An Empirical Study of the Impact
of Count Models Predictions
on Module-Order Models

Taghi M. Khoshgoftaar*
Erik Geleyn
Kehan Gao
Florida Atlantic University
Boca Raton, Florida USA

Abstract

FEarly software quality prediction models are used to
achieve high software reliability. Prediction models that
estimate a quality factor for software modules can be
used in directing corrective efforts early in the life cy-
cle process. Precise quantitative prediction values for
the quality factor is often not sufficient. Instead, pre-
dicting the rank-order of modules with respect to the
quality factor may be more beneficial to the develop-
ment team. A module-order model (MOM) uses an
underlying quantitative prediction model to predict this
rank-order.

This paper compares performances of module-order
models of two different count models which are used as
the underlying prediction models. They are the Pois-
son regression model (PRM) and the zero-inflated Pois-
son (ZIP) regression model. It is demonstrated that
improving a count model for prediction does not en-
sure o better MOM performance. A case study of a
full-scale industrial software system is used to compare
performances of module-order models of the two count
models. It was observed that improving prediction of
the Poisson count model by using zero-inflated Pois-
son regression did not yield module-order models with
better performance. Thus, it was concluded that the de-
gree of prediction accuracy of the underlying model did
not influence the results of the subsequent module-order
model. Module-order modeling is proven to be a robust
and effective method even though both underlying pre-
diction may sometimes lack acceptable prediction accu-

*Readers may contact the authors through Taghi M. Khosh-
goftaar, Empirical Software Engineering Laboratory, Dept.
of Computer Science and Engineering, Florida Atlantic Uni-
versity, Boca Raton, FL 33431 USA. Phone: (561)297-
3994, Fax: (561)297-2800, Email: taghiQ@cse.fau.edu, URL:
www.cse.fau.edu/esel/.

racy.
Keywords: Software reliability, software metrics,
module-order modeling, count models, Poisson, ZIP

1. Introduction

The growing importance of software managed sys-
tems in today’s world is so obvious that every day
more human lives and huge economical assets rely on
those systems. Because of the possible consequence of
a failure, it is crucial to make them as reliable as pos-
sible. To achieve those reliability enhancements, soft-
ware quality prediction models have been developed. A
software quality prediction model estimates a quality
factor (like number of faults) using the data collected in
the early phases of the life cycle. Linear and non-linear
regression analysis are some of the simplest methods
used as prediction models. Other methods have also
been applied to this field, like Case-Based Reason-
ing [6], Fuzzy logic [14], Genetic Programming [5] or
Tree based learning [3].

Project managers are then able to apply the en-
hancement efforts early in the life cycle to the mod-
ules requiring the most attention. These efforts range
from extra walkthroughs to extensive reviews. How-
ever, most of the time only limited resources are avail-
able to perform these tasks and most importantly the
same treatment is applied to all the enhanced mod-
ules [2]. In such cases there is little interest in knowing
the exact number of faults in a given module. The
useful information for managers is a ranking starting
with the modules with the lowest quality. According
to this module ranking, managers can then dispense
available resources for quality enhancements until they
are exhausted.

A module-order model answers this problem by pre-
dicting the rank-order of modules according to a qual-
ity factor. Prediction models that estimate the quality
factor are used as underlying models by module-order
models to determine the rank-order of modules.

Previous work [2] has proved that module-order
models may remain robust even if the underlying model
performs poorly as a prediction model. This paper will
continue this work by showing the results obtained by
using two different count models with a significant dif-
ference in their prediction accuracy. Count models are
models where the response (dependent) variable values
are non-negative integers. They are very common in
fields such as economics, social science, and software
engineering.

A case study of a full-scale industrial software sys-
tem compared the performances of the two count mod-
els as module-order models. To our knowledge this
is the first time such a comparative study is performed
for software quality modeling. It was observed that im-
proving prediction of the Poisson count model by using
zero-inflated Poisson regression did not yield module-
order models with better performance.

The layout of the rest of the paper is as follows. A
description of the module-order modeling technique is
presented in Section 2. In Section 3, the two differ-
ent count modeling techniques are presented. Section
4 introduces our methodology while Section 5 and 6,
present the results, findings and conclusion of the com-
parative case study.

2. Module-Order Modeling

This section presents module-order modeling start-
ing with the concepts, the ranking results and the eval-
uation procedure.

2.1 Conceptsof Module-Order Modeling

While quality factors can only be measured late
in the life cycle of a software product, most software
metrics may be collected much earlier. These metrics
can be used as inputs for a software quality predic-
tion model. The result of the prediction is then used
to decide the enhancement process for the candidate
modules. The choice of the quality factor is up to the
project manager, but should be a good representation
of the actual quality of the module. We define a fault-
prone module as a module presenting enough faults
that makes it eligible for an enhancement treatment.

Module-order models predict the relative quality of
each module, especially the most faulty ones. Here we
will rank the modules according to the number of faults

found during system test. The type of scale normally
used ranges from ordinal to absolute. To summarize, a
module-order model is composed of the following three
components.

1. An underlying software quality prediction model.

2. A ranking of modules according to the quality fac-
tor estimated by the underlying prediction model.

3. A procedure for evaluating accuracy of the rank-
ing.

2.2 Underlying Software Quality Prediction Model

Every software quality prediction model may be con-
sidered as a function of a vector of software measure-
ments, x;, predicting a quality factor for module i, F;
F;=f(x;). Any prediction model may be selected as
an underlying model as long as it presents results on
an ordinal scale. In our case study we selected two
count models, the Poisson regression model and the
zero-inflated Poisson regression model.

2.3 Ranking Results

Let F(x;) be an estimate of F; by the underlying
model, f(x;). R;is the notation for the perfect ranking
of module i according to F; while R(x;) is the same

ranking but according to F(x;).
2.4. PerformanceEvaluation

The following evaluation method was previously de-
veloped at the Empirical Software Engineering Labo-
ratory [2]. Given a model and a validation data set
indexed by i:

1. Management will choose to enhance modules in
a priority-based order, beginning with the most
fault-prone. However, the rank of the last mod-
ule enhanced is uncertain at the time of model-
ing. Based on the schedule and resources allocated
for reliability enhancements activities, determine a
range of percentiles that covers management’s op-
tions for the last module to be enhanced. Choose
a set of representative cutoff percentiles, ¢, from
that range.

2. For each cutoff percentile value of interest, ¢, de-
fine the number of faults accounted for by modules
above the percentile c:

Ge= 3 F (1)

=R;>C

Z F; (2)

BR(X:)>¢

where a higher ¢ corresponds to the most fault-
prone modules.

3. Let G4yt be the total number of actual faults in the
validation data set. For each ranking, compute the
percentage of faults accounted for, i.e., G(¢)/Gtot
and G (¢)/Got, and depict the results of the model
with an Alberg diagram [11]. Alberg diagrams are
a variation of Pareto diagrams applied to module-
order modeling.

4. Calculate a function measuring the model perfor-
mance, ¢(c), which indicates how closely the faults
accounted for by the model ranking match with
those of the perfect ranking.

Q) =G 3)

We can then plot a performance graph described
as a function of c.

3. Count Models
3.1 Count Modelsfor Software Quality Modeling

Poisson [7] and zero-inflated Poisson are two regres-
sion models widely used for count data sets. A count
data set is a set in which the response (dependent) vari-
ables are scalar non-negative integers. The response
variable is the occurrence of the event. This applies
very well to software quality modeling since most of
the metrics are count metrics (we can hardly imagine
a decimal or a negative number of faults).

3.2 The PoissonRegressionModel (PRM)

The Poisson regression model (PRM) [7] is a regres-
sion model derived from the Poisson distribution. The
Poisson regression model is part of a set of models for
count data modeling. The best results for this model
are obtained when the data set has a Poisson distribu-
tion. This implies that the expected count equals its
variance. However, the Poisson regression model does
not perform well when the data set contains a lot of
zeros for the response variable.

3.2.1 Poisson Distribution

The Poisson distribution is expressed as follow:

e huy
Pr(y“‘t) = T for y=0’1a2"" . (4)
where y is the random variable having a Poisson dis-
tribution with parameter u. For higher values of u
the behavior of the Poisson distribution approximates
the behavior of a normal distribution. For the Pois-
son distribution, the expected value of y is equal to its
variance. This is also known as equidispersion:

E(y) = Var(y) = p . (5)

3.2.2 Building the Poisson Regression Model

The Poisson regression model assumes that the re-
sponse variable is a count and has a Poisson distri-
bution with mean u, which is dependent on the covari-
ates, x;. Let (y;, x;) be an observation in the data set.
Given x;, assume y; has a Poisson distribution with a
density function:

-
e HipY
!

Pr(yl|)u/uxl) = for Yi = 071’2a"') (6)

where p; is the mean value of the response variable
y;. Since u; is always positive, the link function which
demonstrates the relationship between the expected
value of response variable and the covariates, generally
has a logarithm form as shown below.

In(p;) = In(E(yilx;)) = %33, (7)

where In means natural logarithm, x; represents the
covariates, x; is the transpose of the vector x;, and 8
is a vector of the unknown parameters. Here, both x;
and (3 are vertical vectors. The expected value E(-) is
equivalent to the mean value denoted by u throughout
this paper. Sometimes, the link function is also written
in an exponential form:

pi = Eyi|x;) = €57 . (8)

According to the equidispersion property (Equa-
tion (5)) of the Poisson distribution, it follows that

Var(y;|x;) = X, 9)

Equation (6) and Equation (7) jointly define the Pois-
son regression model.

3.2.3 PRM Prediction

In order to estimate the parameters for PRM, we use
a standard technique called Maximum Likelihood Es-
timation [7]. When the model is built, one can utilize
this model to predict the response (dependent) variable
for each module. A prediction model for the PRM can
be written as

Gi=pi=ef for i=1,2,---. (10)
3.3 The Zero-Inflated Poisson RegressionModel
(ZIP)

As we already stated, it is often seen that a data set
has excess zeros for the response variable in software
quality modeling. A pure PRM is not suitable for this
situation [1]. A zero-inflated count model is an effec-
tive way of dealing with this problem. A zero-inflated
count model assumes that zeros can be generated by a
different process than positive counts. Thus, this kind
of model modifies the mean structure such that the
conditional variance and the probability of zero count
increase. Mullahy used a With-Zeros (WZ) model in
his application [10]. In 1992, Lambert first introduced
the zero-inflated Poisson regression model [9].

3.3.1 Definition

In a zero-inflated model, we group all zeros into two
parts. One part comes from the perfect modules, i.e.,
modules with zero faults. The other part comes from
the non-perfect modules where the number of faults fol-
lows some standard distribution. In a ZIP regression
model, we introduce a parameter i which represents
the probability of a module being perfect. Hence, the
probability of the module being non-perfect is 1 — 9.
Also, we assume that in non-perfect modules, the num-
ber of faults follows a Poisson distribution.

Let the response variable y = (y1,¥2, -+, yn) be in-
dependent and

y; = perfect probability 1; ,

= non-perfect ~ Poisson(y;) probability 1 —; .

The probability density function (pdf) of the ZIP re-
gression model therefore is
it (1=, 4 =0,

—pi Vi
(1 - djz) %’

Yi

Pr(y;|xi, ;) = { yi=1,2,
(2 b b .

The ZIP regression model is obtained by adding the
following link functions:

In(p;) = xiB
logit(®;) = In

(12)

=x0, (13)

(11)

where both 8 and <y represent the coefficient vectors of
the covariates x;. However, § serves the log function
of mean pu; and the v serves as the logit function of
probability ;.

3.3.2 ZIP Regression Model Prediction

In order to estimate the parameters for ZIP, we again
use Maximum Likelihood Estimation [7]. When the pa-
rameters (3,7) are estimated, one can utilize the ZIP
regression model to predict the response variable for
each module, and find the probability for each mod-
ule being perfect. The probabilities of the response
variable being various counts can be obtained by using
Equation (11) of the ZIP regression model.

The mean prediction for the ZIP regression model is

B(yilx:) = (1 — $)eX'? .

where z/;z is the predicted probability of module ¢ being
perfect. 9; is estimated by the following:

(14)

~ eXiv

(15)

7 -~ .
1+ X7

4. Experiments
4.1 SystemDescription

Our research was conducted on two data sets ob-
tained from the industry. The data sets were both
collected from the same project within the same orga-
nization. The project consisted of two large Windows-
based applications used primarily for customizing the
configuration of wireless products. The data sets were
obtained from the initial releases. The applications are
written in C++, and they both provide similar func-
tionality. As a result, the applications contain common
code. The main difference between the two applica-
tions is the type of wireless product that it can sup-
port. Table 1 presents the profile of the system used
for this case study.

Table 2 lists the five software metrics used in our
case study. The dependent variable, Fault, was the
number of faults found in a module during system
test. A software module was defined as a set of related
source-code files.

The system had about only 33% of modules con-
taining faults. The most faulty module had 97 faults.
Figure 1 shows the distribution of Fault.

4.2 Experiments Description

We used data-splitting as a validation strategy. The
fit data set was composed of 807 modules and the test

900

809

700 -

600 -

500 -

Frequency

400 +

300

200
140

100 626649
|:||:||:|226961553213332112112111111
0 AU - s = - -

L B e e AL A s B S e S
0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 20 23 24 25 27 28 32 42 44 48 59 62 97

Fault

Figure 1. Distrib ution of Fault

Table 1. System Profile for Case Studies

Service
Applications Configuration

Software
Language C++

Application 1: AENSCL* 320 million

Application 1: Actual Lines of Code | 29 million

Application 2: AENSCL* 300 million

Application 2: Actual Lines of Code | 27.5 million

Number of source files 1207

* AENCSL is Assembly Equivalent
Non-Commented Source Lines of Code

Table 2. Software product metrics

| Symbol | Description

Ins Number of times the source file was
inspected prior to system test release.
Number of lines of code for the source
file prior to the coding phase. This
represents auto-generated code.
Number of lines of code for the source
file prior to system test release.
Number of lines of commented code for
the source file prior to the coding phase.
This represents auto-generated code.
Number of lines of commented code for
the source file prior to system test
release.

BCode

SCode

Bcomm

Scomm

data set was composed of 404 modules. The fit data
set was used to build the regression models and the
test data set was used to evaluate the fitted model by
computing the Average Absolute Error (AAE) and Av-
erage Relative Error (ARE) values. In order to provide
independent (thus relevant) results we used 50 differ-
ent data splits. This ensures that our final results are
not an artifact of a lucky data split.

The results for module-order modeling were ob-
tained using the Software Measurement Analysis and
Reliability Toolkit (SMART) [4]. SMART is a research
tool developed at the Empirical Software Engineering
Laboratory, Florida Atlantic University.

4.3 Patterns Presentation

Once we completed our empirical investigation on
all fifty data splits, we selected three distinct patterns.
These patterns are presented in Table 3. Other data
splits did not provide any additional information. We
did not experience any data splits providing evidence of
a better prediction accuracy of the Poisson regression
model compared to the ZIP regression model.

Pattern 1, was selected because both count mod-
els had good prediction accuracy and ZIP provided a
significant improvement over Poisson in terms of pre-
diction. With Pattern 2, the two count models had
an even better prediction accuracy but there was no
significant improvement when using ZIP. Finally, Pat-
tern 3 presents the data split where the predictions
for both count models were extremely inaccurate, and
for this type of data split, ZIP performed significantly
“better” in terms of prediction. Table 4 presents de-
scriptive statistics for the dependent variable, Fault, for
each selected pattern.

Table 3. Pattern Description

Pattern | Description Selected
Data Split
1 Good predictions for both 49
count models. ZIP performs
significantly better than
Poisson.
2 Better prediction than 25

Pattern 1 for both count
models. The improvement
of ZIP over Poisson is

not significant.

3 Predictions for both count 20
models are bad. ZIP performs
significantly better than
Poisson.

4 4. Prediction Results

There are many ways to evaluate the quality of the
prediction. Average Absolute Error (AAE) and Aver-
age Relative Error (ARE) [13] are the most common
ways. The definition of AAE and ARE used in our

study are:

1 .
AAE = Ezwi_yil (16)
i=1
1~ |yi — 9
ARE = = == 1
R nz Y +1 (17)

i=1

where n is the number of modules in the test or eval-
uation data set, y; and y; represent the actual and
predicted value of the response (dependent) variable,
respectively. In ARE, since the actual response vari-
able (number of faults) may be zero, we add a one to
the denominator to make the definition always well-
defined [8]. Lower values of ARE and AAE indicate
better prediction accuracy.

Table 5 presents in detail the prediction statistics
of both count models for each pattern. The values
reported are those of the data splits listed in Table 3
for each pattern respectively. The table also includes
the p-value of the significance test between the two
count models. The alternative hypothesis for the z-
test was that the ZIP regression model had a better
prediction accuracy than the Poisson regression model.
The results allowed us to define the different patterns
among the data splits.

Shepperd and Kadoda [12] mentioned that there is
no best prediction model for software quality. The suc-

Table 4. Descriptive Statistics of Fault, Y

S~ S~
(e Gy
[S) S}
=] =]
o) o
S R
= =
E oo < o SO |
g2 s el
A ||| A= |e|=
<] (<]
Z[E ZE
ﬁ_‘g .":_‘g
8?3 8§
a-‘d—" a“a—‘a
n N
S~ >~
(. Gy
o |l b= [— O [|lo |ev |-
=[R2 | s
S |[en | = = ||S [S
s S
—~
= |~
Sy S
] 5] | (B
N
= [=
sl = n| |8
=R Bl s
= e |2 |2 ||E 2 e e |
o (|SR oM R
A llen (o |<F Al o |
35 ElE
+~ +~
S S
< <
+ +~
1] N
b S~
(. Gy
S [|en o [— 0 |ho o |~
a2 o 2Rl
& |~ |— |~ &= [~
(<5} <]
S S
S} S}
2] 2
O Ollen|m |© O O~ |
Q =l || QO = ||k~ = |~
gé’mmm g&-’mmm
= =
Z Z
=] =]
- -
Q Q
E — || % — ||
[l Ay

cess of a prediction technique has a strong relationship
with the characteristic of the data set.

In our case study, the differences in terms of pre-
diction accuracy are mostly explained by the effect of
two extreme data points in our data set. These two
extreme data points had a high influence on the pa-
rameters of the count models. In the case of Pattern
1 where both models had a good prediction accuracy
and one influential point was in the fit data set while
the other was in the test data set. The best predictions
were obtained when both influential points were in the
fit data set. This case is presented in Pattern 2. The
worst predictions described in Pattern 3, were obtained
when the two influential points were in the test data
set. The large differences in prediction accuracy are
explained by the fact that the parameters estimated
were quite different in Pattern 3 because of the two
influential points. However, a complete discussion on
the impact of influential points on count models is out
of the scope of this paper.

4.5 Module-Order Modeling Results

In this section, we present the module-order model-
ing results obtained using the quantitative prediction of
the count models for the three selected patterns. The
cutoff values varied from 5% to 35%. We used a 1% in-
crement between 5% and 15% since they represent the
most critical range for our case study. Cutoff points
below 5% were not presented. Below the 5% cutoff,
performances present a high variability due to the fact
that we are ranking the most faulty modules. In addi-
tion this range is of little interest since we can hardly
imagine inspecting less than 5% of the modules. How-
ever, ZIP usually presented better performances below
the 5% cutoff.

The Alberg diagram will give a synthetic view of the
advantages of module-order modeling. The model per-
formance figure is directly extracted from the Alberg
diagram information and presents the comparison be-
tween the two models. Section 2 of this paper presents
module-order modeling in further details.

4.5.1 Pattern 1

Pattern 1 was selected because of its good prediction
accuracy and the significant improvements of the ZIP
regression model as compared to the Poisson regres-
sion model. In Figure 2 we can notice some important
trends.

First of all, we can notice that the Pareto law (20%
of a population is responsible for 80% of the phe-
nomenon) applies to software quality modeling: 20% of

Table 5. Prediction Results

p-value
Zero
< 0.0002
< 0.0002

| NonZero

Total |
0.0901
0.0057

0.1020
0.1539

0.5000
0.9236

0.1379
0.1611

< 0.00002
< 0.00002

< 0.00002
< 0.00002

0.2483
0.0000

0.1379
0.1075

ZIP
| Zero | NonZero
0.8101
0.8101
0.4851
0.4851
0.8104
0.8104
0.4204
0.4204
0.7033
0.7033
0.5044
0.5044

Total
1.7752
0.6994
5.0274
0.5146
1.4483
0.6869
2.7183
0.4363

3.88
0.4579
8.5913
0.4957
2.8236
0.4206
4.5026
0.3417

20.6957
0.6763
167.4351

69

2.

7.186
0.6945
95.5581

1.5831

Poisson
| Zero | NonZero

Total

7.2488
0.5851
28.5243
1.3089
2.8261
0.3629
4.814

0.3008

118.787

2.1011
1016.4908

16.1872

0.9199
0.9199
0.151
0.151
1.0043
1.0043
0.1031
0.1031
0.8715
0.8715
0.1241
0.1241

2.9094
0.8146
16.2191

0.7586
1.5815
0.8011
2.8339
0.3536
39.1065
1.2702
579.967
9.2123

Statistics

AAE
ARE
std* AAE
std* ARE

AAE
ARE
std* AAE
std* ARE

AAE
ARE
std* AAE
std* ARE

Pattern

* std is standard deviation.

the modules accounted for 93% of the faults and 35% of
the modules accounted for 100% of the faults. We also
observe that when using our module-order models we
may achieve effective software quality enhancements.
By reviewing 35% of the modules, we may catch 84%
of the faults using our count models for module-order
modeling. Finally, we may notice that the two count
models although being significantly different in terms
of prediction, performed similar with respect to their
subsequent module-order models.

Model performance (Figure 3) gives a closer view
to the comparative behavior of the models over the
selected cutoff points. We notice that the maximum
difference between the two models is about 3% with a
very high overall performance.

4.5.2 Pattern 2

For Pattern 2, both count models had very good pre-
diction accuracy. The prediction accuracy was signifi-
cantly better for both models compared to Pattern 1.
However, there was no significant improvement when
using ZIP instead of Poisson. Figure 5 indicates that
the two models remain close to each other (within 8%)
with ZIP performing similar or slightly better than
Poisson. The most important point here is that al-
though both models had a better prediction accuracy
(as compared to Pattern 1), their module-order model
performance was not as good as that of Pattern 1 (see
Figure 4).

4.5.3 Pattern 3

This pattern was chosen to show the module-order
modeling results when the predictions for the count
models had very low accuracy. For this pattern, ZIP
performed significantly “better” in terms of prediction.

Figure 6 and Figure 7 show that although the predic-
tion accuracy of both models was extremely poor their
module-order model performances remained excellent.
The maximum difference between the performances of
the two models did not exceed 4%. The module-order
modeling performances for Pattern 3 were similar to
the performances for Pattern 1 and were better than
Pattern 2 despite having extremely poor prediction ac-
curagcy.

5. Conclusion and Future Work

Software quality models can be used to predict a
quality factor using software metrics collected early in
the life cycle. Often predicting the exact value of the
quality factor is not sufficient. Instead, predicting the

rank-order of modules with respect to the quality factor
may be more beneficial. Managers can then target the
modules with the highest ranking until they exhaust
allowable resources.

A module-order model predicts this ranking accord-
ing to a quality factor, such as the number of faults.
The quantitative prediction of the quality factor is
made by an underlying quantitative prediction model.

This paper demonstrated that improving a software
quality model for prediction did not yield the same
significant improvement for the module-order model-
ing performances. In addition we showed that the best
prediction did not yield the best module-order model-
ing results and that having a poor prediction did not
seem to be a handicap for module-order modeling.

The case study of a full-scale industrial software sys-
tem compared the performances of two different count
models with the following conclusions.

e Prediction accuracy indicators such as AAE and
ARE do not give a reliable indication of the future
behavior of the prediction model when used as a
module-order model.

e Improved models for quantitative prediction, like
the zero-inflated Poisson regression model com-
pared to the Poisson regression model do not auto-
matically yield significant module-order modeling
performance improvements.

e A better prediction accuracy does not necessarily
yield better module-order modeling performances.

e Bad and extremely bad prediction accuracy do not
seem to significantly affect the module-order mod-
eling performances in one way or another.

e Module-order models are very robust. They pro-
vide very similar performances regardless of the
prediction accuracy of the underlying prediction
models.

e The choice of the underlying model should be de-
termined empirically according to the chosen cut-
off and the characteristics of the data set.

e Managerial issues such as process improvements
and simplicity of the models can help choosing an
adequate prediction model.

Overall, we found that module-order modeling re-
mains a very efficient technique for both count models
and that the choice of an underlying model should not
solely rely on the prediction accuracy.

—— Actual

g
F] —®—Poisson
- Zip
50
40 T T T T T T T T T T T T T T T
© A N D O DD P PP R D P
Modules
Figure 2. Alber g Diagram for Pattern 1.
100
95
3
o
§
E 90 1
‘g —4— Poisson
4 —&—zip
8 851
o
=
80 1
75 T T T T T T T T T T T T T T T

O N I I TN SC RN T T S, RPN R]

Modules

Figure 3. Performance for Pattern 1, ¢(c).

—— Actual

2
F] —®—Poisson
- 2P
H0n—————————————————
L T I I SNC T, S BT SHC SN T)
Modules
Figure 4. Alber g Diagram for Pattern 2.
100
95 1
3
g
g 90 1
2 —#—Poisson
& —=—zIp
8 851
o
=
80 1

O N I I TN SC RN T T S, RPN R]

Modules

Figure 5. Performance for Pattern 2, ¢(c).

—— Actual

2
F] —®—Poisson
- zIP
50 1
40 T T T T T T T T T T T T T T T
© A N D O DD P PP R D P
Modules
Figure 6. Alber g Diagram for Pattern 3.
100
95 1
3
o
§
E 90 1
‘g —4— Poisson
4 —&—zip
8 851
o
=
80 1
75 T T T T T T T T T T T T T T T

O N I I TN SC RN T T S, RPN R]

Modules

Figure 7. Performance for Pattern 3, ¢(c).

Future work should investigate better indicators
than AAE and ARE to help to build the best under-
lying model from a set of candidates for module-order
modeling.

Acknowledgments

We thank Ken McGill for his encouragement and
Dr. Bojan Cukic for his helpful suggestions. This
work was supported in part by Cooperative Agree-
ment NCC 2-1141 from NASA Ames Research Cen-
ter, Software Technology Division (Independent Verifi-
cation and Validation Facility). The findings and opin-
ions in this paper belong solely to the authors, and are
not necessarily those of the sponsor. Special thanks to
Naeem Seliya for his patient reviews.

References

[1] W. H. Green. Accounting for excess zeros and sample
selection in poisson and negative binomial regression
models. Technical Report EC-94-10, Economics De-
partment, New York University, 1994.

[2] T. M. Khoshgoftaar and E. B. Allen. A comparative
study of ordering and classification of fault-prone soft-
ware modules. Empirical Software Engineering: An
International Journal, 4:159-186, 1999.

[3] T. M. Khoshgoftaar and E. B. Allen. Modeling soft-
ware quality with classification trees. In H. Pham,
editor, Recent Advances in Reliability and Quality En-
gineering, pages 247-270. World Scientific, Singapore,
2001.

[4] T. M. Khoshgoftaar, E. B. Allen, and J. C. Busboom.
Software quality modeling: The software measurement
analysis and reliability toolkit. In Proceedings of the
Twelfth IEEE International Conference on Tools with
Artificial Intelligence, pages 54—61, Nov. 2000.

[6] T. M. Khoshgoftaar, M. P. Evett, E. B. Allen, and
P.-D. Chien. An application of genetic programming
to software quality prediction. In W. Pedrycz and
J. F. Peters, editors, Computational Intelligence in
Software Engineering, volume 16 of Advances in Fuzzy
Systems — Applications and Theory, pages 176-195 .
World Scientific, Singapore, 1998.

[6] T. M. Khoshgoftaar, K. Ganesan, E. B. Allen, F. D.
Ross, R. Munikoti, N. Goel, and A. Nandi. Predict-
ing fault-prone modules with case-based reasoning. In
Proceedings of the Eighth International Symposium on
Software Reliability Engineering, pages 27-35, Albu-
querque, NM USA, Nov. 1997. IEEE Computer Soci-
ety.

[7] T. M. Khoshgoftaar, K. Gao, and R. M. Szabo. An
application of zero-inflated poisson regression for soft-
ware fault prediction. In Proceedings: The Twelth In-
ternational Symposium on Software Reliability Engi-
neering, Hong Kong, Nov. 2001. In press.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

T. M. Khoshgoftaar, J. C. Munson, B. B. Bhat-
tacharya, and G. D. Richardson. Predictive model-
ing techniques of software quality from software mea-
sures. IEEE Transactions on Software Engineering,
18(11):979-987, Nov. 1992.

D. Lambert. Zero-inflated poisson regression, with an
application to defects in manufacturing. Technomet-
rics, 34(1):1-14, Feb. 1992.

J. Mullahy. Specification and testing of some modified
count data models. Journal of Econometrics, 33:341—
365, 1986.

N. Ohlsson and H. Alberg. Predicting fault-prone soft-
ware modules in telephone switches. IEEE Transac-
tion on Software Engineering, 22(12):886-894, 1996.
M. Shepperd and G. Kadoda. Using simulation to
evaluate prediction techniques. In Proceedings: Sev-
enth International Software Metrics Symposium, pages
349-359, London, England, Apr. 2001. IEEE Com-
puter Society.

R. M. Szabo and T. M. Khoshgoftaar. Exploring
a poisson regression fault model: A comparative
study. Technical Report TR-CSE-00-56, Florida At-
lantic University, 2000.

Z. Xu, T. M. Khoshgoftaar, and E. B. Allen. Appli-
cation of fuzzy linear regression model for predicting
program faults. In H. Pham and M.-W. Lu, editors,
Proceedings: Sixth ISSAT International Conference on
Reliability and Quality in Design, pages 96-101, Or-
lando, Florida USA, Aug. 2000. International Society
of Science and Applied Technologies.

