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High software reliability is an important attribute of high-assurance systems. Software
quality models yield timely predictions of quality indicators on a module-by-module
basis, enabling one to focus on finding faults early in development. This paper in-
troduces the Classification And Regression Trees (CART) algorithm to practitioners in
high-assurance systems engineering. This paper presents practical lessons-learned on
building classification trees for software quality modeling, including an innovative way
to control the balance between misclassification rates. A case study of a very large
telecommunications system used CART to build software quality models. The models
predicted whether or not modules would have faults discovered by customers, based on
various sets of software product and process metrics as independent variables. We found
that a model based on two software product metrics had comparable accuracy to a model
based on forty product and process metrics.

Keywords: software quality, fault-prone modules, classification trees, CART, software
product metrics, software process metrics

1. Introduction

High-assurance systems often must have high software reliability. Because the risk of
poor reliability varies among software modules, it is often difficult to guide software
enhancement efforts effectively and efficiently. According to standard terminology,
a “fault” is a defect in a program that may cause incorrect execution [1]. “En-
hancement techniques” is our term for any set of processes for finding faults early.
We focus on faults discovered by users, irrespective of whether a failure resulting
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from a fault would be frequent or rare. Even rare failures can be very important in
high-assurance systems.

Due to the high cost of correcting problems discovered by customers, the goal
of our modeling is identification of fault-prone modules early in development. Soft-
ware quality models are tools for focusing efforts to find faults. Such models yield
timely predictions of quality on a module-by-module basis, enabling one to target
enhancement techniques.

Enhanced Measurement for Early Risk Assessment of Latent Defects (EMERALD)
is an example of a sophisticated system of decision support tools used by software
designers and managers to assess risk and improve software quality [2]. It was
developed by Nortel (Northern Telecom) in partnership with Bell Canada and oth-
ers. EMERALD provides access to software product metrics, deployment usage, fault
histories, other software process metrics, and related software quality models. At
various points in the development process, EMERALD’s software quality models pre-
dict which modules are likely to be fault-prone, based on available measurements.

Systems like EMERALD are the key to improved software quality. For example,
suppose EMERALD’s models indicate that certain modules are at-risk when changed.
After a review, the design team may choose to reengineer these modules first to
reduce risk before continuing their implementation of the current release. Moreover,
any changes proposed for high-risk modules may require more stringent justification
and inspection.

This paper introduces the Classification And Regression Trees (CART) algorithm
[3] to software engineering practitioners. A “classification tree” is an algorithm, de-
picted as a tree graph, that classifies an input object. This study confirms prior
empirical work [4, 5, 6, 7] showing that classification trees can be useful to identify
fault-prone modules based on the pattern of software metrics. Alternative classifica-
tion techniques include discriminant analysis [8], the discriminative power technique
[9], logistic regression [10], pattern recognition [11], artificial neural networks [12],
and fuzzy classification [13]. A classification tree differs from these in the way it
models complex relationships between class membership and combinations of vari-
ables. CART automatically builds a parsimonious tree by first building a maximal
tree and then pruning it to an appropriate level of detail. CART is attractive because
it emphasizes pruning to achieve robust models.

This paper gives practical lessons-learned on building classification trees for
software quality modeling [14]. In particular, we present an innovative way to
control the balance between misclassification rates. This paper extends preliminary
results indicating that CART can be useful for software quality modeling [15]. A
case study of a very large telecommunications system used CART to build software
quality models. This study focused on problems discovered in the field by customers.
If any problems discovered by customers resulted in changes to a module’s source
code, then the module was considered fault-prone. Rework of fault-prone modules
after release is a major concern of many software development organizations. The
models predicted whether or not modules were fault-prone, based on various sets
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Fig. 1. Tree Based on Product Metrics

of software product and process metrics as independent variables. The results of
this paper are being refined and further evaluated for the EMERALD system. The
remainder of this paper presents how to use classification trees, a summary of the
CART algorithm, details on our case study, and conclusions.

2. Classification Trees Using CART

2.1. Using a Classification Tree: An FExample

Suppose we have measurements on one software module. For example, one metric
could be the number of unique file-include directives in the code, FILINCUQ. Be-
cause include files (“header files”) are often used to implement interfaces and data
abstractions, this is an attribute of the high-level design. Another could be the
total span of variables, VARSPNSM, where the span of one variable is the number
of lines of code between the first and last use of the variable in a procedure. This
is a measure of locality of reference. It is an attribute of the coding.

In this application, a classification tree represents an algorithm as an abstract
tree of decision rules to classify a module as a member of the not fault-prone group or
the fault-prone group. Figure 1 depicts a classification tree created in our case study,
described below. Each diamond node represents a decision, and each edge represents
a possible result of that decision. Each circular node is a leaf that classifies a module
into the group noted at the bottom. The root of the tree is the node at the top.

A module is represented by its measurements. Beginning at the root node, the
algorithm traverses a downward path in the tree, one node after another, until it
reaches a leaf node. The current decision node is applied to one measurement. For
example, in Figure 1, Node 1 examines the module’s measurement of FILINCUQ.
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If FILINCUQ < 27 then the algorithm chooses the left edge to a leaf where the
module is classified as not fault-prone. In other words, few interfaces implies mis-
takes discovered by customers are not likely. Otherwise, the algorithm proceeds
to Node 2 which is another decision. At Node 2, if FILINCUQ < 49 then the
algorithm proceeds to Node 3. Otherwise, the algorithm proceeds to the right. In
other words, many interfaces implies customers are more likely to discover mistakes.
Node 3 examines VARSPNSM. If VARSPNSM < 15657, then the module is clas-
sified as not fault-prone, and otherwise, fault-prone. In other words, when there
is a medium number of interfaces, locality of reference (VARSPNSM) indicates a
module’s class. The process is repeated for each node along the path. When a
decision node is reached, it is applied to the module. When a leaf node is reached,
the module is classified as not fault-prone or fauli-prone, and the path is complete.
Each module in a data set can be classified using such an algorithm. Designers can
readily interpret the decision nodes. Some other classification techniques, such as
discriminant analysis [8] or neural networks [12], can be difficult to interpret in
software engineering terms.

A Type I misclassification is when the model identifies a module as fault-prone
which is actually not fault-prone. A Type II misclassification is when the model
identifies a module as not fault-prone which is actually fault-prone.

2.2. Building a Classification Tree

The Classification And Regression Trees (CART) algorithm [3] builds a classification
tree. It is implemented as a supplementary module for the sYSTAT package [16]. We
follow terminology in the classification tree statistics literature, calling independent
variables “predictors”. We model each module with a set of continuous ordinal-
scaled predictors, namely, software product and process metrics, and a nominal-
scaled dependent variable (a “response” variable) with two categories, not fault-
prone or fault-prone.

Beginning with all modules in the root node, the algorithm recursively partitions
(“splits”) the set into two leaves until a stopping criterion applies to every leaf
node. A goodness-of-split criterion is used to minimize the heterogeneity (“node
impurity”) of each leaf at each stage of the algorithm. Further splitting is impossible
if only one module is in a leaf, or if all modules have exactly the same measurements.
CART also stops splitting if a node has too few modules (e.g., less than 10 modules).
The result of this process is typically a large tree. Usually, such a maximal tree
overfits the data set, and consequently, is not robust. CART then generates a series
of trees by progressively pruning branches from the maximal tree. The accuracy of
each size of tree in the series is estimated and the most accurate tree in the series
is selected as the final classification tree.

Early work with classification trees in software engineering selected branches by
a measure of homogeneity until a stopping rule was satisfied [5, 6]. More recent work
has used an algorithm based on deviance [7], and an algorithm based on statistical
significance [4]. CART’s default goodness-of-split criterion is the “Gini index of
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diversity” which is based on probabilities of class membership [3].

Resubstitution is a method for estimating model accuracy by using the model
to classify the same modules that were the basis for building the model, and then
calculating misclassification rates. The estimated accuracy can be overly optimistic.

v-fold cross-validation is an alternative method that also uses the same modules
as were the basis for building the model, but the estimated accuracy is not biased
[17, 18, 19]. The algorithm has these steps: Randomly divide the sample into v
approximately equal subsets (e.g., v = 10). Set aside one subset as a test sample,
and build a tree with the remaining modules. Classify the modules in the test subset
and note the accuracy of each prediction. Repeat this process, setting aside each
subset in turn. Calculate the overall accuracy. This is an estimate of the accuracy
of the tree built using all the modules. The number of subsets, v, should not be
small; Breiman et al. found that ten or more worked well [3].

CART allows one to specify prior probabilities, and costs of misclassifications.
These parameters are used when evaluating goodness-of-split of a node as a tree
is recursively generated. Let my, and m,p be prior probabilities of membership in
the fault-prone and not fault-prone classes, respectively, and let C7 and Cy; are the
costs of Type I and Type Il misclassifications, respectively.

Due to different costs associated with each type of misclassification, we need a
way to provide appropriate emphasis on Type I and Type II misclassification rates
according to the needs of the project. (We have proposed a generalized classification
rule applied to discriminant analysis, which has a similar constant ¢ [20].) We
experimentally choose a constant ¢, which can be interpreted as a priors ratio times

- (@)@

We have observed a tradeoff between the Type I and the Type II misclassification

a cost ratio.

rates, as functions of ¢. Generally, as one goes down, the other goes up. We
observed that for a given value of ¢, CART generates the same tree, irrespective of
the components of c. We estimate these functions by repeated calculations with the
fit data set. Given a candidate value of ¢, we build a tree and estimate the Type
I and Type II rates using resubstitution and v-fold cross-validation. We repeat for
various values of ¢, until we arrive at the preferred ¢ for the project.

3. Case Study

3.1. System Description

We conducted a case study of a very large legacy telecommunications system. Such
systems require very high reliability. It was written in a high level language, using
the procedural development paradigm, and maintained by professional programmers
in a large organization. The entire system had significantly more than ten million
lines of code. This embedded computer application included numerous finite state
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machines and interfaces to other kinds of equipment. A module consisted of a set
of related source code files.

A module was considered fault-prone if any faults were discovered by customers,
and not fault-prone otherwise. Faults discovered in deployed systems are typically
extremely expensive, because, in addition to down-time due to failures, visits to
customer sites are usually required to repair them. Fault data was collected at the
module-level by the problem reporting system.

Analysis of configuration management data identified modules that were un-
changed from the prior release. Approximately 99% of the unchanged modules had
no faults. This case study considered only “updated” modules, i.e., those that were
new or had at least one update to source code since the prior release. These mod-
ules had several million lines of code in a few thousand modules. The proportion
of modules with no faults among the updated modules was 7 = 0.9260, and the
proportion with at least one fault was 7z, = 0.0740. Such a small set of modules is
often difficult to identify early in development.

Tables 1 and 2 list the product and process metrics used in this study. We do not
advocate a particular set of metrics for software quality models to the exclusion of
others recommended in the literature. Pragmatic considerations usually determine
the set of available metrics. We prefer a data mining approach, using analytical
techniques to identify metrics that are significantly related to class membership out
of a large set of candidate metrics.

USAGE was calculated using data derived from installation records of an earlier
release. Deployment plans could also be considered. Considering that this is a
legacy system, USAGE was a forecast of deployment usage in the current release.
The EMERALD system collected the other software product metrics from source code
at the procedure level, and then aggregated them to the module level. Attributes of
a call graph, control flow graphs, and source code statements were measured [21]. A
call graph depicts invocation relationships among procedures. A control flow graph
shows the flow of control where each arc represents a series of in-line statements and
each node represents a decision statement, such as an IF, FOR, or WHILE statement,
or a branch destination.

Metrics of problems found and fixed were derived from problem reporting sys-
tem data. Personnel attributes were derived from configuration management data.
Metrics related to updates by designers, such as UPD_CAR, capture different at-
tributes of the personnel that maintained a module, without requiring access to a
personnel data base.

3.2. Empirical Results

We modeled all the software modules from one release as samples from a population.
Using a portion of the modules, we built a classification tree model and then eval-
uated it by making predictions for the remainder. Our case study’s methodology is
summarized by the following.
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Table 1. Software Product Metrics

Symbol Description

USAGE Deployment percentage of module.
Call Graph Metrics

CALUNQ@ Distinct calls to others.

CAL2 Second and following calls to others.

CAL2= CAL — CALUNQ where CAL is the total number of calls.

Control Flow Graph Metrics

CNDNOT Number of arcs that are not conditional arcs.
IFTH Number of non-loop conditional arcs, i.e., if-then constructs.
LOP Number of loop constructs.

CNDSPNSM  Total span of branches of conditional arcs. Unit of measure is arcs.
CNDSPNMX Maximum span of branches of conditional arcs.

CTRNSTSM  Total control structure nesting.

CTRNSTMX Maximum nesting.

KNT Number of knots. A “knot” in a control flow graph is where arcs
cross due to a violation of structured programming principles.

NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).

NDSENT Number of entry nodes.

NDSEXT Number of exit nodes.

NDSPND Number of pending nodes, i.e., dead code segments.

LGPATH Base 2 logarithm of the number of independent paths.

Statement Metrics
FILINCUQ Number of distinct include files.

Loc Number of lines of code.
STMCTL Number of control statements.
STMDEC Number of declarative statements.
STMEXE Number of executable statements.

VARGLBUS  Number of global variables used.
VARSPNSM  Total span of variables.
VARSPNMX Maximum span of variables.
VARUSDUQ®  Number of distinct variables used.

(i)

(i)

(iii)

(iv)

Measure static software product metrics from source code for each module,
and derive software process metrics from configuration management data and
problem reporting data. Forecast usage from deployment records and instal-
lation plans.

Prepare fit and test data sets for the set of modules, using data splitting.
Choose the parameter ¢ to achieve a preferred balance between the Type I and
Type II misclassification rates using the fit data set. (This involves building
a series of trees using the CART algorithm.)

Build the final classification tree based on the preferred value of ¢, and the
fit data set, using the CART algorithm. Calculate the final resubstitution and
v-fold cross-validation misclassification rates.

Classify each module in the test data set using the final tree, and calculate
misclassification rates.

Evaluate the model’s accuracy estimated by misclassification rates for resub-
stitution (based on the fit data set), cross-validation (based on the fit data
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Table 2. Software Process Metrics

Symbol Description

DES_PR Number of problems found by designers

BETA_PR  Number of problems found during beta testing

TOT_FIX Total number of problems fixed

DES_FIX Number of problems fixed that were found by designers

BETA_FIX Number of problems fixed that were found by beta testing in the

prior release.
CUST_FIX Number of problems fixed that were found by customers in the prior

release.
REQ_UPD  Number of changes to the code due to new requirements

TOT_UPD  Total number of changes to the code for any reason.

REQ Number of distinct requirements that caused changes to the module

SRC_GRO  Net increase in lines of code

SRC_MOD  Net new and changed lines of code

UNQ_-DES  Number of different designers making changes

VLO_UPD  Number of updates to this module by designers who had 10 or less
total updates in entire company career.

LO_UPD Number of updates to this module by designers who had between 11
and 20 total updates in entire company career

UPD_CAR  Number of updates that designers had in their company careers

set), and data splitting (based on the fest data set).

The model is ready to use on a similar project or subsequent release where
measurements are available.

We impartially divided the available data on updated modules into approxi-
mately equal fit and test data sets. The fit data set was used to build the model,
and the test data set was used to evaluate its accuracy. This assured that the test
data set’s observations were independent of those in the fit data set, facilitating
an unbiased estimate of model accuracy. These proportions were chosen to pro-
vide an adequate statistical sample in each data set. Other proportions might be
appropriate in another study, according to the needs of the modeling technique.

We applied the CART algorithm to the fit data set to build classification tree
models that identify fault-prone modules. We chose to use 10-fold cross-validation,
which is the CART default.

For the first model, candidate predictors were all 40 product and process metrics
in Tables 1 and 2. We generated a series of trees using various values of ¢. The
value ¢ = 5.0 was too extreme for CART to generate a useful model. The CART
parameters for prior probabilities were fixed at artificial values, 7r’nfp = 0.8, and
ﬂ'}p = 0.2. CART’s cost of a Type I error, C}, was set to one, and CART’s cost of
a Type II error, C;, was varied to achieve the desired values of ¢, according to
Eq. (1). Table 3 lists the accuracy of models as a function of ¢. Type I and Type
IT misclassification rates for the fit data set are shown based on resubstitution and
10-fold cross-validation. The proportions of modules predicted to be fauli-prone
(Pred f-p) for cross-validation are also listed. Table 3 also shows corresponding
Type I, Type 11, and overall misclassification rates when applying the model to the
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Table 3. Accuracy of Models

Candidate predictors: 40 product and process metrics

fit data set test data set
Misclassification Rates Misclassification Rates
Resubstitution Cross-validation

c Typel Typell Typel Typell Pred f-p | Typel Typell Overall

0.50 9.2% 23.0% 10.8% 59.3% 13.0% 11.0% 57.8% 14.5%
0.60 15.0% 24.4% 15.0% 51.1% 17.5% 15.9% 43.0% 17.9%
0.70 21.1% 27.4% 18.3% 44.4% 21.1% 21.3% 34.1% 22.2%
0.80 21.1% 27.4% 21.2% 39.3% 24.1% 21.3% 34.1% 22.2%
0.90 27.0% 17.8% 25.7% 28.9% 29.1% 27.7% 28.9% 27.8%
0.95 | 25.8% 15.6% 26.4% 25.9% 29.9% | 26.2% 28.9% 26.4%
1.00 28.2% 10.4% 28.2% 24.1% 31.7% 28.7% 25.9% 28.5%
1.10 27.4% 12.6% 30.4% 21.5% 34.0% 28.0% 25.9% 27.8%

1.20 28.9% 7.4% 30.9% 23.7% 34.3% 29.2% 25.2% 28.9%
1.30 29.3% 5.9% 30.9% 23.7% 34.3% 29.6% 25.2% 29.3%
1.40 36.3% 15.6% 42.5% 14.8% 45.7% 36.4% 24.4% 35.5%
1.50 32.5% 5.9% 37.4% 17.0% 40.8% 32.9% 24.4% 32.3%
2.00 51.5% 4.4% 48.3% 13.3% 51.1% 52.0% 11.8% 49.0%
3.00 52.2% 1.5% 52.4% 11.9% 55.0% 53.7% 9.6% 50.4%
4.00 52.2% 1.5% 54.6% 10.4% 57.2% 53.7% 9.6% 50.4%

5.00 | No tree generated

test data set. Figure 2 depicts the cross-validation accuracy of this series of trees
as a function of ¢, and Figure 3 shows the corresponding proportion of modules
predicted to be fault-prone. We preferred ¢ = 0.95, which is bold in Table 3.

In this case study, because the proportion of fault-prone modules was very small,
we preferred the tree with approximately equal Type I and Type II misclassification
rates using cross-validation. When a range of ¢ values had essentially the same cross-
validation accuracy, we preferred that resubstitution accuracy also be as balanced
as possible for improved robustness. Other criteria might be appropriate for other
situations.

Figure 4 depicts the preferred classification tree model. Note that only six
metrics out of forty were used in the final tree: the number of distinct include
files (FILINCUQ), the net number of new and changed lines of code (SRC_MOD),
the maximum nesting level (CTRNSTMX), the number of updates in designers’
company careers (UPD_CAR), the number of control statements (STMCTL), and
deployment usage (USAGE). CART determined that other variables would not sig-
nificantly improve the model.

For the second model, we similarly applied the CART algorithm to the fit data
set to build a model based on the 25 product metrics listed in Table 1. Using the
same criteria, we selected ¢ = 0.90. Figure 1, in Section above, depicts the resulting
classification tree. Note that only two metrics out of twenty-five were used in the
final tree: the number of distinct include files (FILINCUQ) and the total span of
variables (VARSPNSM).

We applied each model to the test data set to predict class membership of each
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module. Table 4 shows the resulting estimated accuracy. The table indicates the
data set on which the evaluation is based. We prefer the data-splitting estimate,
because it simulated practical use of the model.

3.3. Discussion

Figure 2 illustrates the impact of the value of ¢ on estimated model accuracy. The
CART default is uniform priors (7 = @np = 0.5) and equal costs (Cr = Cry),
¢ = 1, and in this study, this was close to our preferred value. However, the preferred
value of ¢ is project-dependent and data-dependent. Therefore, one should carefully
estimate misclassification rates as functions of ¢ and choose a preferred value.

Our experiments found that extreme values of CART’s prior probabilities, W}p
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Table 4. Accuracy of Models

Misclass. rates
¢ Type I Typell

Product Metrics

0.90
Resubstitution (fit) 26.7% 28.1%
Cross-validation (fit) 34.6% 25.2%
Data Splitting (test) 27.0% 27.4%
Product & Process Metrics
0.95
Resubstitution (fit) 25.8% 15.6%
Cross-validation (fit) 26.4% 25.9%
Data Splitting (test) 26.2% 28.9%

and w;fp, (e.g., 0.1) prevented the algorithm from generating a tree. Therefore, we
could not use the actual proportions of fault-prone and not fault-prone modules,
because ms, = 0.0740 was too small.

We found that the same tree is generated for constant ¢, irrespective of the
values of the component ratios, as long as the ratios are not extreme. For example,
based on Eq. (1), W}p/wgfp, can be a convenient constant and Cf;/C} can be varied
to achieve a range of values for c. We used /a7, = 0.2/0.8 and C] = 1, varying
Cir.

There are several strategies for choosing ¢. One approach is to choose ¢ so that
the Type II misclassification rate is no more than a maximum acceptable level.
Another approach sets a maximum on the number of modules predicted to be fault-
prone as shown in Figure 3 above. In a third approach, if one chooses ¢ such that
Type I and Type II misclassification rates are equal, then both misclassification rates
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are effectively minimized [22]. This criterion for choosing ¢ is especially appropriate
when one class is a much smaller proportion of the population than the other.
In practice, we can achieve only approximate equality due to finite discrete data
sets. Here, we preferred approximately equal misclassification rates to illustrate our
methodology. Many other strategies are also possible.

As shown in Table 4, we were surprised that a model based on only two prod-
uct metrics out of twenty-five candidates had similar data-splitting accuracy as the
model based on six significant metrics out of forty candidates. This was proba-
bly due to correlation among the variables. However, the cross-validation accuracy
of the smaller model was worse, suggesting it may be less robust. The smaller
model was easier to interpret, data collection was streamlined, and its two variables
(FILINCUQ and VARSPNSM) can be collected earlier in the life cycle than some
variables in the larger model (SRC_MOD and UPD_CAR). This illustrates that ex-
perimentation with the list of candidate metrics is advisable to achieve the preferred
balance among parsimony (few variables), accuracy, robustness, and timeliness.

The number of distinct include files (FILINCUQ) was the most significant indi-
vidual variable. It was the root decision node in all the tree models we generated.
We also generated the classification tree where FILINCUQ was the only predictor.
The model had Type I misclassification rate of 27.3% and a Type II rate of 39.2%,
using data splitting. This was somewhat worse than the other two models. In
general, we do not recommend single variable models, because they are often not
robust.

The data splitting results in Table 4 indicated the level of accuracy to expect
on a similar project or subsequent release. The tree models had sufficient accuracy
to be useful to a software development project for targeting enhancement tech-
niques. If model predictions are used to guide extra reviews or extra testing, the
modules recommended for extra treatment would consist of those that are actu-
ally not fault-prone but are misclassified (Type I), plus those correctly classified
as fault-prone. For example, the product-metrics model would recommend that
30.4% = (0.270)(0.926) + (1 — 0.274)(0.074) of the modules be given special treat-
ment to discover faults early. Extra reviews would be wasted on the not fault-prone
modules that were mistakenly recommended. However, effective reviews would dis-
cover 72.6% = 1 — 0.274 of the fault-prone modules early, so that faults could be
corrected before release. If we selected the same number of modules at random
for extra reviews, then only 30.4% of the fault-prone modules would be covered.
The product and process metrics-based model was similar. Using such models to
select modules for review would have a substantial benefit [23], because avoiding
customer-discovered faults is extremely valuable.

4. Conclusions

High software reliability is required of high-assurance systems. We focus on software
quality models that make timely predictions of quality indicators on a module-by-
module basis. Our objective is to target enhancement techniques early in develop-
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ment to those modules that will benefit the most. For example, Enhanced Measure-
ment for Early Risk Assessment of Latent Defects (EMERALD) is a decision-support
system at Nortel, which provides software quality models that predict which mod-
ules are likely to be fault-prone, based on available software measurements.

This paper introduces the Classification And Regression Trees, CART, to prac-
titioners in high-assurance systems engineering. This paper discusses the following
practical lessons-learned on building classification trees for software quality model-
ing:

e Extreme prior probabilities can prevent CART from building a tree.

e A project should control the balance between misclassification rates. In this
paper, we implemented this control by choosing a constant ¢, defined as the
the ratio of prior probabilities times the ratio of misclassification costs. These
parameters control the goodness-of-split criterion when CART generates a tree.

e Minimize the number of independent variables without significantly sacrificing
accuracy. However, we do not advocate models with a single independent
variable.

e Building a tree is vulnerable to overfitting, and consequently, the accuracy of
resubstitution of the fit data set into the model can be misleading.

A case study of a very large telecommunications system used CART to build
software quality models based on various sets of software product and process met-
rics. The models predicted whether or not modules were fault-prone. We found
that a model based on two significant software product metrics out of twenty-five
candidates had comparable accuracy to a model based on six significant product
and process metrics selected out of a set of forty metrics. This illustrates the way
that tree algorithms can build successful parsimonious models. The results of this
paper are being refined and further evaluated for the EMERALD system.

Future research will compare several classification tree algorithms with each
other and with other classification techniques. In particular, methods for balancing
misclassification rates will be explored further. Future research will also evaluate
the sensitivity of resulting tree structures to various conditions. When data on ad-
ditional releases becomes available, further research will seek to confirm the results
presented here.
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