_NC + 63.274 D,

(13)
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Each variable was significant at o < 0.033. The pattern of principal components in
Table 5 revealed that D; was associated with overall module size. In particular, the
raw metrics that were highly correlated with D; are generally associated with size. As
discussed above, DEV_N('indicated the amount of new and changed code for the current
release. Thus, large modules with extensive new or changed code are more likely to have
faults.

The quality of fit was indicated by an R? = 0.138, and by resubstitution of the fit
data set which yielded average absolute error of AAE = 135.0 lines of code, and average
relative error of ARFE = 22.2. Application of the model to the test data set yielded
AAFE = 188.5 lines of code and ARE = 35.3.

Evaluating this model as a conventional quantitative model, the model was signif-
icant, but quality of fit was low. AAFE and ARF for the test data set indicated that
the model was not very accurate. However, we did not use this model in a conventional

manner. We used it only to order the modules.

5.4 Evaluation

We applied the evaluation method presented in Section 2. Table 6 lists results for the
module-order model of LTS. Since the median debug code churn was substantially below
the mean, reliability enhancement of more than half of the modules would likely not
be worthwhile. Moreover, limited resources for reliability enhancement would make en-
hancement of more than half impractical. Therefore, we did not analyze the model for
modules below the median, ¢ < 0.50.

Suppose the project manager planned to enhance the reliability of modules in the
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Table 6: Results of LTS Model

¢ G(c¢)/Fir G(&)/Fior  &(c)

0.950 0.434 0.374 0.861
0.900 0.639 0.568 0.889
0.850 0.738 0.684 0.928
0.800 0.817 0.757 0.927
0.750 0.864 0.791 0.915
0.700 0.905 0.834 0.922
0.650 0.929 0.858 0.924
0.600 0.948 0.910 0.960
0.550 0.962 0.922  0.959
0.500 0.974 0.940 0.965

order recommended by the model. When done, software engineers would have found that
the enhanced fraction of modules would have contained a certain fraction of the debug
code churn. Figure 3 depicts this with an Alberg diagram [28] for a perfect ordering
of modules (G(¢)/Fiot in Table 6) and for the LTS model (@(c)/Fm in Table 6). The
cumulative percentage of debug code churn in modules is plotted as a function of the
percentage of modules recommended (1 — ¢), where modules are ordered from most fault-
prone to least. Figure 4 shows model performance, i.e., the ratio of the two lines in
Figure 3 (¢(c) in Table 6). In other words, it shows how close the model came to a
perfect ordering of the modules for the most fault-prone half of the modules.

The most fault-prone 5% of the modules that the model recommended for reliability
enhancement (¢ = 0.95) accounted for 37.4% of the debug code churn. This corresponded
to 86.1% of the debug code churn that a perfect recommendation would account for. This
means that even a modest investment in reliability enhancement, i.e., 5% of the modules,

would yield early detection of many faults, i.e., up to 37.4% of the debug code churn.

Since model performance, ¢(c), is about the same for the range of ¢ of interest, we
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consider the model very robust. In other words, model accuracy did not depend on how
many modules would be actually given reliability enhancement.

We used multiple linear regression in this case study, demonstrating that a module-
order model can be useful and robust. Even though the underlying quantitative model
was less accurate than the cccs regression model, the module-order model results were
about the same, providing evidence that this technique is robust, even though the projects
were performed by different organizations in different programming languages, with dif-

ferent software metrics, and in different life cycle phases.
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