Modeling Software Quality: The Sottware
Measurement Analysis and Reliability Toolkit

Taghi M. Khoshgoftaar*
Edward B. Allen
Jason C. Busboom
Florida Atlantic University

Boca Raton, Florida USA

Abstract

This paper presents the Software Measurement Analysis and Reliability Toolkit
(sMART) which is a research tool for software quality modeling using case-based
reasoning (CBR) and other modeling techniques.

Modern software systems must have high reliability. Software quality models
are tools for guiding reliability-enhancement activities to high-risk modules for
maximum effectiveness and efficiency. A software quality model predicts a quality
factor, such as the number of faults in a module, early in the life cycle in time for
effective action. Software product and process metrics can be the basis for such
fault predictions. Moreover, classification models can identify fault-prone modules.

CBR is an attractive modeling method based on automated reasoning processes.
However, to our knowledge, few CBR systems for software quality modeling have
been developed. SMART addresses this area. There are currently three types of
models supported by sMART: classification based on CBR, CBR classification ex-
tended with cluster analysis, and module-order models, which predict the rank-
order of modules according to a quality factor.

An empirical case study of a military command, control, and communications
applied sSMART at the end of coding. The models built by sMART had a level of
accuracy that could be very useful to software developers.

Keywords: software reliability, case-based reasoning, data clustering, module-order
model, software quality models, multiple linear regression, analogy models, software
tools, fault-prone modules

*Readers may contact the authors through Taghi M. Khoshgoftaar, Empirical Software Engineer-
ing Laboratory, Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Ra-
ton, FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email: taghi@cse.fau.edu, URL:

www.cse.fau.edu/esel/.

1 Introduction

Software reliability is essential for mission-critical and high-assurance systems. How-
ever, assuring reliability often entails time-consuming costly development processes.
Reliability-improvement techniques include more rigorous design and code reviews, auto-
matic test-case generation, more extensive testing, strategic assignment of key personnel,
and reengineering of high-risk portions of a system. One cost-effective strategy is to
target reliability-enhancement activities to those modules that are most likely to have
problems [8]. A software fault is a defect in an executable product that causes a software
failure. The amount of rework to correct faults is a priority concern to software develop-
ers. Rather than focus on the number of failures, they are interested in the number of
faults discovered during testing or operations.

A software quality model has independent variables that can be measured earlier in
the development life cycle than the dependent variable which indicates its quality. Ex-
amples variables include lines of code and McCabe cyclomatic complexity as independent
variables, and the number of faults as a dependent variable. If one supplies the inde-
pendent variable values for a module, one can calculate a prediction of the dependent
variable’s value. Prior research [1, 5, 20| has shown that software product and process
metrics, collected early in the software development life cycle, can be the basis for fault
predictions. Predicting the number of faults in each module is often not necessary. Much
previous research has focused on classification models that identify fault-prone and not
fault-prone modules [13]. In such models, fault-prone is usually defined via a threshold
on the number of faults expected.

Various classification modeling techniques have been applied to software quality

data, such as discriminant analysis [13], logistic regression [12], decision trees [21], arti-
ficial neural networks [11], discriminant power [22], optimal set reduction [2], and fuzzy
classification [4].

Case-based reasoning (CBR) is an alternative modeling method based on automated
reasoning processes. It has proven useful in a wide variety of domains [17] including
software cost estimation, software reuse, software design, and software help desk. CBR is
especially useful when there is limited domain knowledge and when an optimal solution
process is not known [18]. A recent book [58] presents the state of the art in CBR, the
lessons learned from specific applications, and directions for the future. However, to our
knowledge, few CBR systems for software quality modeling have been developed [6, 14].

The Software Measurement Analysis and Reliability Toolkit (SMART) is a domain-
independent research tool for case-based reasoning and other modeling techniques, whose
user interface is tailored for software quality modeling. An “analysis project” is our term
for the user’s task of building and using a software quality model for the benefit of a
software development project. This paper presents SMART and an empirical case study

which applied it to software quality modeling of a military software system.

2 Toolkit Architecture

The software architecture of SMART is shown in Figure 1. The tool is implemented using
Microsoft Visual C—}——I—® and runs in a Windows 95® or \Nindows/NT® environment.
There is a central data manager that handles the fit data, which is used to build the
model, the test data, which is used to validate the model, and analysis-project data. The

models are controlled via the graphical user interface and results may be in the form of

— Case-Based

Project Reasoning
data

—_—_—

—
S

FIT Diata User Iodule-Order
data Manager Interface Model

e—
:l

——
R

TEET
data Data
L= Clustering

Figure 1: Tool architecture

a display, printed report, or data file.

The user interface is based on a “dialog-based property sheet”. Figure 2 shows the
General page. Tabs for the various types of models are along the top portion of the
property sheet, while the current page is displayed below the tabs. Navigation through
the menus and selection of the various available options is done with a mouse. Once
satisfied with the options selected, the user may save the analysis project’s data, run an
experiment, or print out statistics about the current analysis project. There is also an
online help document that explains how to use the tool.

There are currently three types of models supported by SMART. Details on each type
of model are presented in the following sections. The first type of model is for classification
based on case-based reasoning (CBR). This kind of model classifies a software module
as fault-prone or not by comparing its attributes to a library of similar past modules.
The second model extends the CBR classification model with cluster analysis [15]. This
technique partitions the case library into clusters. An unclassified module is classified
according to the closest cluster. The third type of model is the module-order model
[9, 10], which predicts the rank-order of modules according to a quantitative dependent

variable. It can also be used for classification.

- SMART: Software Measurement Analysis and Reliability Toolkit - [demo_spj]

e

3.500

O Usershjbusboom\PR r
D Usershjbusboom\PR r

B

0.00000000
Cepver =

Figure 2: Project data

On the General page, the user specifies the Project Name and Project Description of
the analysis project. Modeling parameters and results can be saved under this name.
The user specifies the names of space-delimited AscII files holding the data (Fit Data File
and Test Data File). The names of fields are required as the first line of a data file, and
each line thereafter is data for one software module. The fit data set consists of data from
a past software development project including values of both dependent and independent
variables. It is used to build a model and estimate model parameters, if any.

The test data set is used to simulate use of the model. It also consists of data from
a past software development project. The independent variable values are used to make
predictions as if the data were from a current software development project, and the

actual dependent variable values are used to evaluate the accuracy of the predictions.

After a model is built and evaluated it can be used to predict the classes of a current
data set. The Test Data File can be data from a current software development project
whose independent variable values are known, but whose dependent variable values are
not. Let 2 and j be indices for modules in data sets.

One of the data fields should be a software quality factor that the user identifies as
the Dependent Variable, such as the number of faults. Let y; be the actual value of the
dependent variable for module 7, and let g; be its predicted value.

In our application, software metrics are the independent variables. The user selects
the independent variables, indexed by £ = 1,...,m. Variables included in the model are
listed as Used metrics, and those in the data file but not in the model are listed as Unused
metrics.

The user can choose to standardize the independent variables so that all have the
same unit of measure. Given a raw measurement, z;x, its estimated mean, xy, and its
estimated standard deviation, si, the standardized measurement is z;, = (2 — T1)/ sk
The unit of measure is a standard deviation. In the discussion below, we use x;; to mean
either a raw or a standardized measurement, as selected by the user.

The actual class of a module is defined by whether or not the dependent variable is
greater than a Threshold, §, or not. The user specifies thresholds for the fit and test data
sets. In many of our case studies, we use the same threshold for both. However, the tool

provides additional flexibility. The actual class of a module is given by

not fault-prone if y; < 6
Class; = (1)
fault-prone Otherwise

Not all software metrics are equally related to software faults. It is possible that

small changes in one attribute may strongly relate to the number of faults. The user can

specify a Weights File containing weights, wy, for each independent variable in the model
to account for various levels of importance. An Intercept Value, wg, can also be specified

on this page.

3 Case-Based Reasoning

A OBR system finds a solution to a new problem based on past experience, represented
by cases in a case library. Each case is indexed for quick retrieval according to the
problem domain. A solution process algorithm uses a similarity function to measure the
relationship between the new problem and each case. The algorithm retrieves relevant
cases and determines a solution to the new problem.

A CBR system can function as a software quality classification model. In our appli-
cation, the problem is to assign a module to the correct class early in development, i.e.,
whether it is fault-prone or not. A good “solution” is a class assignment that turns out
to be correct after fault data is known. A case consists of all available information on a
module. This could include whether it is fault-prone or not, its product attributes, and
its process history. The working hypothesis for a software quality model is this: a module
currently under development is probably fault-prone if a module with similar attributes
in an earlier version or similar project was considered to be fault-prone. Figure 3 depicts
the SMART’s Case-Based Reasoning page.

The user specifies the data set to be used as the Case Library, usually the fit data set.
A module in the library is a case. Let c;, be the value of the k' independent variable
for case j, and let c; be the vector of independent variable values for case j.

The user also specifies the Target Data Set whose dependent variable values are to be

- SMART: Software Measurement Analysis and Reliability Toolkit - [demo_sp] *]
File Help
General Case-Based Reasoning | CER with Data Clusteringl Module OrderMDdeIl
Case Similarity Function List of scale factars:
|Abso|ute Differance j 1.000 Add
Case Selection Algorithm: 1.200
IUnwmghted Average j }ggg Remaove |
N.umber of Cases: 1.800 Clear List
|Five -] 2.000 4|
2.200
Case Librarny Target Data Set 2400
& Fit C Fit gggg
© Test @ Test
Fun Experiment | Detailed Results | Print Results | Sawve Results |
Scale Factor | Twpe | Errars | Type |l Errors AAE | ARE | Orverall 26 |
1.000 5.000(6667%%) 7.000(36.842.. 1.947 0.591 12.766%
1.200 5.000(6667%%) 6.000(31579.. 2002 0.685 11.702%
1.400 9.000(12.000.. 4000(21.053. 2121 0.789 13.830%
1.600 12.000(16.000.. 3.000(15.789.. 2290 0.897 15.957%
1.800 12.000(16.000.. 2.000(10526.. 2480 1012 14.894%
2.000 13.000(17.333.. 1.000(5.263%) 2721 1.1 14.894%
2.200 15.000 (20.000.. 1.000(5.263%) 24988 1.251 17.021%
2.400 15.000 (20.000.. 1.000(5.263%) 3.269 1.372 17.021%
2.600 16.000 (21.333.. 1.000(5.263%) 3570 1.497 16.085%
2.800 16.000 (21.333.. 1.000(5.263%) 3.898 1.626 16.085%
[

Figure 3: Case-based reasoning model

predicted. Let z;; be the value of the k™ independent variable for target module i, and
let x; be the vector of independent variable values for module ;. When using the model,
the current set of modules is the target. When evaluating the model, the test data set is
the target. When experimenting with parameter values during model development, the
fit data set can be designated as the target.

The user selects a Case Similarity Function which calculates a distance, d;;, between
the current target module x; and every case c;, where a small distance implies the modules
are very similar. Based on the distances, SMART identifies a set of cases who are “nearest
neighbors” to the current module, x;. The user selects the Number of Cases in this set.
The user also selects a solution algorithm (Case Selection Algorithm) which predicts the

dependent variable, y; of the current module, x;, and predicts its class.

The user can provide a List of scale factors, «, for empirical investigation. Each value
of a represents a distinct experiment over all target modules. Summary statistics for the
experiments are listed, as shown in Figure 3.

A Type | misclassification is when a model classifies a module as fault-prone which
is actually not fault-prone, and a Type Il misclassification is when a model classifies a
module as not fault-prone which is actually fault-prone. SMART provides counts and
percentages. SMART summarizes the accuracy of the predicted dependent variable by

average absolute error (AAFE) and average relative error (ARFE) which are given by

1 &

AAE = _Z Yi — il (2)
ni:l
1 &9 — il

ARE — e 3
n; yi+ 1 ®)

where n is the number of modules in the data set. The denominator of A RFE has one

added to avoid division by zero. The Overall misclassification rate is also provided.

3.1 Similarity Functions

Several measures of similarity are presented in the literature according to the problem
domain, the availability of attribute data, and whether data types are categorical, dis-
crete, real, etc. [16]. For quantitative attributes, the city-block distance and Euclidean
distance [14] are commonly used. The Mahalanobis distance [3] has the advantage of
explicitly accounting for correlations among attributes. SMART supports the following
similarity functions.

Absolute Difference distance is also known as “city-block” distance or “Manhattan”

distance. The distance is the weighted sum of the absolute value of the difference in

10

independent variables between a module and a case. The weights are those provided
by the user. The absolute value is taken because distance is computed irrespective of
direction.
dij = i’wﬂ%—xiﬂ (4)
k=1
Euclidean Distance considers each independent variable as a dimension of an m-
dimensional space. A module is represented by a point in this space. The Euclidean
distance between a module and a case is their weighted distance in this space. The
weights are those provided by the user.
m 1/2
dij = (Z(’wk(%’k—fﬁk))?) (5)
k=1
Linear Regression 1 is intended for when the weights, wy, supplied by the user were
estimated by multiple linear regression of the dependent variable as a function of case

attributes, c;, using some other tool, such as a spreadsheet or a statistical modeling tool.

The weights are used in a linear model.
f(cj) = wotwici+ ...+ Wy Cjn (6)

The distance is the difference in the dependent variable values predicted by the linear

model for the attributes of the module and the case.

dy = f(e;) = f(xi) =D weleje — i) (7)

Linear Regression 2 is also intended for when the weights, wy, supplied by the user
were estimated by multiple linear regression of the dependent variable as a function of

case attributes, c;. The distance is the difference between the actual y; of the case and

11

the predicted g; = f(xz) of the module.

dij = y; — f(Xz') = yj — D WkTik — Wo (8)
k=1

Mahalanobis Distance [3] is an alternative to Euclidean distance in cases where metrics

may be poorly scaled or highly correlated. The distance is given by
dij = (¢; = x;)'S™" (¢; — xi) (9)

where prime (') means transpose, and S is the covariance matrix of the independent
variables over all of the case library, and S™! is its inverse. In the special case where
the independent variables are uncorrelated and the variances are all the same, S is the

identity matrix and the Mahalanobis distance is the Euclidean distance squared.

3.2 Nearest Neighbors

After the tool calculates distances between a module x; and all cases using one of the
similarity functions, the distances are sorted. The cases, ¢;, with the smallest distances,
d;;, are of primary interest. The set of nearest neighbors, AV, is an input to each solution
algorithm below. The user selects the number of nearest neighbors, ny € {1,3,5,7,9}.
Based on a preliminary empirical investigation with software quality data, this range

appears to be adequate.

3.3 Solution Algorithms

Each solution algorithm assigns the unclassified module to a class. Predictions of the

dependent variable made by the solution algorithm can be scaled in order to improve

12

the accuracy of class predictions. Most of the solution algorithms below calculate g; and

then classify the module by

not fault-prone If ay; < 6
Class(x;) = (10)
fault-prone Otherwise

To choose a preferred value of «, the user designates the fit data set as both the case
library and the target data set, and supplies a list of candidate scale factors, a. The user
can then choose a preferred value of « based on experiment results. When the target is
the test data set and when the target is a current data set, the user can then specify the
preferred scale factor, a.

SMART supports the following solution algorithms.

Unweighted average. This solution algorithm averages the dependent variable, y;, of

the closest ny modules from the case library to form a value of §; for the target module.

Ji=— >y (11)

We are primarily concerned with classification, so the value predicted is not as important
as the predicted class, given by Equation (10).

Inverse-distance weighted average. This solution algorithm utilizes the distance mea-

sures for the ny closest cases as weights in a weighted average. Because a smaller

distance means a better match, SMART weights each case in the nearest-neighbor set by

a normalized inverse distance, ¢;;.

bij = L (12)
Yjen 1/d;;

Ui = Z‘Sijyj (13)
JEN

The case that is most similar to the target module will naturally have the largest weight,

and therefore play a larger role in the classification of the module by Equation (10).

13

Rank-weighted average. In this solution algorithm, the nearest neighbors are ranked
according to their distances from the module. Rank R; = 1 represents the best match
while R; = ny represents the worst match among the nearest neighbors. The rank-
weight, p;;, is given by

nN—R]-—I—l

pii = ——=—p (14)
! Yien R;
G = > piyi (15)
JEN

The module is classified by Equation (10).
Majority vote. This solution algorithm assigns the unclassified module to the class

of the majority of the cases in the nearest-neighbor set.

not fault-prone if majority of y; < 6 for j € N
Class(x;) = ! (16)
fault-prone Otherwise

4 Data Clustering

In addition to the basic CBR model, SMART provides an extension by cluster analysis
to enhance classification. The case library is partitioned into clusters according to the
actual class of each case. SMART compares a module to the fault-prone cluster and the
not fault-prone cluster and determines the closest group. SMART supports the same
similarity functions and solution algorithms here as in the CBR model.

The Data Clustering page (DC) in Figure 4 is similar to the CBR page. Instead of
scale factors, this page provides for a List of cost ratios, C;/C;. The user can calculate
a cost ratio as the ratio of the cost of a Type I misclassification, C';, to the cost of a
Type II misclassification, C;;. However, this is often difficult to estimate, and therefore,

SMART provides for experiments with a list of values. In software quality modeling, a

14

- SMART: Software Measurement Analysis and Reliability Toolkit - [demo_sp] *]
File Help
General | Case-Based Reasaning CBR with Data Clustering | Module Order Model |
Case Similarity Function F—— List of cost ratios:
p— aole
IMahaIanoblg Dlstancg j I Covariance |0-10000000 Add
Case Selection Algorithm: 0.20000000
. 0.30000000 =t |
IUnwmghted Averége J 040000000 2move
N.umber of Cages: 0.50000000 Clear List
|Five -] 0.60000000 4|
0.70000000
Case Librarny Target Data Set 0.50000000
& Fit o[0.90000000
 Test & Test ™ Perform Outlier Analysis?
Fun Experiment | Detailed Results | Print Results | Sawve Results |
Cost Ratio Twpe | Errars | Type |l Errors | AAE | ARE | Orverall 26 |
0.10000000 40000(53.333.. 0000¢ 0.000%2) 3.016 1.425 42.653%
0.20000000 24000(32.000.. 1.000{ 5.263%2) 2404 0.840 26.596%%
0.30000000 21.000(28.000.. 2000({10626.. 2351 0772 24.468%
0.40000000 1900026333, 2000{10626.. 2319 0728 22.340%%
0.50000000 16.000(21.333.. 2000{10626.. 2239 0.665 19.149%
0.60000000 100014667 4000{21.063.. 2287 0629 15.957%%
0.70000000 G.000(10667.. BO000{26316.. 2202 0527 13.830%
0.80000000 7.000(9333%) GBO000(26.316.. 2154 0.479 12.766%
0.90000000 5.000¢ BEG7S) 9.000(47.368.. 2282 0.450 14.894%
1.00000000 3.000¢ 4000%<) 13.000(68.421.. 2388 0.408 17.021%
[

Figure 4: Data clustering model

Type IT misclassification can be much more serious than a Type I, because the cost of
releasing fault-prone modules to users is usually much more expensive than wasting effort
enhancing low-risk modules. The user can experiment to choose a preferred C;/Cyy value.

The user has the option of using a Pooled Covariance matrix, S, for the Mahalanobis
distance measure. “Pooled” means that all data points from both clusters are used in
determining the S matrix, and “non-pooled” means that two individual S matrices are
calculated for the fault-prone cluster and the not fault-prone cluster.

The classification rule used here is based on our recent work with statistical clas-
sification techniques [12]. For an unclassified module, x;, let d,z(x;) be the average

distance to not fault-prone nearest-neighbor cases, and let dj,(x;) be the average distance

15

to fault-prone nearest-neighbor cases. The module is classified by

d gy (xi) c
not fault-prone 1f -2 — =L
Class(x;) = Tagp0s) T (17)
fault-prone Otherwise

where C7/Cy; is experimentally chosen. The user can choose C;/Cy; by a similar method
as «a, described above.

The Data Clustering page also offers Outlier Analysis. An outlier is a case that has
abnormal attributes. One module at a time is removed from the case library and its class
is predicted. If both the actual and predicted classes are the same, then the module is
not an outlier, otherwise, it is marked as an outlier and is not used as part of the case
library. This technique is repeatedly applied to all modules from the case library until

all outliers are removed.

5 Module-Order Model

The objective of module-order models [9, 10] is robust predictions of the relative quality
of each module, especially those with the highest risk. In particular, we are interested
in the order of modules according to a dependent variable. This type of model focuses
primarily on the degree to which a module is fault-prone, rather than membership in a

particular class. A module-order model consists of the following components.

1. An underlying conventional quantitative software quality model. SMART currently
uses a linear model, with weights, wy, supplied by the user. The user can estimate
the weights by multiple linear regression of the dependent variable as a function

of fit data set attributes, x;, using some other tool, such as a spreadsheet or a

16

statistical modeling tool.
Ui = woF w1+ ...+ Wy Tin (18)

Other quantitative modeling techniques, such as nonlinear regression, regression

trees, or computational intelligence techniques will be investigated in the future.

2. A ranking of modules according to the predicted dependent variable. Let R; be the
percentile rank of module ¢ in a perfect ranking of modules according to y;. Let

~

R(x;) be the predicted percentile rank of module ¢ according to ¥;.

3. A procedure for evaluating the accuracy of a model’s ranking over a target data

set. (See the statistics described below.)

Figure 5 depicts the Module-Order Model page (MOM).

In our application, management will choose to enhance some percentage of modules
in priority order, beginning with the most fault-prone. However, the rank of the last
module enhanced is uncertain at the time of modeling. The user determines a range of
percentiles that covers management’s options for the last module, and chooses a set of
representative cutoff percentiles (Extraction thresholds), ¢, from that range.

Statistics on this page are labeled C1 through C8. Cl is the sum of the actual
dependent variable values in modules above the cutoff under perfect ranking, G(c¢) =
> iR>e Yi- C2is is the sum of the actual dependent variable values in modules above the

cutoff under the predicted ranking, G(c) = Ei:ﬁ(x)>e Yis C3 is a measure of the model’s

accuracy at the given cutoff, ¢(c) = G(C)/G(C) The variation in ¢(c) over a range of ¢

indicates the robustness of the model; small variation implies a robust model.

17

- SMART: Software Measurement Analysis and Reliability Toolkit - [demo_sp] *]
File Help
General | Case-Based Reasaning | CER with Data Clustaring Module Order bodel |
Threshold value based on: List of extraction thresholds:
IPercentage d 5 = Add |
- 10
Rounding of percentage threshold: 15 Femove |
ID 5 d 20
25 Clear List |
Target Data Set: gg
 Fit (188 modules) a0 ﬂl
& Tast (94 modul 45
est (94 modules) = B
Fun Experiment | Detailed Results | Print Results | Sawve Results |
Threshald | Cl cz | c3 | ca | cs | ca | c7 | cs e
5% (bobs) 46.8088 40.249 85847 n.ooo 0.0on 73684 26.316 100000
10%(9obs) 63071 50.207 79.605 1man 1.333 57.8495 42105 88889
15% (T4obs) 75104 63.071 83978 28571 5.333 47.368 b2.632 71.429
20% (190bs) 83817 72614 B66G34 315679 8.000 31579 6BB421 BBA4AN
2h% (24obs) 89.212 78838 88372 37500 12000 21.053 78947 62500
30% (28obs) 925631 81.743 88341 42857 16.000 15789 84211 57143
36%(33obs) 94606 86722 91.667 48485 21.333 10526 89474 51515
40% (38 obs) 96.680 90.871 93991 52632 26.667 5.263 94737 47368
45% (42 obs) 98.340 90.871 92405 57143 3z2.000 5.263 94737 42.857
50% (47 obs) 100000 92531 92531 61702 38.667 5.263 94737 38.293
56% (62 obs) 100000 95.021 95.021 63462 44.000 0.000 100.000 36538 ||
I

Figure 5: Module-order model

C5 is the Type I misclassification rate at the given cutoff. C6 is the Type II mis-
classification rate at the given cutoff. C7 is the model’s effectiveness [10], defined as the
proportion of actually fault-prone modules that the model correctly classifies. C8 is the
model’s efficiency [10], defined as the proportion of modules that the model classifies as

fault-prone which are actually fault-prone. C4 is the model’s “inefficiency”, 1 — efficiency.

6 Case Study

We studied a large system for command, control, and communications, written in Ada,
which we call cccs. Generally, a module was an Ada package, consisting of one or

more procedures. A problem reporting system collected data on faults during the system

18

Table 1: Software product metrics for CCCS

Symbol Description

i Number of unique operators [7]
Ny Total number of operators [7]
72 Number of unique operands [7]
N, Total number of operands [7]

V(G) McCabe’s cyclomatic complexity [19]

V'(G) Extended cyclomatic complexity
V'(G) = V(G) + logical operators

LOC Lines of code

FELOC Executable lines of code

integration and test phase and during the first year of deployment. Each fault was
attributed to a module. The top 20% of the modules contained 82.2% of the faults. 52%
of the modules had no faults, and over three quarters of the modules had two or fewer
faults. The maximum number of faults in one module was 42. The developers collected
software product metrics from the source code of each module. The number and selection
of metrics was determined by available data collection tools.

We had measurements on 282 modules. Applying data splitting, we impartially
partitioned this data into two subsets, two thirds of the modules (188) in the fit data set
for building the models, and the remaining third (94 modules) in the test data set for
evaluating their accuracy. This yielded adequate sample sizes for statistical purposes.

Table 1 describes the eight product metrics that we used as independent variables.
The number of faults, y, was also collected for each module. A module was considered
fault-prone it it had four or more faults during testing and operations. Another project
might choose a different threshold.

We preferred values of a, C;/Cyy, and ¢, such that Type I and Type 1l misclassifica-

19

Table 2: Results

Model Similarity Solution ny Parameter Typel Type Il
CBR Absolute Diff. Unweighted Avg. 5 a=16 16.0% 15.8%
DC Mahalanobis ~ Unweighted Avg. 5 Ci/Cr=06 14.7% 21.1%
MOM c=03 16.0% 15.8%

tion rates were approximately equal for the fit data set. Another project might prefer a
different balance. Table 2 lists the accuracy of selected models based on the test data set.

This level of accuracy at the end of coding could be very useful to software developers.

7 Conclusions

High software reliability is essential for modern software systems. However, assuring
reliability is often time-consuming and costly. One cost-effective strategy is to target
reliability-enhancement activities to high-risk modules. A software quality model predicts
quality, such as the number of faults, early in the life cycle in time for effective action.
Software product and process metrics, collected early in the software development life
cycle, can be the basis for such fault predictions. Moreover, classification models can
identity fault-prone and not fault-prone modules.

Case-based reasoning (CBR) is an attractive modeling method based on automated
reasoning processes. However, to our knowledge, few CBR systems for software quality
modeling have been developed. This paper presents the Software Measurement Analysis
and Reliability Toolkit (SMART) which is a research tool for case-based reasoning and
other modeling techniques, whose user interface is tailored for software quality model-

ing. The software architecture of SMART includes a central data manager and models

20

controlled via the graphical user interface. There are currently three types of mod-
els supported by SMART: classification based on case-based reasoning (CBR), the CBR
classification model extended with cluster analysis, and the module-order model, which
predicts the rank-order of modules according to a quantitative dependent variable.

An empirical case study applied SMART to software quality modeling of a military
software system. The models built by SMART of a large system for command, control,
and communications had a level of accuracy at the end of coding that could be very
useful to software developers.

Future research will expand the selection of models underlying the module-order
model, to include CBR models, and other techniques. Future research will also extend
the options for CBR models, and will validate the techniques with larger empirical data

sets.

References

[1] J. D. Arthur and S. M. Henry, editors. Software Process and Product Measurement,
volume 1 of Annals of Software Engineering. J. C. Baltzer, 1995.

[2] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing interpretable models
with optimized set reduction for identifying high-risk software components. IEKEFE
Transactions on Software Engineering, 19(11):1028-1044, Nov. 1993.

[3] W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications.
John Wiley & Sons, New York, 1984.

[4] C. Ebert. Classification techniques for metric-based software development. Software

Quality Journal, 5(4):255-272, Dec. 1996.

[5] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Ap-
proach. PWS Publishing, London, 2d edition, 1997.

[6] K. Ganesan, T. M. Khoshgoftaar, and E. B. Allen. Case-based software quality pre-
diction. International Journal of Software Engineering and Knowledge Engineering,

1999. Forthcoming.

7]
8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

21

M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand.
EMERALD: Software metrics and models on the desktop. IEEE Software, 13(5):56—
60, Sept. 1996.

T. M. Khoshgoftaar and E. B. Allen. Predicting the order of fault-prone modules
in legacy software. In Proceedings of the Ninth International Symposium on Soft-
ware Reliability Engineering, pages 344-353, Paderborn, Germany, Nov. 1998. IEEE
Computer Society.

T. M. Khoshgoftaar and E. B. Allen. A comparative study of ordering and classifi-
cation of fault-prone software modules. Empirical Software Engineering: An Inter-
national Journal, 1999. Forthcoming.

T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud. Applications of
neural networks to software quality modeling of a very large telecommunications

system. [EEE Transactions on Neural Networks, 8(4):902-909, July 1997.

T. M. Khoshgottaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Which software
modules have faults that will be discovered by customers? Journal of Software
Maintenance: Research and Practice, 11(1):1-18, Jan. 1999.

T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel. Early quality
prediction: A case study in telecommunications. [EEE Software, 13(1):65-71, Jan.
1996.

T. M. Khoshgoftaar, K. Ganesan, E. B. Allen, F. D. Ross, R. Munikoti, N. Goel, and
A. Nandi. Predicting fault-prone modules with case-based reasoning. In Proceedings

of the Fighth International Symposium on Software Reliability Engineering, pages
27-35, Albuquerque, NM USA, Nov. 1997. IEEE Computer Society.

T. M. Khoshgoftaar and D. L. Lanning. An alternative modeling approach for
predicting program changes. Computer Science and Informatics: CSI Journal,

25(3):25-38, Sept. 1995.

J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

R. Kowalski. Al and software engineering. In Artificial Intelligence and Software
Engineering, pages 339-352. Ablex Publishing, Norwood, NJ USA, 1991.

D. B. Leake, editor. Case-Based Reasoning: Fzperiences, Lessons, and Future Di-

rections. MIT Press, Cambridge, MA USA, 1996.

22
[19] T. J. McCabe. A complexity measure. IEEFE Transactions on Software Engineering,
SE-2(4):308-320, Dec. 1976.

[20] P. Oman and S. L. Pfleeger, editors. Applying Software Metrics. IEEE Computer
Society Press, Los Alamitos, CA, 1997.

[21] A. A. Porter and R. W. Selby. Empirically guided software development using
metric-based classification trees. IEEE Software, 7(2):46-54, Mar. 1990.

[22] N. F. Schneidewind. Methodology for validating software metrics. IEEFE Transac-
tions on Software Engineering, 18(5):410-422, May 1992.

