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Abstract. Software quality models can predict which modules will have high risk,
enabling developers to target enhancement activities to the most problematic mod-
ules. However, many find collection of the underlying software product and process
metrics a daunting task.

Many software development organizations routinely use very large databases
for project management, configuration management, and problem reporting which
record data on events during development. These large databases can be an unin-
trusive source of data for software quality modeling. However, multiplied by many
releases of a legacy system or a broad product line, the amount of data can over-
whelm manual analysis. The field of data mining is developing ways to find valuable
bits of information in very large databases. This aptly describes our software quality
modeling situation.

This paper presents a case study that applied data mining techniques to software
quality modeling of a very large legacy telecommunications software system’s con-
figuration management and problem reporting databases. The case study illustrates
how useful models can be built and applied without interfering with development.

Keywords: knowledge discovery, data mining, software quality modeling, software
metrics, classification trees

1. Introduction

High software quality is essential for mission-critical systems. However,
assuring high quality often entails time-consuming, costly, development
processes, such as more rigorous design and code reviews, automatic
test-case generation, more extensive testing, and reengineering of high-
risk portions of a system. One cost-effective strategy is to target en-
hancement activities to those software modules that are most likely to
have problems (Hudepohl et al., 1996). A software quality model can

* This work was performed while Edward B. Allen was at Florida Atlantic
University.
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predict which modules will probably have customer-discovered faults.
Enhancement efforts can then be effectively targeted.

A typical software quality model consists of an algorithm in which
a single response variable is a function of a set of predictor variables.!
Predictors can be measured earlier in the development life cycle than
the response variable, whose value is predicted. Prior research results
(Arthur and Henry, 1995; Fenton and Pfleeger, 1997; Oman and Pfleeger,
1997) have shown that software product and process metrics can be
quality predictors. Software product metrics are measures of product
attributes, and software process metrics are measures of attributes of
software development processes (Fenton and Pfleeger, 1997).

Decision-support systems that provide software quality models dur-
ing development are a reality today. For example, Nortel’s Enhanced
Measurement for Farly Risk Assessment of Latent Defects system,
EMERALD, routinely assesses the risk of faults in software under de-
velopment (Hudepohl et al., 1996). Such systems deliver predictions by
software quality models to developers, so that risks can be dealt with
before there is a quality problem for the end user. Accurate, robust,
timely quality models are the keys to success for these systems.

A recent status report (Pfleeger et al., 1997) on the field of software
measurement highlights gaps between current research and practice.
For example, practitioners want accurate, timely predictions of which
modules have high risk, but researchers have yet to find adequate,
widely applicable measures and models. Faults are a result of mis-
takes or omissions by developers, and relevant human behavior in the
workplace is notoriously difficult to measure directly.

We take a more pragmatic approach. We capture relevant variation
among modules with practical metrics, even though the underlying
human behavior is not well understood. Instead of expensive, spe-
cialized data collection, we leverage existing databases collected for
other purposes, so that the marginal cost of data collection is modest.
Rather than waiting for researchers to formulate a general theory, we
achieve useful accuracy by empirically calibrating models to each local
development environment.

Fayyad (1996) defines knowledge discovery in databases as “the non-
trivial process of identifying valid, novel, potentially useful, and ulti-
mately understandable patterns in data.” Fayyad restricts the term
data mining to one step in the knowledge-discovery process, namely,
extracting patterns or fitting models from data. Others use the term
more broadly. “Primary data analysis” in statistics is motivated by

! We follow terminology in the classification tree literature, calling dependent
and independent variables “response” and “predictor” variables, respectively.
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a particular set of questions that are formulated before acquiring the
data. In contrast, data mining analyzes data that has been collected for
some other reason. Hand (1998) defines data mining as “the process of
secondary analysis of large databases aimed at finding unsuspected re-
lationships which are of interest or value to the database owners.” Data
mining is most appropriate when one seeks valuable bits of knowledge
in large amounts of data collected for some other purpose, and when
the amount of data is so large that manual analysis is not possible.

This aptly describes software quality modeling, especially when faults
discovered by customers are rare. Many software development orga-
nizations have very large databases for project management, config-
uration management, and problem reporting which capture data on
individual events during development. For large legacy systems or prod-
uct lines, the amount of available data can be overwhelming. Man-
ual analysis is certainly not possible. However, we have found that
these databases do contain indicators of which modules will likely have
customer-discovered faults.

2. Knowledge-Discovery Process

Given a set of large databases or a data warehouse, Fayyad et al.
(1996b) give a framework of major steps in the knowledge-discovery
process: (1) selection and sampling of data; (2) preprocessing and clean-
ing of data; (3) data reduction and transformation; (4) data mining;
and (5) evaluation of knowledge. This paper presents a case study in
which we applied Fayyad’s framework to predicting software quality
from software development databases. We extracted knowledge from a
very large legacy telecommunication systems’s configuration manage-
ment and problem reporting databases. Our framework is shown in
Figure 1.

Figure 1 has two similar tracks of processing steps. The upper track
processes data on past releases where fault data is known. The results
of this track are an empirical model, an assessment of its accuracy,
and an interpretation of its structure. The lower track processes data
on a current release that is still under development, predicting which
modules will be fault-prone through the empirical model. The human
figure in the corner represents a developer who will make use of the
predictions, the expected accuracy, and the knowledge derived from
the model’s structure.

In Figure 1, the Data Warehouse represents software development
databases, such as configuration management systems and problem
reporting systems, irrespective of the storage system implementation.
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Figure 1. Knowledge Discovery from Software Development Databases

A configuration management system is an information system for man-
aging multiple versions of artifacts produced by software development
processes. For example, most configuration management systems sup-
port storage and retrieval of versions of source code. Other features may
regulate changes to source code, so that team members do not interfere
with each other, and record the history of changes for later review.
A problem reporting system is an information system for managing
software faults from initial discovery through distribution of fixes. In
other words, it records events in the debugging process. Most developers
of large software products use such systems.

The first step measures available software development databases to
derive variables from source code, configuration management transac-
tions, and problem reporting transactions for one or more past releases.
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Pragmatic considerations usually determine the set of available pre-
dictors. We do not advocate a particular set of software metrics for
software quality models to the exclusion of others recommended in
the literature. Because marginal data collection costs are modest, we
prefer to apply data mining to a large well-rounded set of metrics rather
than limit the collection of software metrics according to predetermined
research questions.

Step 2, Select, chooses data for study, resulting in target data. Step 3,
Preprocess, accounts for missing data and outliers in the target data,
resulting in clean data. Step 4, Transform, may extract features from
the clean data, and may transform data for improved modeling. The
result is separate transformed data sets for training and for evaluation.
Step 5, Data mining, builds a model based on the training data. Step 6,
Evaluate, assesses the model’s accuracy using the evaluation data, and
analyzes the model’s structure.

In the case study, Step 5, Data mining, resulted in a classification
tree model that predicts whether a module is likely to have faults dis-
covered by customers. Classification trees are a well-known modeling
technique in the field of data mining (Fayyad et al., 1996a; Weir et al.,
1995). The case study confirmed prior empirical work (Gokhale and
Lyu, 1997; Khoshgoftaar et al., 1998; Porter and Selby, 1990; Takahashi
et al., 1997; Troster and Tian, 1995) that demonstrated the poten-
tial usefulness of classification trees for identifying fault-prone mod-
ules based on patterns of software metrics. Alternative classification
techniques have been applied to this problem, including discriminant
analysis, the discriminative power technique, logistic regression, pattern
recognition, artificial neural networks, and fuzzy classification. Future
work may explore other classification techniques, as well.

3. Case Study

We conducted a case study of a very large legacy telecommunica-
tions system (Naik, 1998). The results are summarized in Table I.
This embedded-computer application included numerous finite-state
machines and interfaces to other kinds of equipment. Such systems
require very high software reliability. A module consisted of a set of
related source-code files. The software was written in a high level lan-
guage (Protel) using the procedural development paradigm, and was
maintained by professional programmers in a large organization. The
entire system had significantly more than ten million lines of code
(LOC). Updated modules had more than five million lines of code in
more than three thousand modules.
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Table I. Case Study Results

Goal Predict fault-prone modules

fault-prone Customer-discovered faults > 0

Constraint About 20% of modules predicted to be fault-prone
Selection

Training data set More than 3 thousand updated modules

Evaluation data set Updated modules in next release (also > 3K modules)

Data Mining
Modeling technique Classification tree (CART)

Candidate predictors 42 product, process, and deployment metrics

Knowledge
Training data set 7.4% were fault-prone

Significant predictors

Metric Definition Concept

Product metrics:

FILINCUQ Number of distinct files included Interfaces
VARSPNMX Maximum span of variables Locality
CNDSPNSM  Total span of vars in control structures Locality
NDSENT Number of procedures Size
NDSINT Number of internal nodes in CFG Size
STMCTL Number of control statements Size
Process metrics:

TOT_UPD Number of updates Code churn
SRC_MOD Net new and changed LOC Code churn

UNQ_-DES Number of designers making updates Size of team
UPD_CAR Number of updates in company career  Experience

Deployment metric:

USAGE Fraction of sites installed Extent of use
Accuracy
Fault-prone modules in evaluation data set 4.7%
Modules predicted to be fault-prone 21.0%
Fault-prone modules correctly predicted 63.0%

Not fault-prone modules correctly predicted 81.1%
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A preliminary empirical study (Khoshgoftaar et al., 1998) examined
one release of this system. Here, we took advantage of additional data
that became available on the subsequent release, as well. The first
release had more than thirteen thousand configuration management
transactions which were due to both normal development and resolu-
tion of more than six thousand problem reports (reported both before
and after release). The scale of the second release was similar. In other
words, the study was based on a large amount of data.

A module was considered fault-prone if any faults were discovered
by customers, and not fault-prone otherwise. Faults discovered in de-
ployed telecommunications systems are typically extremely expensive,
because, in addition to down-time due to failures, visits to customer
sites are usually required to repair them. Fault data was collected
at the module-level by the problem reporting system. The following
sections describe each step of the knowledge-discovery process for this
case study.

3.1. MEASURE SOFTWARE PRODUCT AND PROCESS

The framework of Fayyad et al. (1996b) puts feature extraction in
Step 4, Transform. In our context, we performed feature extraction on
two levels: (1) in Step 1, Measure, we measured software source code
to obtain software product metrics and tabulated other data to obtain
process metrics and deployment metrics, and (2) in Step 4, Transform,
we transformed some measurements to be more suitable for modeling.

The EMERALD system retrieved the source code from the configura-
tion management system and measured static software product metrics
for each module, similar to those collected by commercially available
metric analyzers (Mayrand and Coallier, 1996). Such metric analyzers
measure a wide variety of source-code attributes, which we have found
to have adequate variation for software quality modeling (Khoshgof-
taar et al., 2000). Attributes of a call graph, control flow graphs, and
source code statements were measured. A call graph depicts invocation
relationships among procedures. A control flow graph (crG) shows the
flow of control where each arc represents a series of in-line statements
and each node represents a decision statement, such as an IF, FOR, or
WHILE statement, or a branch destination.

We extracted the software process metrics from configuration man-
agement data and problem reporting data (Khoshgoftaar et al., 1999a).
For each change to a source file, the configuration management system
recorded the identity of the developer, and a counter of the number of
times that person had modified any source file since the inception of
the configuration management system. In other words, at the time of a
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change, the number of changes made by that person in their company
career was recorded. Software process metrics quantified attributes of
the updates and of the developers, aggregated to the module level.

For each module, we forecast the proportion of systems expected to
have that module installed ( USAGFE) based on past deployment records
and installation plans. This is an approximation for the extent of usage
of a module (Jones et al., 1999).

3.2. SELECT MODULES FOR STUDY

Step 2, Select, produced a target set of modules. Preliminary data
analysis was part of this step. Configuration management data included
the date of the most recent update to each module. Compared to
the beginning date of the current development cycle, this yielded an
update indicator, identifying modules that were unchanged from the
prior release. Prior empirical research has shown that such an indicator
can be a significant predictor in software quality models (Khoshgoftaar
et al., 1996a; Khoshgoftaar et al., 1996b). Approximately 99% of the un-
changed modules had no faults. Consequently, modeling of this subset
was not appropriate, because there were too few fault-prone modules.

This case study considered only updated modules, i.e., those that
were new or had at least one update to source code since the prior
release. The proportion of modules with no faults among the updated
modules was 7,f, = 0.926, and the proportion with at least one fault
was mf, = 0.074. Such a small set of modules is often difficult to predict
accurately early in development.

We selected two consecutive past releases for study where the actual
numbers of customer-discovered faults were known for a substantial
period of operations. The first release was the basis for the training data
set, and the subsequent release was the basis for the evaluation data
set. A preliminary study (Khoshgoftaar et al., 1998) split data from
only the first release into training and evaluation data sets. We prefer
to use subsequent releases for evaluation when the data is available,
because this simulates use of a model on a current project better than
the data-splitting approach.

3.3. PREPROCESS DATA SETS

Preprocessing and cleaning resolves issues such as outliers and missing
data. This case study did not need to perform extensive preprocessing.
We omitted from the cleaned data sets the few modules that were
missing relevant data.
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3.4. TRANSFORM DATA

Data reductions and transformations include techniques to reduce the
number of predictors or to project data onto spaces for easier prob-
lem solution. In the case study, we transformed selected variables for
improved modeling.

The measurement data included the total number of nodes (NDS)
in the control flow graph, as well as the number of entry nodes (ND-
SENT), exit nodes (NDSEXT), and inaccessible nodes (dead code)
(NDSPND). The latter three types of nodes are somewhat correlated
with the total, because they are components. Correlation among vari-
ables risks a less robust model. Therefore, we transformed the variables
and used internal nodes, NDSINT = NDS — NDSENT — NDSEXT —
NDSPND, as a candidate variable in the modeling, rather than the
total (NDS).

The measurement data included the total number of independent
paths (PTHIND) in the control flow graph. The range was greater
than 1032 which was too large for preliminary statistical analysis. We
made a monotonic transformation to a more practical range; the base 2
logarithm of independent paths was a candidate variable, LGPATH =
logy PTHIND. It turned out that this variable was not significant in
the model.

The measurement data included several averages, such as the aver-
age number of updates in developers’ company careers (UPDAV), and
the average span of variables per conditional structure (CNDSPNAV).
The span of a variable is the number of lines of code between its
first and last use in a procedure. Because we measure quality by
customer-discovered faults over the entire module and not as an aver-
age, we transformed averages to the totals, for example, UPD_CAR =
(UPDAV)(TOT.UPD) and CNDSPNSM = (CNDSPNAV)(CND),

where C'ND is the number of conditional structures.

3.5. PeErrorM DATA MINING

Step 5, Data mining, extracts patterns or models from clean, trans-
formed data, for example, fitting a model or finding a pattern. This step
discovered significant and important relationships between customer-
discovered faults and certain predictors. The result was a classification
tree model that was suitable for predicting whether customers were
likely to discover faults in a module.

In our application, a classification tree represents an algorithm as
an abstract tree of decision rules to classify a module as a member
of the not fault-prone group or the fault-prone group. Each module
has a set of predictors, namely, software product and process metrics,
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and a response variable with two possible values, not fault-prone or
fault-prone. Figure 2 depicts the preferred classification tree in our
case study. Each diamond node represents a decision, and each edge
represents a possible result of that decision. Each circular node is a leaf
that classifies a module into the group noted at the bottom. The root
of the tree is the node at the top.

In Figure 2, a module is represented by its measurements. Beginning
at the root node, the algorithm traverses a downward path in the tree,
one node after another, until it reaches a leaf node. The current decision
node is applied to one measurement. For example, in Figure 2, Node 1
examines the module’s measurement of the number of unique file-
includes, FILINCUQ. If FILINCUQ < 34 then the algorithm chooses
the left edge to Node 2. Otherwise the algorithm proceeds to Node 8
which is another decision. At Node 8, if USAGF < 0.08 then the
algorithm proceeds along the left edge where the module is classified as
not fault-prone. In other words, many interfaces but low usage implies
customers are not likely to discover mistakes. Otherwise, the algorithm
proceeds to the right to Node 9.

The process is repeated for each node along the path. When a deci-
sion node is reached, it is applied to the module. When a leaf node is
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reached, the module is classified as not fault-prone or fault-prone, and
the path is complete. Each module in a data set can be classified using
such an algorithm. Each path from the root to a leaf specifies a pattern
of predictors. The tree as a whole is a classification model, which can
predict the class membership of each module from a similar system
or subsequent release. Moreover, each path from root to leaf can be
interpreted as a combination of software development attributes that
is associated with the class of the leaf. This can yield insights into
development processes.

The Classification And Regression Trees (CART) algorithm (Breiman
et al., 1984) builds a classification tree. It is implemented as a supple-
mentary module for the sysTAT package (Steinberg and Colla, 1995).
We model each module with a set of ordinal-scaled predictors, namely,
software product and process metrics, and a nominal-scaled response
variable with two categories, not faull-prone or fault-prone. Classifica-
tion tree algorithms, such as CART, automatically choose the predictor
and threshold for each decision node.

Beginning with all modules in the root node, the algorithm re-
cursively partitions (“splits”) the set into two leaves until a stopping
criterion applies to every leaf node. A goodness-of-split criterion is used
to minimize the heterogeneity (“node impurity”) of each leaf at each
stage of the algorithm. CART’s default goodness-of-split criterion is
the “Gini index of diversity” which is based on probabilities of class
membership (Breiman et al., 1984). Other classification tree algorithms
that have been applied to software engineering use other goodness-of-
split criteria, such as entropy (Porter and Selby, 1990; Takahashi et al.,
1997), deviance (Troster and Tian, 1995), and statistical significance
(Khoshgoftaar et al., 1999b). CART stops splitting if a node has too few
modules (e.g., less than ten modules), or if all modules have exactly the
same measurements. The result of this process is typically a maximal
tree which overfits the data set, and consequently, is not a robust model.
CART then generates a series of trees by progressively pruning branches
from the maximal tree. The accuracy of each size of tree in the series is
estimated by v-fold cross-validation and the most accurate tree in the
series is selected as the final classification tree.

v-fold cross-validation is a method for estimating model accuracy
(Efron, 1983; Gokhale and Lyu, 1997; Lachenbruch and Mickey, 1968).
The algorithm has these steps: Randomly divide the training data set
into v approximately equal subsets. Qur case study used the CART
default, v = 10 (Breiman et al., 1984). Set aside one subset as an
evaluation sample, and build a tree with the modules of the remaining
v — 1 subsets. Classify the modules in the evaluation subset and note
the accuracy of each prediction. Repeat this process, setting aside each
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subset in turn. Calculate the overall accuracy. This is an estimate of
the accuracy of the tree built using all the modules.

CART allows one to specify prior probabilities, and costs of misclas-
sifications. Let 7, and m,z be prior probabilities of membership in
the fault-prone and not fault-prone classes, respectively. We define a
Type I misclassification to be when the model identifies a module as
fault-prone which is actually not fault-prone. A Type II misclassifica-
tion is when the model identifies a module as not fault-prone which is
actually fault-prone. Let C'y and Cry be the costs of Type I and Type I1
misclassifications, respectively. These parameters are used to evaluate
goodness-of-split of a node as a tree is recursively generated.

We applied the carT algorithm to the training data set to build a
classification tree model that predicts whether a module will be fault-
prone or not. The case study illustrates a hypothetical application of
our approach. Suppose we had only enough resources to enhance about
20% of the modules. We built numerous trees with various parameter
values that choose a balance between Type I and Type II misclas-
sification rates, which in turn, determine the proportion of modules
predicted to be fault-prone. Figure 2 depicts the preferred classification
tree generated by CART.

Given a candidate value of ( = (7, /7ns)(Crr/Cr). We have ob-
served a tradeoff between the Type I and the Type II misclassification
rates as functions of (, irrespective of the component values of 7y,
Tafps Cr1, and C'r;. We build a tree and estimate the Type I and Type Il
rates using v-fold cross-validation. We repeat for various values of (,
until we arrive at the preferred ¢ for the project. In the case study, we
preferred ( = 0.65, so that the proportion predicted to be fault-prone
would be 19.4% when calculated by cross-validation of the training data
set. Other projects should choose their own preferred value of ¢ based
on local criteria. A parameter like ( is useful with other classification
techniques, as well (Khoshgoftaar and Allen, 2000).

3.6. EvaLuaTE KNOWLEDGE

Step 6, Evaluation, assesses the accuracy of the model and draws
lessons from the structure of the model. We applied each model to the
evaluation data set to predict the class membership of each module.
Table I above summarizes the results of our case study. The Type I
misclassification rate was 18.9%, the Type II rate was 37.0%, and
the overall misclassification rate was 19.8%. In other words, 81.1% of
the not fault-prone modules were correctly predicted, and 63% of the
the fault-prone modules were in the set of modules that the model
predicted to be fault-prone. This level of accuracy is very valuable
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to a telecommunications software project, because fixing fault-prone
modules after release is very expensive, and they are difficult to identify
prior to release. This balance between misclassification rates implied
that 21% of the modules in the evaluation data set were predicted to
be fault-prone. This achieved our goal of “about 20%”, when we chose
a preferred value of (.

Table I lists the significant predictors that appear in Figure 2. In
general, one predictor does not indicate whether a module will be fault-
prone, or not. One must consider the combination of predictors that lie
along a path from the root to a leaf. The root node was a decision node
on the number of distinct file-includes (FILINCUQ, Nodes 1 and 4).
Include-file directives are commonly used to insert header files into the
source code at compile-time. Header files are used to define shared
data abstractions and function prototypes. Hence, the number of dis-
tinct includes indicated the amount of interfaces a module has. Two
predictors were related to the span of variables ( VARSPNMX, Node 9
and CNDSPNSM, Node 7). The span of a given programming variable
is related to how close together are its first and last references. A large
span implies that use of the variable is not localized. The number of
entry nodes (NDSENT, Node 10) to control flow graphs was equivalent
to the number of procedures, because in this system, all procedures
have only one entry point. Preliminary data analysis showed that the
number of procedures (NDSENT, Node 10), the number of internal
nodes (NDSINT, Node 5) in the control flow graph, and the number of
control statements (STMCTL, Node 6) were all highly correlated with
other measures of module size, such as lines of code (LOC).

The amount of update activity, also called “code churn”, was mea-
sured both by the number of updates (7TOT_UPD, Node 11) and by the
number of new and changed lines of code (SRC_MOD, Node 3). The
number of designers (UNQ_DES, Node 2) indicated how many people
modified the same module. Too many people implied the modules was
more likely to be fault-prone. The overall amount of experience the
designers had was indicated by the number of updates made in their
company-careers (UPD_CAR, Nodes 12 and 13). The usage (USAGE,
Node 8) of a module indicated the relative opportunity customers had
to find faults. Very low usage implied a module will not be considered
fault-prone.

Our case study concluded with this step.

3.7. APPLICATION TO A CURRENT RELEASE

The payoff for building a model based on past releases is to make predic-
tions of the quality of a current release that is still under development.
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The model built in Step 5, Data mining, can be used on data from a
current release, as indicated by the dashed arrow in Figure 1. Processing
of the current release follows similar steps as past releases, until one uses
the model to predict software quality on a module-by-module basis.

1. Measure software products and processes. Products and process
history of the current release are measured at the module level in
the same way as the past releases.

2. Select modules for predictions. Modules from the current release
are selected for prediction using the same criteria that were used
in the knowledge-discovery process. For example, the case study
considered updated modules only.

3. Preprocess data. Relevant preprocessing and cleaning steps are ap-
plied to data from the current release. For example, one might omit
modules that are missing data for significant variables in the model.
The status of data for variables not in the model is irrelevant.

4. Transform data. The same data reductions and transformations are
applied to data from the current release as were applied to the past
releases. For example, in the case study, we transformed several
variables.

5. Apply the model. The above steps have prepared the data from the
current release to be compatible with the model. This step applies
the model to the data from the current release, making a prediction
for each module.

The EMERALD team has observed progressive improvement in fault-
levels as this methodology has been adopted by software developers.

3.8. INFRASTRUCTURE

Routine knowledge discovery and quality prediction as depicted in Fig-
ure 1 requires a technology infrastructure. The data warehouse must
enable convenient access to configuration management and problem
reporting data without time-consuming manual processing. Adequate
processing power must be applied to the knowledge-discovery steps.
Application to a current release must be early enough in the life cycle
that developers have time to improve the software’s quality. Finally,
results must be delivered to developers in a timely, convenient, attrac-
tive manner. The payoff for the system comes when developers use the
predictions to target those modules that need enhancement the most.
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Figure 3. EMERALD System Architecture

For example, Figure 3 depicts EMERALD’s client-server architecture
(Hudepohl et al., 1996). A network of engineering workstations period-
ically extracts the latest source code from the library, and calculates
software metrics. Distributed computation was required to handle the
large number of modules in our case study’s very large databases. The
EMERALD server stores measurement history and calculates predictions.
The EMERALD graphical user interface (GUI) is available as a company-
private World Wide Web page, using a Web browser, and alternatively,
a Motif-compatible interface via a local area network. There is also a
batch command interface and a command line interface using telnet.

Interfaces to the configuration management and problem reporting
systems make the process of collecting data unintrusive. Experiments
with the various risk assessment models give an empirical basis for
relying on model predictions. An inviting user interface facilitates ac-
ceptance of the system by the developers, so that software metrics and
models are being integrated into day-to-day development activities.

4. Conclusions

The knowledge-discovery steps of Fayyad et al. (1996b) are readily
adapted to the process of building and applying a software quality
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model. This paper shows that one can extract useful information from
large configuration management and problem reporting databases. The
case study developed a classification tree using the CART algorithm
to predict whether a module would likely have customer-discovered
faults. A software developer would benefit from predictions of which
modules are fault-prone, the expected accuracy of those predictions,
and knowledge derived from the model’s structure.

Future research will extract new, useful software product and process
metrics from software development databases whose collection need not
intrude into development activities. New metrics, in turn, will stimulate
the need for new modeling techniques, as well. Future research will also
explore infrastructures for doing data mining of software development
databases as a routine part of software engineering.
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