Cost-Benefit Analysis of
Software Quality Models

Taghi M. Khoshgoftaar (taghi@cse.fau.edu)
Florida Atlantic University, Boca Raton, Florida USA

Edward B. Allen (edward.allen@computer.org)*
Mississippi State University, Mississippi USA

Wendell D. Jones and John P. Hudepohl
Nortel, Research Triangle Park, NC 27709 USA

Abstract. Software reliability is increasingly important in today’s marketplace.
When traditional software development processes fail to deliver the level of reliability
demanded by customers, radical changes in software development processes may be
needed. Business process reengineering (BPR) is the popular term for comprehensive
redesign of business processes. This paper focuses on the business processes that
produce commercial software, and illustrates the central role that models have in
implementation of BPR. Software metrics and software-quality modeling technology
enable reengineering of software development processes, moving from a static process
model to a dynamic one that adapts to the expected quality of each module.

We present a method for cost-benefit analysis of BPR of software development
processes as a function of model accuracy. The paper defines costs, benefits, profit,
and return on investment from both short-term and long-term perspectives. The
long-term perspective explicitly accounts for software maintenance efforts.

A case study of a very large legacy telecommunications system illustrates the
method. The dependent variable of the software-quality model was whether a module
will have faults discovered by customers. The independent variables were software
product and process metrics. In an example, the costs and benefits of using the model
are compared to using random selection of modules for reliability enhancement. Such
a cost-benefit analysis clarifies the implications of following model recommendations.

Keywords: software reliability, software quality model, cost-benefit analysis, return
on investment, software metrics, business process reengineering, BPR

1. Introduction

Software is the medium for implementing increasingly sophisticated
features throughout a system’s lifetime (Hudepohl et al., 1992). Con-
sequently, software reliability is a strategic business weapon in today’s
competitive marketplace (Hudepohl, 1990). When traditional software
development processes fail to deliver the level of reliability demanded

* This work was performed while Edward B. Allen was at Florida Atlantic
University.

';:‘ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

cost.tex; 2/08/2000; 9:17; p.1

2 Khoshgoftaar and Allen

by customers, radical changes in software development processes may
be needed.

Business process reengineering (BPR) is the popular term for compre-
hensive redesign of business processes to gain dramatic improvements
in performance measures, such as cost, quality, service, and speed (Mot-
wani et al., 1998; Orman, 1998). Hammer (1990) coined BPR for the
radical but systematic change to business processes needed to exploit
fully the potential offered by information technology (Biazzo, 1998). He
later popularized the concept in a book with Champy (Hammer and
Champy, 1993).

This paper focuses on the business processes that produce commer-
cial software. Typical software development processes treat all modules
similarly according to a static model of the development life cycle. For
example, each software module goes through the same processes of
design, reviews, coding, and testing. Finally, the software is released to
customers. The introduction of software metrics and software-quality
modeling technology has precipitated reengineering of software develop-
ment processes, moving from the static process model to a dynamic one
that adapts to the expected quality of each module. A dynamic develop-
ment process can result in dramatic improvements in software quality
delivered to customers, with attendant gains in customer satisfaction
and major reductions in rework costs.

Software-metrics technology measures attributes of artifacts and
processes during development. For example, common software prod-
uct metrics quantify attributes of a module’s source code (Fenton and
Pfleeger, 1997). Software process metrics quantify events in a module’s
history (Khoshgoftaar et al., 1998). Both kinds of measurements are
related to mistakes during development and hence, software reliability.
Reliability is an important aspect of software quality. The level of relia-
bility is often indicated by the faults (“bugs”) discovered by customers.
In this paper, a software quality model predicts whether each module
will be considered fault-prone after release, based on measurements of
its product and process history as independent variables. A software
quality model is a key technology that empowers developers to repri-
oritize modules dynamically during development, so that enhancement
efforts are applied in a cost-effective manner.

For example, suppose a software quality model indicates that cer-
tain modules are at-risk when changed. After a review, the design
team may choose to redesign these modules first before continuing
their implementation, so that their reliability is enhanced. Moreover,
during maintenance, any changes proposed for high-risk modules may
require more stringent justification and inspection. Risk assessments
can also be used for assigning technical staff to test, test automa-

cost.tex; 2/08/2000; 9:17; p.2

Cost-Benefit Analysis of Software Quality Models 3

tion, and maintenance efforts, matching skill level and experience with
complexity.

Reengineering software development from a static model to dynamic
allocation of resources promises dramatic improvement in quality. Can
using a software quality model really deliver these benefits? This paper
presents a method for cost-benefit analysis of a software quality clas-
sification model. We illustrate the method with a case study of a very
large legacy telecommunications software system. The case study used
logistic regression as the modeling technique (Hosmer and Lemeshow,
1989) in conjunction with a generalized classification model which we
have proposed (Khoshgoftaar and Allen, 2000). Other classification
techniques could have been used, but our goal is not a comparison
of techniques. Our focus here is how to assess the costs and benefits
of model accuracy, so that the implications of following model recom-
mendations will be clear. Remaining sections present the generalized
classification model, a description of the system studied, case study
results, the cost-benefit analysis, and conclusions.

2. A Generalized Classification Model

Given a set of software modules, our goal is to predict the class of
each module. We define the classes fault-prone and not fault-prone by
a threshold on the number of faults over a period of interest, such as
the operational life of a release of the software. This section presents
a generalized classification model that we have proposed for use with
software quality models (Khoshgoftaar and Allen, 2000).

The following scenario is the context for our analysis of the costs
and benefits of using a software quality classification model. Develop-
ment of each release of a system is considered a “project”. Our case
study focused on faults discovered by customers. The scenario could be
adjusted for other definitions of fault-prone.

1. Build and evaluate a software quality classification model using
data on a historical project(s), such as a prior release(s).

2. Collect data from the current project as early in development as
possible for independent variables.

3. Apply the model to predict which modules will be fault-prone, i.e.,
modules “recommended” by the model for reliability enhancement.

4. Enhance the reliability of the recommended modules using special
processes, such as extra reviews, extra testing, or redesign, and fix
faults that are consequently discovered in the fault-prone modules.

cost.tex; 2/08/2000; 9:17; p.3

4 Khoshgoftaar and Allen
5. Release the system for operational use.
6. Fix faults that are discovered by customers.

A Type I misclassification is when the model identifies a module as
fault-prone which is actually not fault-prone. A Type II misclassifica-
tion is when the model identifies a module as not fault-prone which
is actually fault-prone. Table I summarizes notation. In a standard
development process, the expected proportion of fault-prone modules
is mpp, and similarly for not fault-prone modules, 7.z, As explained in
Table I, the expected number of modules in various subsets are shown
in Table I, where in addition to totals, the rows signify actual classes of
modules, and the columns correspond to classes predicted by a model.

There is a tradeoff between the Type I misclassification rate and the
Type IT misclassification rate. As one goes down, the other goes up. We
have observed that it is often difficult to determine a practical balance
for this tradeoff in terms of Type I and Type II misclassification rates.
Therefore, we translate these rates into measures of the effectiveness
and efficiency of a model, which are more closely related to project
management concerns.

Following the model’s recommendation, the proportion of modules
that receive reliability enhancement that are actually fault-prone is
Pr(fp|fp)ns- We define effectiveness as the proportion of fault-prone
modules that received reliability enhancement treatment out of all the
fault-prone modules.

Pr(fplfp)msp _

1 — Pr(nfp|fp) (1)
Ty

effectiveness =

One can maximize effectiveness by minimizing the Type II misclassifi-
cation rate, Pr(nfp|fp).

When one applies a reliability enhancement process to a not fault-
prone module, it will probably be a waste of time, because the reliability
is already satisfactory. We define efficiency as the proportion of relia-
bility enhancement effort that is not wasted. This is equivalent to the
proportion of fault-prone modules that received reliability enhancement
treatment out of all modules that received it.

Pr(fp|fp)ms
folnfp)Tng + Pr(fplfp)ms

efficiency = Pr((2)

One can maximize efficiency by minimizing the Type I misclassification

rate, Pr(fp|nfp).
Our goal is to allow appropriate emphasis on effectiveness and effi-
ciency according to the needs of the project. The following rule enables

cost.tex; 2/08/2000; 9:17; p.4

Cost-Benefit Analysis of Software Quality Models 5

Table I. Notation

Gugp the not fault-prone class (group) of modules

G the fault-prone class (group) of modules

k index of classes
the number of modules in the software system under study

i index of modules

X; the vector of independent variables of the i** module

Class(x;) the i*" module’s class, predicted by a model’s classification rule

fr(xi) a likelihood function for the i*" module’s membership in the class

Fr(xs) an estimate of f(x;)

i the probability that a module is fault-prone

i an estimate of p;; in a logistic regression context, fnfp(xi) =1—p;,
Fpp(xi) = pi

Tk the prior probability of membership in Gy

Nk the expected number of modules in Gg

Pr(nfp|nfp) the probability that a model correctly classifies a module as in
Gnfp

Pr(fplfp) the probability that a model correctly classifies a module as in G o

Pr(fp|nfp) the probability that a model misclassifies a module as in G g, which
is actually in anp, i.e., the Type I misclassification rate

Pr(nfp|fp) the probability that a model misclassifies a module as in Gy,
which is actually in G o> i.e., the Type II misclassification rate

Aot nfp the expected number of modules that a model correctly classifies
as in Gy,

Nfp, fp the expected number of modules that a model correctly classifies
asin Gy,

Tonfp, fo the expected number of modules that a model misclassifies as in
G, which are actually in G,p,

Np, nfp the expected number of modules that a model misclassifies as in
G pfp which are actually in Gy,

Cr the cost of a Type I misclassification

Crr the cost of a Type II misclassification

a project to select the best balance between the misclassification rates,
and consequently, between effectiveness and efficiency.

: fnfp(xi)
Class(x;) = G if Fro(x:) =¢ (3)
Gy otherwise

where c is a constant which we experimentally choose. Each classifica-
tion technique provides its own way to estimate the likelihood, fr(x;),

cost.tex; 2/08/2000; 9:17; p.5

6 Khoshgoftaar and Allen

Table II. Notation for Module Counts

Model
Class anp G) Total

Actual
Gufp | Pnfonfp Pnfo,fo | nfp
Gy Ppnfp Tppgp | Ny
|Total | |n |

of belonging to each class (group), Gg. Given a candidate value of ¢, we
estimate effectiveness and efficiency. If the balance is not satisfactory,
we select another candidate value of ¢ and estimate again, until we
arrive at the best ¢ for the project.

For example, one approach is to choose ¢ so that effectiveness is at
least a minimum acceptable level. In another approach, one chooses ¢
such that Type I and Type II misclassification rates are equal (Khosh-
goftaar et al., 1998; Seber, 1977). This value of ¢ is especially appro-
priate when mp, < 7. In practice, we can achieve only approximate
equality due to finite discrete data sets. A third approach sets a maxi-
mum on the number of modules recommended for enhancement. Many
other strategies are also possible.

3. System Description

We conducted a case study of a very large legacy telecommunications
system, written in a high level language, and maintained by professional
programmers in a large organization. The entire system had signifi-
cantly more than ten million lines of code. This embedded computer
application included numerous finite state machines and interfaces to
other kinds of equipment.

This case study focused on faults discovered by customers after re-
lease. A module was considered fault-prone if any faults were discovered
by customers, and not fault-prone otherwise. Fault data was collected at
the module level by the problem reporting system. A module consisted
of a set of related source code files.

This case study considered only updated modules, i.e., those with
at least one update to source code since the prior release. These mod-
ules had several million lines of code in a few thousand modules. The
proportion of modules with no faults among the updated modules was
Tnfp = 0.926, and the proportion with at least one fault was w5, = 0.074.

cost.tex; 2/08/2000; 9:17; p.6

Cost-Benefit Analysis of Software Quality Models 7

Enhanced Measurement for Early Risk Assessment of Latent Defects
(EMERALD) is a sophisticated system of decision support tools used by
software designers and managers to assess risk and improve software
quality and reliability at Nortel (Northern Telecom) (Hudepohl et al.,
1996). EMERALD provides access to metrics and software quality models
based on those software metrics.

Our goal was a model of updated modules where predictions could
be made after beta testing. Software product metrics were collected
from source code by the EMERALD system, and were aggregated to
the module level. Development process data was largely drawn from a
development metrics data base derived from configuration management
and problem reporting data. EMERALD interfaces with this data base.
Our tools collected over sixty metrics. Pragmatic considerations usually
determine the set of candidate independent variables. We do not ad-
vocate a particular set of software metrics for software quality models,
to the exclusion of others recommended in the software engineering
literature. Because marginal data collection costs are modest, we prefer
the data-mining approach, analyzing a broad set of metrics, rather than
limiting data collection according to predetermined research questions.
Preliminary data analysis selected metrics that were appropriate candi-
dates for modeling purposes. The candidate independent variables for
a module consisted of those listed in Table III.

4. Case Study Results

We impartially divided the available data on updated modules into
approximately equal fit and test data sets, so that each data set had
sufficient observations for statistical purposes. The fit data set was
used to build the model, and the test data set was used to evaluate its
accuracy.

Stepwise logistic regression on the fit data set selected significant
variables at the 15% level. The following model was estimated based
on the fit data set. Variables are in order of significance; VARSPNMX
and CUST_FIX were not significant.

log (1 . ﬁ) — —4.9780 + 0.3940 UNQ_DES
10.0165 FILINCUQ + 1.0921 USAGE
+0.9057 BETA_PR + 0.4845 BETA_FIX
—0.3958 VLO_UPD + 0.00039 SRC-GRO

+0.0137 LGPATH — 0.00037 UPD_.CAR ~ (4)

cost.tex; 2/08/2000; 9:17; p.7

8 Khoshgoftaar and Allen

Table III. Data Elements

Symbol Description

Software Product Metrics
FILINCUQ The number of distinct include-files, such as header files.

LGPATH The base 2 logarithm of the number of independent paths in the
control flow graph.

VARSPNMX The maximum span of variables, where the span of a variable is
the number of line of code between its first and last use.

USAGE The deployment percentage of the module.

Development Process Metrics

BETA_PR The number of problems found in this module during beta testing

of the current release.
BETA_FIX Total number of different problems that were fixed for the cur-

rent development cycle where the problems originated from issues
found by beta testing of a prior release.

CUST_FIX Total number of different problems that were fixed for the cur-
rent development cycle where the problems originated from issues
found by customers in a prior release.

SRC_GRO Net increase in lines of code due to software changes.

UNQ-DES Number of different designers that updated this module.

UPD_CAR The total number of software updates that designers had made in
their company careers at the time each updated this module.

VLO_UPD Number of updates by designers who each had 10 or less total
software updates in entire company career.

As an example, we chose ¢ to balance the Type I and Type IT mis-
classification rates. Based on resubstitution of the fit data set into the
model, ¢ = 15.98 yielded the Type I and Type II misclassification rates
which were approximately equal.

Using the generalized-classification model on the test data set, Ta-
ble IV shows the effect of various values of ¢ on the accuracy of the
model. (The row for ¢ = 15.98 is bold.)

Figure 1 is a graph! of the fraction of modules that the model
predicted to be fault-prone, i.e., the percent recommended for relia-
bility enhancement, for various values of ¢, as listed in Table IV. For
¢ = 15.98, the fraction recommended was 31.36%.

Figure 2 depicts the tradeoff between Type I and Type II mis-
classification rates for various values of ¢, as listed in Table IV. For
c = 15.98, the Type I misclassification rate was 27.71% and the Type
IT misclassification rate was 22.96%.

1 All figures in this paper use a logarithmic scale for c.

cost.tex; 2/08/2000; 9:17; p.8

Cost-Benefit Analysis of Software Quality Models 9

Table IV. Model Accuracy
test data set

Recommended Error Rate
c by Model Type | Type Il | Effectiveness Efficiency
0.10 0.49% 0.06% 94.07% 5.93% 100.00%
0.25 0.88% 0.30% 91.85% 8.15% 68.74%
0.50 1.37% 0.59% 88.89% 11.11% 59.99%
1.00 2.30% 1.07% 82.22% 17.78% 57.13%
2.00 3.67% 2.07% 76.30% 23.70% 47.75%
5.00 08.28% 5.92% 62.22% 37.78% 33.76%
10.00 18.64% 15.22% 38.52% 61.48% 24.40%
15.00 29.06% 25.46% 25.93% 74.07% 18.86%
15.98 31.36% | 27.71% 22.96% 77.04% 18.17%
20.00 38.21% 34.87% 20.00% 80.00% 15.49%
25.00 48.85% 46.00% 15.56% 84.44% 12.79%
30.00 57.51% 55.18% 13.33% 86.67% 11.15%
50.00 77.08% 75.84% 7.41% 92.59% 8.89%
100.00 95.56% 95.20% 0.00% 100.00% 7.74%
100%
80% -
o
()
©
% 60% -
&
&
o 40% -
3]
[)
(n'd
20% -
0% ¢ ! \
0.1 1.0 10.0 100.0
C

Figure 1. Modules Predicted to be Fault-Prone

cost.tex; 2/08/2000; 9:17; p.9

100%

—&o—Type | ——Type Il ?

80%

60%

40%

Misclassifications

20%

0%
0.1 1.0 10.0 100.0

Figure 2. Misclassification Rates

Figure 3 shows the same tradeoff in terms of effectiveness and effi-
ciency, as listed in Table IV. For ¢ = 15.98, effectiveness was 77.04%
and efficiency was 18.17%. In other words, if model recommendations
were followed, over three quarters of the fault-prone modules would
be enhanced before release, instead of during system operations, and
more than one in six recommended modules actually were fault-prone.
Efficiency of 18.17% was a marked improvement over selecting modules
at random where 75, = 7.4%.

5. Cost-Benefit Analysis

Many classification techniques assume that the costs of Type I and
Type II misclassifications are equal. However, in software engineering
practice, the penalty for a Type IT misclassification is often much more
severe than for a Type I (Khoshgoftaar and Allen, 1998). The cost of
a Type I misclassification, C7, is the time and expense wasted trying
to enhance the reliability of a module that is already not fault-prone.
In other words, let C; be the cost of reliability enhancement processes
to discover faults in one module. A reliability enhancement technique,
such as extra reviews (Ackerman et al., 1989; Jones, 1996; McCarthy
et al., 1996) or extra testing, typically has modest direct cost per
module. On the other hand, the cost of a Type II misclassification,

cost.tex; 2/08/2000; 9:17; p.10

100% = 4

—&— Effectiveness —il— Efficiency

80%

60%

40%

20%

0.1 1.0 10.0 100.0

Figure 3. Effectiveness and Efficiency

Cir, is the lost opportunity to correct faults early. In other words, let
C11 be the cost difference between fixing faults that were discovered by
customers in one fault-prone module, and fixing faults discovered by
reliability enhancement processes prior to release. The consequences of
letting a fault go undetected until after release can be very expensive.
C71 may include the cost of distributing and installing fixes at customer
sites after release. One might even include the cost of consequential
damages during operations due to software faults. This section takes
the distinction between C; and C7y into account as we analyze costs
and benefits of using a software quality classification model.

Let us consider the cost of a Type I misclassification, C7, to be a
“cost unit”. We call Cr7/Cy the “cost ratio”. In this paper, we model C
and Cjy as constants, and we assume the cost of a correct classification
is zero. A more sophisticated cost model is a topic for future research.

We define the Cost of using a model as the extra effort entailed
beyond the budgeted costs of normal development. In this paper, our
focus is on using a model, and thus, we assume the costs of building
a model, and data collection are already budgeted; we do not include
them in the cost-benefit analysis. An expanded definition of Cost is a
topic for future research. We define Benefit as the benefit due to using
the model. From these quantities we can calculate Profit and return on

cost.tex; 2/08/2000; 9:17; p.11

12 Khoshgoftaar and Allen

Table V. Example Predictions
Number of modules

Predicted nfp Predicted fp
¢ | Total Actually fp | Total Actually fp
0.10 995 70 5 4
0.25 991 68 9 6
0.50 986 66 14 8
1.00 977 61 23 13
2.00 963 56 37 18
5.00 917 46 83 28
10.00 814 29 186 45
15.00 709 19 291 55
15.98 686 17 314 57
20.00 618 15 382 59
25.00 512 12 488 62
30.00 425 10 575 64
50.00 229 5 771 68
100.00 44 0 956 74

Total actually nfp = 926
Total actually fp = 74
Total modules = 1,000

investment, ROL

Profit = Benefit — Cost (5)
Profit
I —
RO Cost (6)

Future research will consider more sophisticated financial models, such
as those incorporating inflation and the cost of money.

5.0.0.1. Ezample. Suppose we had 1,000 updated modules to analyze
with the model from a project similar to our case study’s or a subse-
quent release. We expect 74 to be actually fault-prone, because the prior
probability was 7y, = 0.074. Table V applies the case-study results in
Table IV to this hypothetical example, listing the number of modules
predicted to be in each class and the number of actually fault-prone
modules expected in each group, rounded to integers.

The number of modules that could receive reliability enhancement,
such as extra reviews or additional testing, is often limited by practical
factors, such as budget, schedule, or availability of key people. A graph
like Figure 1 can be used to choose a practical value of ¢ for the current

cost.tex; 2/08/2000; 9:17; p.12

Cost-Benefit Analysis of Software Quality Models 13

project. For example, the fraction recommended for ¢ = 15.98 was
31.4% of the modules. Suppose this was an acceptable fraction of the
modules that could be enhanced. Let us consider the cost implications
of misclassifications for ¢ = 15.98 as an example. (Rows for ¢ = 15.98
in tables below are bold.) This example illustrates the computation of
a cost-benefit analysis. It is easily recomputed, if one were to choose
a different value of ¢, and thereby different levels of effectiveness and
efficiency, and/or if one had a different cost ratio.

Continuing our hypothetical example, as shown in Table V, for ¢ =
15.98, the model identifies 314 = (1 — 0.2296)(74) + (0.2771)(1000 —
74) modules as fault-prone. When we apply a reliability enhancement
technique to the 314 recommended modules, we discover that 57 = (1—
0.2296)(74) are actually fault-prone and the remaining 257 = 314 — 57
are not. Over the operational life of the software, customers find faults
in 17 = 74 — 57 additional modules which the model indicated as not
fault-prone.

5.1. SHORT-TERM ANALYSIS

A short-term perspective on costs and benefits focuses on costs prior
to release. Our short-term analysis considers the costs of fixing all
customer-discovered faults to be already budgeted as part of the base-
line maintenance process. Consequently, Cost and Benefit have short-
term definitions here. Cost is defined as the direct costs of reliability
enhancement for all modules recommended by the model.

Cost = Cr (fungp,pp + gy 1) (7)

If one does not follow model recommendations, then Cost = 0. Benefit
is defined as the cost-avoidance of maintenance-phase fixes for the fault-
prone modules that are recommended by the model.

Benefit = Crr gy p (8)

If one does not follow model recommendations, the Benefit = 0. Thus,
according to Equation (5), Profit is calculated as

Profit = (Cr1 — Cr) figp pp — CI Nongp (9)

If the model is not used, Profit = 0. “Nothing ventured, nothing gained.”

The following sections discuss the example with a short-term anal-
ysis at cost ratios of 10 and 200. Figures present additional results for
cost ratios of 50 and 100.

5.1.1. Ezxample: Cost Ratio = 10
Let us suppose that there is a benefit of C;; = 10 units for identifying
a fault-prone module at or prior to the end of beta testing rather than

cost.tex; 2/08/2000; 9:17; p.13

14 Khoshgoftaar and Allen

Table VI. Short-Term Cost-Benefit Analysis
Cost Ratio, Crr/Cr =10

| c | Cost Benefit | Profit ROI
0.10 5 40 35 7.0000
0.25 9 60 51 5.6667
0.50 14 80 66 4.7143
1.00 23 130 107 4.6522
2.00 37 180 143 3.8649
5.00 83 280 197 2.3735
10.00 186 450 264 1.4194
15.00 291 550 259 0.8900
15.98 314 570 256 0.8153
20.00 382 590 208 0.5445
25.00 488 620 132 0.2705
30.00 575 640 65 0.1130
50.00 771 680 91 -0.1180
100.00 956 740 -216 -0.2259

Cost of not using model = 0
Benefit of not using model = 0

waiting until a fault is discovered in that module by a customer. This
cost ratio (Cyr/Cr) of 10:1 is only an example, but we believe that 10:1
is plausible for many projects. Each project must determine its own
cost ratio.

Table VI shows relationships among ¢, profit, and return on invest-
ment for a hypothetical cost ratio of Cy;/Cr = 10. For ¢ = 15.98, the
cost is one unit per recommended module, 314 units, and the benefit
is the number of fault-prone modules enhanced times the value of each
enhancement, 570 = 57 x 10.

Figure 4 depicts the relationship between Profit and ¢ for various
cost ratios, including the profit listed in Table VI. For a cost ratio of
10, profit’s maximum is at ¢ = 10. For higher values of ¢, the Type I
misclassification rate becomes very high (see Figure 2), overwhelming
any benefit from identifying more fault-prone modules, due to the lower
Type I rate. At very high values of ¢, Profit becomes a loss (not shown
in the figure). At ¢ = 15.98, Profit = 256, which is near the maximum.

Figure b shows the relationship between ¢ and short-term return on
investment, at a cost ratio of 10, as listed in Table VI. Figures 6 and 7
show the the same relationship for cost ratios of 50 and 100 respectively.

cost.tex; 2/08/2000; 9:17; p.14

15

Cost Ratio

100000 —=—200
—e— 100

10000 - —4—50

—e—10

51000

a

100
10 i T T
0.1 1.0 10.0 100.0

Figure 4. Profit

At ¢ = 10, which maximizes profit for a cost ratio of 10, we see that
ROI=1.42, and at ¢ = 15.98, ROI = 0.82.

5.1.2. Ezample: Cost Ratio = 200

Let us suppose that there is a benefit of C;; = 200 units for identifying
a fault-prone module with the model rather than waiting for a customer
to discover faults. Even though this cost ratio (Crr/Cr) of 200:1 is only
an illustration here, we believe that costs associated with customer-
discovered faults for the case study’s telecommunications system are so
high that 200:1 is plausible. The value of the cost ratio is determined
by the special circumstances of a project.

Table VII shows profit and return on investment for various values
of ¢ for a cost ratio of 200. At ¢ = 15.98, like the above example,
the cost of reliability enhancement when implementing this model’s
recommendations is one unit per module, 314 units. The benefit for
using the quality model is 11,400 = 57 x 200 units for identifying some
fault-prone modules correctly.

Figure 4 includes profit as a function of ¢, as listed in Table VII. At
a cost ratio of 200, profit is maximized when reliability enhancement
processes are applied to all modules, i.e., when ¢ is so large that the
Type II misclassification rate is zero (see Figure 2). In other words, the
value of discovering faults early, which would otherwise be discovered
by customers, is so high that it pays to enhance the reliability of as

cost.tex; 2/08/2000; 9:17; p.15

16 Khoshgoftaar and Allen

Cost Ratio = 10

Return On Investment
OFRL NWMHMOUOON O
|

1
=

0.1 1.0 10.0 100.0

Figure 5. Short-Term Return On Investment

Cost Ratio = 50

40 o
35 -
30 -
25 -
20 -
15 |

Return On Investment

0.1 1.0 10.0 100.0

Figure 6. Short-Term Return On Investment

cost.tex; 2/08/2000; 9:17; p.16

Cost-Benefit Analysis of

Software Quality Models

Cost Ratio = 100

Return On Investment

0.1

Figure 7. Short-Term Return On Investment

1.0

Table VII. Short-Term Cost-Benefit Analysis

Cost Ratio, Crr/Cr = 200

| c | Cost Benefit Profit ROI
0.10 5 800 795 159.0000
0.25 9 1200 1191 132.3333
0.50 14 1600 1586 113.2857
1.00 23 2600 2577 112.0435
2.00 37 3600 3563 96.2973
5.00 83 5600 5517 66.4699
10.00 186 9000 8814 47.3871
15.00 291 11000 10709 36.8007
15.98 | 314 11400 | 11086 35.3057
20.00 382 11800 11418 29.8901
25.00 488 12400 11912 24.4098
30.00 575 12800 12225 21.2609
50.00 771 13600 12829 16.6394
100.00 956 14800 13844 14.4812

Cost of not using model = 0
Benefit of not using model = 0

17

cost.tex; 2/08/2000; 9:17; p.17

18 Khoshgoftaar and Allen

Cost Ratio = 200

160
— 140 -
5
e 120
3 100 |
=
—_— 80 |
e
(@] 60 -
s
= 40 4
©
20 4
O T T
0.1 1.0 10.0 100.0

Figure 8. Short-Term Return On Investment

many modules as possible. However, it is usually not practical to apply
special processes to all modules. In this example, we supposed that
31.4% of the modules is the practical maximum that the model should
recommend, corresponding to ¢ = 15.98. Thus, the profit of using the
model is 11,086 = 11,400 — 314 units.

Figure 8 shows the relationship between ¢ and return on investment
for a cost ratio of 200, as listed in Table VII. The shape of Figure 8
is similar to other cost ratios, but ROI is approximately scaled by
the cost ratio. For small values of ¢, the Type IT misclassification rate
is so high that very few modules were recommended for enhancement.
Because most of the recommendations were correct (see Figure 2), ROI
approaches the cost ratio. However, an extreme classification model,
such as this, that finds only a few fault-prone modules is not very
useful to the project. At a value of ¢ = 15.98, the return on investment
is ROI=35.31 = 11,086/314.

For comparison, consider enhancing 314 randomly chosen modules.
The number of fault-prone modules in this group is 23 = 314 x 0.074.
The benefit is 4, 600 = 23 x 200 units. The profit is 4, 286 = 4,600 — 314
units. The return on investment is ROI = 13.65 = 4,286/314. Thus,
using the model more than doubles the profit (11,086 wvs. 4,286) and
return on investment (35.31 vs. 13.65) of randomly selecting the same
number of modules for reliability enhancement.

cost.tex; 2/08/2000; 9:17; p.18

Cost-Benefit Analysis of Software Quality Models 19
5.2. LONG-TERM ANALYSIS

A long-term perspective on costs and benefits focuses on costs through-
out the life cycle, including the maintenance phase. Our long-term
analysis considers the costs of fixing all faults, irrespective of when
they are discovered. Some are discovered before release due to us-
ing the model, and others are discovered by customers after release.
Consequently, Cost and Benefit have long-term definitions here. The
long-term perspective is especially appropriate for the maintenance
phase.

Cost is defined as the cost of enhancements recommended by the
model, plus the cost of fixing faults discovered by customers.

Cost = Cr(fnfp,fp + Npp,p) + Cr11 oo, nfp (10)

If one does not follow model recommendations, then Cost = Crrngp.
Benefit is defined as the value of diagnosing and fixing all faults, as
if the model were not used, namely, the number of modules times the
cost of fixing a customer-discovered fault.

Benefit = Crr (Rgpnpp + Ny, fp) (11)
Benefit = Crrngp (12)

Thus, Benefit does not depend on the misclassification rates, Pr(nfp|fp)
and Pr(fp|nfp), and consequently, does not depend on c. If one does
not follow model recommendations, then the benefit is still given by
Equation (12). According to Equations (5), (10), and (12), Profit is
calculated as

Profit = Crrngp — Cr (Rngp,fp + Mo, fp) — C11 Ropp,nfp (13)
Profit = (Crr — Cr) Ay gp — C1 finpp g (14)

Equations (9) and (14) reveal that the Profit of using the model is the
same for both the short-term perspective and the long-term perspec-
tive. If the model is not used, then cost equals benefit and Profit = 0.
“Nothing ventured, nothing gained.”

The following sections discuss the example with a long-term analysis
at cost ratios of 10 and 200. Figures show additional results for cost
ratios of 50 and 100.

5.2.1. Ezample: Cost Ratio = 10

As we did above, let us suppose that Cr;/Cr = 10. Table VIII shows
the resulting relationships among ¢, profit, and return on investment.
For ¢ = 15.98, according to Equation (10), the cost is 484 units, and
the benefit is 740 = 74 x 10.

cost.tex; 2/08/2000; 9:17; p.19

20 Khoshgoftaar and Allen

Table VIII. Long-Term Cost-Benefit Analysis
Cost Ratio, C11/Cr = 10

| c | Cost Benefit | Profit ROI
0.10 705 740 35 0.0496
0.25 689 740 51 0.0740
0.50 674 740 66 0.0979
1.00 633 740 107 0.1690
2.00 597 740 143 0.2395
5.00 543 740 197 0.3628
10.00 466 740 274 0.5880
15.00 481 740 259 0.5385
15.98 484 740 256 0.5289
20.00 532 740 208 0.3910
25.00 608 740 132 0.2171
30.00 675 740 65 0.0963
50.00 821 740 -81 -0.0987
100.00 956 740 -216 -0.2259

Cost of not using model = 740
Benefit of not using model = 740

For a given cost ratio, the long-term profit is the same as the short-
term profit. Figure 4 shows the profit for a cost ratio of 10:1.

Figure 9 depicts the long-term return on investment as a function
of ¢ at a cost ratio of 10. Figures 10 and 11 show results for cost
ratios of 50 and 100 respectively. Due to the long-term perspective, at
a cost ratio of 10, return on investment for low values of ¢ is also low.
The ¢ maximizing ROI is the same as the value maximizing profits.
High values of ¢ result in losses and ROI is negative. At ¢ =~ 10 which
maximizes profits, we see that ROl = 0.59, and for ¢ = 15.98, ROI =
0.53.

5.2.2. Ezample: Cost Ratio = 200
As we did above, let us suppose that Cy;/Cr = 200. Table IX shows
relationships among ¢, profit, and return on investment for this exam-
ple. For ¢ = 15.98, according to Equation (10), the cost is 3,714 units,
and the benefit is 14,800 = 74 x 200.

Because the long-term profit is the same as the short-term profit,
Figure 4 shows the profit for a cost-ratio of 200:1.

Figure 12 shows the relationship between ¢ and return on invest-
ment. Because of the long-term perspective, for a cost ratio of 200,

cost.tex; 2/08/2000; 9:17; p.20

Cost-Benefit Analysis of Software Quality Models 21

Cost Ratio = 10

1.0
0.8 -
0.6
0.4
0.2
0.0 1

Return On Investment

_0.4 T T
0.1 1.0 10.0 100.0

Figure 9. Long-Term Return On Investment

Cost Ratio = 50

4

s 3

(]

E 3

]

2

z 2

§ 2

£

51

I

x 1
0
0.1 1.0 10.0 100.0

Figure 10. Long-Term Return On Investment

cost.tex; 2/08/2000; 9:17; p.21

22 Khoshgoftaar and Allen

Cost Ratio = 100

Return On Investment
O P N W » 00 O N @©
|

0.1 1.0 10.0 100.0

Figure 11. Long-Term Return On Investment

Table IX. Long-Term Cost-Benefit Analysis
Cost Ratio, C11/Cr = 200

| c| Cost Benefit Profit ROI

0.10 | 14005 14800 795 0.0568
0.25 | 13609 14800 1191 0.0875
0.50 | 13214 14800 1586 0.1200
1.00 | 12223 14800 2577 0.2108
2.00 | 11237 14800 3563 0.3171
5.00 9283 14800 5517 0.5943
10.00 5786 14800 9014 1.5579
15.00 4091 14800 | 10709 2.6177
15.98 | 3714 14800 | 11086 2.9849
20.00 3382 14800 | 11418 3.3761
25.00 2888 14800 | 11912 4.1247
30.00 2575 14800 | 12225 4.7476
50.00 1771 14800 | 13029 7.3569
100.00 956 14800 | 13844 14.4812

Cost of not using model = 14,800
Benefit of not using model = 14,800

cost.tex; 2/08/2000; 9:17; p.22

Cost-Benefit Analysis of Software Quality Models 23

Cost Ratio = 200

16
— 14 - b
&
e 12 -
3 10 |
=
= g |
c
(@] 6 -
£
S 4
[<5)
[a's 2

0 ——o |

0.1 1.0 10.0 100.0

Figure 12. Long-Term Return On Investment

low values of ¢ result in low ROI Extremely high values of ¢ yield the
highest ROI, because at Cr; = 200, it is profitable to enhance the reli-
ability of as many modules as possible. However, special enhancement
of all modules is not practical. At a value of ¢ = 15.98, the return on
investment is ROI = 2.98 = 11,086/3, 714.

For comparison, consider enhancing 314 randomly chosen modules:
The cost of using the model is Cost = 10,514 = 314 + (200)(74 — 23)
units, and Benefit = 14,800 = 74 x 200 units. Profit = 4,286 =
14,800 — 10,514 units, and the return on investment is ROI = 0.41 =
4,286/10,514. Like the short-term analysis, using the model more than
doubles the long-term profit (11,086 vs. 4,286) and yields more than
seven times the return on investment (2.98 vs. 0.41) of randomly se-
lecting the same number of modules.

6. Conclusions

Many businesses are finding that development of reliable software has
become increasingly important in today’s marketplace. A static model
of the software development life cycle that treats all modules similarly,
is becoming inadequate to the task. The need to achieve a new level of
quality is mandating reengineering of software development processes
to a dynamic model.

cost.tex; 2/08/2000; 9:17; p.23

24 Khoshgoftaar and Allen

Business process reengineering (BPR) is the popular term for radi-
cal redesign of business processes (Hammer and Champy, 1993). This
paper focuses on reengineering the business processes that produce
commercial software to take advantage of software-quality modeling
technology. In particular, this paper presents how to analyze the costs
and benefits of the accuracy of a software quality classification model.
The cost-benefit analysis method considers both a short-term and long-
term perspective. The long-term perspective is especially well-suited
to the maintenance phase. A cost-benefit analysis gives insight into
the implications of implementing the recommendations of a software
quality model in the context of a dynamic development process.

A case study illustrated the method. The case study examined a
very large legacy telecommunications system with strict reliability re-
quirements. A small fraction of the modules in the case study had
faults discovered by customers (less than 8%). This small set of mod-
ules can be difficult to identify. Logistic regression in conjunction with
a generalized classification model which we have proposed predicted
whether each module was fault-prone or not (Khoshgoftaar and Allen,
2000). The example illustrated how a dynamic process using a software
quality model can result in much higher profit and return on investment
than a static approach that randomly selects modules for reliability
enhancement. The case study shows that the approach used here scales
up to large systems. We anticipate that a refinement of this model will
be incorporated into Nortel’s EMERALD system.

Future research will refine the measure of cost and benefit for im-
proved realism, will validate these results when data on subsequent
releases become available, and will study other classification techniques.

Acknowledgements

We thank the EMERALD team at Nortel for collecting the data. This
work was supported by a grant from Nortel, through the Software
Reliability Department, Research Triangle Park, NC. The findings and
opinions in this paper belong solely to the authors, and are not nec-
essarily those of the sponsor. Moreover, our results do not in any way
reflect the quality of the sponsor’s software products.

References

Ackerman, A. F., L. S. Buchwald, and F. H. Lewski: 1989, ‘Software Inspections:
An effective verification process’. IEEE Software 6(3), 31-36.

cost.tex; 2/08/2000; 9:17; p.24

Cost-Benefit Analysis of Software Quality Models 25

Biazzo, S.: 1998, ‘A Critical Examination of the Business Process Re-engineering
Phenomenon’. Internation Journal of Operations and Production Management
18(9/10), 1000-1016.

Fenton, N. E. and S. L. Pfleeger: 1997, Software Metrics: A Rigorous and Practical
Approach. London: PWS Publishing, 2d edition.

Hammer, M.: 1990, ‘Reengineering Work: Don’t Automate, Obliterate’. Harvard
Business Review 68(4), 104-112.

Hammer, M. and J. Champy: 1993, Reengineering the Corporation: A Manifesto for
Business Revolution. New York: Harper-Collins.

Hosmer, Jr., D. W. and S. Lemeshow: 1989, Applied Logistic Regression. New York:
John Wiley & Sons.

Hudepohl, J. P.: 1990, ‘Measurement of Software Service Quality for Large Telecom-
munications Systems’. IEEE Journal of Selected Areas in Communications 8(2),
210-218.

Hudepohl, J. P., S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. Mayrand: 1996,
‘EMERALD: Software Metrics and Models on the Desktop’. IEEE Software 13(5),
56-60.

Hudepohl, J. P.;, W. Snipes, T. Hollack, and W. Jones: 1992, ‘A Methodology to Im-
prove Switching System Software Service Quality and Reliability’. In: Proceedings
of IEEE Global Telecommunications Conference. pp. 1671-1678.

Jones, C.: 1996, ‘Software Defect-Removal Efficiency’. Computer 29(4), 94-95.

Khoshgoftaar, T. M. and E. B. Allen: 1998, ‘Classification of Fault-Prone Software
Modules: Prior Probabilities, Costs, and Model Evaluation’. Empirical Software
Engineering: An International Journal 3(3), 275-298.

Khoshgoftaar, T. M. and E. B. Allen: 2000, ‘A Practical Classification Rule for
Software Quality Models’. IEEE Transactions on Reliability 49(2). In press.
Khoshgoftaar, T. M., E. B. Allen, R. Halstead, G. P. Trio, and R. Flass: 1998,
‘Process Measures for Predicting Software Quality’. Computer 31(4), 66-72.
McCarthy, P., A. Porter, H. Siy, and L. G. Votta: 1996, ‘An Experiment to Assess
Cost-Benefits of Inspection Meetings and their Alternatives’. In: Proceedings of

the Third International Software Metrics Symposium. Berlin.

Motwani, J., A. Kumar, J. Jiang, and M. Youssef: 1998, ‘Business Process Reengi-
neering: A Theoretical Framework and an Integrated Model’. Internation Journal
of Operations and Production Management 18(9/10), 964-977.

Orman, L. V.: 1998, ‘A Model Management Approach to Business Process Reengi-
neering’. Journal of Management Information Systems 15(1), 187-212.

Seber, G. A. F.: 1977, Linear Regression Analysis. New York: John Wiley and Sons.

Authors’ Vitae

Taghi M. Khoshgoftaar

is a professor of the Department of Computer Science and Engineering,
Florida Atlantic University and the Director of the Empirical Software
Engineering Laboratory. His research interests are in software engineer-
ing, software complexity metrics and measurements, software reliability
and quality engineering, computational intelligence, computer perfor-
mance evaluation, multimedia systems, and statistical modeling. He has

cost.tex; 2/08/2000; 9:17; p.25

26 Khoshgoftaar and Allen

published more than 150 refereed papers in these areas. He has been a
principal investigator and project leader in a number of projects with
industry, government, and other research-sponsoring agencies. He is a
member of the Association for Computing Machinery, the American
Statistical Association, the IEEE Computer Society, and IEEE Relia-
bility Society. He served as the general chair of the 1999 International
Symposium on Software Reliability Engineering (ISSRE’99), and the
general chair of the 2001 International Conference on Engineering of
Computer Based Systems. He has served on technical program commit-
tees of various international conferences, symposia, and workshops. He
has served as North American editor of the Software Quality Journal,
and is on the editorial board of the Journal of Multimedia Tools and
Applications.

Edward B. Allen

received the B.S. degree in engineering from Brown University, Provi-
dence, Rhode Island USA, in 1971, the M.S. degree in systems engineer-
ing from the University of Pennsylvania, Philadelphia, Pennsylvania
USA, in 1973, and the Ph.D. degree in computer science from Florida
Atlantic University, Boca Raton, Florida USA, in 1995. He is currently
an assistant professor in the Department of Computer Science at Mis-
sissippi State University. He began his career as a programmer with the
U.S. Army. From 1974 to 1983, he performed systems engineering and
software engineering on military systems, first for Planning Research
Corp. and then for Sperry Corp. From 1983 to 1992, he developed cor-
porate data processing systems for Glenbeigh, Inc., a specialty health
care company. His research interests include software measurement,
software process, software quality, and computer performance mod-
eling. He has more than 60 refereed publications in these areas. He
is a member of the IEEE Computer Society and the Association for
Computing Machinery.

Wendell D. Jones

received his Ph.D. in Mathematical Science (Statistics emphasis) from
Clemson University in 1987. He is Chief Researcher of EMERALD, a
Business Unit of Nortel Networks.

John P. Hudepohl

is manager of EMERALD, a Business Unit of Nortel Networks. He has
more than 20 years experience in the reliability, maintainability and
quality fields for both hardware and software.

cost.tex; 2/08/2000; 9:17; p.26

Cost-Benefit Analysis of Software Quality Models 27

Address for Offprints: Readers may contact the authors through Taghi M. Khosh-
goftaar, Empirical Software Engineering Laboratory, Dept. of Computer Science
and Engineering, Florida Atlantic University, Boca Raton, FL 33431 USA. Phone:
(561)297-3994, Fax: (561)297-2800, Email: taghiQ@cse.fau.edu, URL: www.cse.fau.edu/esel/.

cost.tex; 2/08/2000; 9:17; p.27

cost.tex; 2/08/2000; 9:17; p.28

