IMPLEMENTATION OF A THREE-GROUP
CLASSIFICATION MODEL USING CASE-BASED
REASONING

by

Huiming Song

A Thesis Submitted to the Faculty of
The College of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

Florida Atlantic University
Boca Raton, Florida

August 2001

IMPLEMENTATION OF A THREE-GROUP CLASSIFICATION
MODEL USING CASE-BASED REASONING

by
Huiming Song
This thesis was prepared under the direction of the candidate’s thesis advisor, Dr.
Taghi M. Khoshgoftaar, Department of Computer Science and Engineering, and has
been approved by the members of his supervisory committee. It was submitted to

the faculty of The College of Engineering and was accepted in partial fulfillment of
the requirements for the degree of Master of Engineering.

SUPERVISORY COMMITTEE:

Thesis Advisor

Chairman, Department of
Computer Science and Engineering

Dean, College of Engineering

Vice Provost Date

i

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Taghi M. Khoshgoftaar, who spent lots
of time on advising me in my research work. I sincerely appreciate him for giving
me the opportunity to work with him. His inspiration, profound knowledge, wise
thoughts and kind guidance were of great help to complete this thesis. I want to
thank Dr. Eduardo Fernandez and Dr. Martin K. Solomon for agreeing to serve on
my thesis committee and reviewing my thesis.

Special thanks to Dr. Robert Szabo. His previous research made the work
possible. T used the same data set that he used in his work.

I deeply appreciate Zhiwei Xu, Kehan Gao and Naeem Seliya in helping me
use IXTgXand reviewing my thesis. Special thanks to Kehan Gao for her work to
verify some algorithms implemented in SMART by using an independent program.

I am very grateful to my wife, Yi Liu, and my parents in China for providing

me with the strongest moral support.

il

ABSTRACT

Author: Huiming Song

Title: Implementation of A Three-Group Classification Model
Using Case-Based Reasoning

Institution: Florida Atlantic University

Thesis Advisor: Dr. Taghi M. Khoshgoftaar

Degree: Master of Engineering

Year: 2001

Reliability is becoming a very important and competitive factor for software
products. Software quality models based on software metrics provide a systematic
and scientific way to detect software faults early and to improve software reliability.
Classification models for software quality usually classify observations using two
groups. This thesis presents a new algorithm for classification using three groups,
i.e., Three-Group Classification Model using Case Based Reasoning. The basic idea
behind the algorithm is that it uses the commonly used two-group classification
method three times. This algorithm can be implemented with other techniques such
as logistic regression, classification tree models, etc. This work compares its quality
with the Discriminant Analysis method. We find that our new method performs
much better than Discriminant Analysis. We also show that the addition of object-
oriented software measures yielded a model that a practitioner may actually prefer

over the simpler procedural measures model.

v

To my dear wife and my dear daughter

CONTENTS

TABLES e vii
FIGURES e ix
1 MODELING METHODOLOGY 1
1.1 Case-Base Reasoning 1
1.2 CBR Classification 3
1.3 Similarity Functions oL 4
1.4 Data Clustering Lo 6
1.5 Classification with Three Groups 8
1.6 Statistical Modeling Methodology 14
1.7 Discriminant Modelingo L. 15
1.8 Stepwise Model Selection 22
1.9 Evaluation of Models L. 23
BIBLIOGRAPHY e 25

1.1

1.2

1.3

1.4

TABLES

Summary of Two Group Model Error Types
Summary of Three Group Model Error Types
Summary of Two Group Model Error Types

Summary of Three Group Model Error Types

vi

11

11

17

17

1.1

1.2

1.3

FIGURES

The Figure of CBR Classification with Three Groups . . . 10

The General Interface of CBR Classification with Three
Groups e 12

The Interface of C BR Classification with Three Groups . 13

vii

Chapter 1

MODELING METHODOLOGY

In this chapter, we introduce the methods of Case-Based Reasoning and
discriminant analysis which were used in our case study. It also gives an overview

of principle components analysis and Z-test.

1.1 Case-Base Reasoning

Case-Based Reasoning (CBR) is a modeling technique that seeks to answer
new questions by identifying similar “cases” from the past. C'BR is a part of the
computational intelligence field focusing on automating reasoning processes. When
applied to software reliability, the working hypothesis of our approach is: a module
currently under development is probably fault-prone, if a module with similar prod-
uct and process attributes in an earlier release was fault-prone. It finds solutions to
new problems based on past experience, represented by “cases” in a “case library”.
Each module is a “case” of software development. The case library and the associ-
ated retrieval and decision rules constitute a C BR model. Fault-prone was defined

by a threshold on the number of faults discovered during integration and testing.

In our study, we focus on classification problems in software quality modeling.
Suppose each case in the library has known attributes and class membership. Given
a case with unknown class, we predict its class to be the same as the class of the most
similar case in the library, where similarity is defined in terms of case attributes. Our
study applies this approach to classification of software modules as Green, Yellow,
and Red, according to the risk of fault prone.

In principle, C BR has several advantages over statistical classification tech-

niques.

CBR can be designed to alert users when a new case is outside the bounds of

current experience.

e Once the most similar case has been selected from the library, its detailed

description can help one interpret the automated classification.

e ('BR systems can add new cases to the library and remove obsolete cases from
the library. Thus, a case-based reasoning can take advantage of new or revised

information as it becomes available.

e CBR is scalable to very large case libraries, and is amenable to concurrent

retrieval techniques.

1.2 CBR Classification

A case consists of all available information on a module. This includes its
Class and all measurements. Supplementary information on the module’s develop-
ment history may also be included for human interpretation. In our study, the case
library consists of the fit data set, having n modules. The case library represents
the past experiences of the development organization. Let ¢y be the vector of at-
tributes of the k™ module in the case library, and let cx; be the 4t attribute of that
module.

From the case library we want to extract the one that most closely resembles
our unclassified module. Let x; be the vector of attributes of the i** unclassified
module, and z;; be the jthattribute of that module.

Since our data is strictly quantitative, we think of similarity as the distance
between cases. Consider each attribute to be a dimension of a multi-dimensional
space. Each case is represented by a point in this space, and the unclassified module
by another point. We think of “similarity” as the inverse of the “distance” between
modules. We provide several similarity functions to calculate a distance, d;;, between

the target module x; and every case c; in the case library.

1.3 Similarity Functions

Several measures of similarity are presented in the literature according to the
problem domain, the availability of attribute data, and whether data types are cat-
egorical, discrete, real, etc. For quantitative attributes, the Euclidean distance and
city-block distance are commonly used. The Mahalonobis distance has the advan-
tage of explicitly accounting for correlations among attributes. It should be noted
that the raw metrics collected, i.e., the independent variables, are often measured in
varying ways and could contain a wide variety of ranges and scales. With this being
the case, it is often beneficial to first standardize the metrics. Standardization is a
method that allows all metrics to use the same unit of measure. For each metric,

X;, the standardized metric is computed according to the following formula:

Z; = T (1.1)
X; is the mean, and S; is the standard deviation of the ¢** metric X;. Stan-
dardization is not necessary for all of the similarity functions available. In fact, the
Mahalonobis Distance similarity function does not require that standardization be
used. In our study, we support the following similarity functions.
Absolute Difference Distance: This distance is also known as City-Block
Distance or Manhattan Distance. It is calculated by taking the weighted sum of
the absolute value of the difference in independent variables between the current

case and a past case. The user of the model provides the weights, and the absolute

4

value is taken because the direction of the difference in distance is irrelevant. This
distance is primarily used for quantitative attributes. The following is the equation

for Absolute Difference Distance:

dij = i Wi |Cjk — Tik| (1.2)
k=1

where m is the number of independent variables, and wy, is the weight of the
kth independent variable.

Euclidean Distance: This distance views the independent variables as di-
mensions within an m-dimensional space, with m being the number of independent
variables. A current case is represented as a point within this space. The distance
is calculated by taking the weighted distance between a current case and a past
case within this space. Again, the user of the model provides the weights, and this
distance is also commonly used when the data set contains quantitative attributes.

The following is the equation for Euclidean Distance:

dij = J i wk(cjk - wik)2 (1-3)

k=1

Mahalonobis Distance: This distance measure is an alternative to the
Euclidean distance. It is used when the independent variables are highly correlated.

Mahalonobis Distance is a very attractive similarity function to implement because:

e It can explicitly account for the correlation among the attributes.

e The independent variables do not need to be standardized.

In cases where the variances of the independent variables have unit variances
and are uncorrelated, the Mahalonobis distance is simply the square of the Euclidean

Distance. The following is the equation for Mahalonobis distance:

dij = (¢ — %) S7} (¢ — x3) (1.4)

Prime (') means transpose, and S is the variance-covariance matrix of the

independent variables over the entire case library. S~! is its inverse.

1.4 Data Clustering

There are several classification methods that can be used to enhance the clas-
sification of the dependent variable(s) in the software quality classification models.

Data clustering is such a method that can be used in C' BR as an enhancement
to the classification models. The case library is partitioned into clusters according
to the actual class of each case. The average distances to the clusters are then
computed for the current case. The current case’s classification is determined by
comparing the ratio of these average distances to the cost ratio.

Cost ratio is defined as C;/Cr, where C; is the cost of a Type I misclassifi-
cation or error, and Cy is the cost of a Type II misclassification or error. A Type I
misclassification is when a model classifies a case as fault-prone when it is actually

not fault-prone. A Type II misclassification is when a model classifies a case as not

fault-prone when it is actually fault-prone [2]. The Type II misclassifications are
generally considered more serious than the Type I misclassifications because they
represent the cost of releasing fault-prone cases into production and fixing fault-
prone cases after they have been released and deployed. Type I misclassifications,
on the other hand, represent the wasted efforts on analyzing low-risk modules. In
our study, we extend the usage of Type I and Type II misclassification. They are not
limited to the distinguish the misclassification of fault-prone and not fault-prone,
but to distinguish the errors from one group to another.

During the model development, the user can experiment with various cost
ratios to reach their desired value for the model. Because organizations may have a
preference as to which type of error they would like to minimize, we did not assume
a specific error type to be more important. Instead, we chose the cost ratio that
would provide the most balanced Type I and Type II misclassification rates. The
classification terminology for data clustering is as follows [1]: for an unclassified
case, x;, let d,sp(x;) be the average distance to the not fault-prone nearest neighbor
cases, and let dyy(z;) be the average distance to the fault-prone nearest neighbor
cases.

The following is the classification rule for data clustering analysis:

not fault-prone if % > CC',_III
nfp \Ti

Class(x;) = (1.5)
fault-prone otherwise

For multi-classification, there are more than two misclassifications. But we
can easily rewrite the classification rules according to the basic idea. We listed the
corresponding rules in next section. In our case study, the cost-ratio ranges from
0.1 to 1.0 with a step of 0.05. This can be easily changed using our SMART (The

Software Measurement Analysis and Reliability Toolkit) [13].

1.5 Classification with Three Groups

Dr. Khoshgoftaar[7, 8] developed a new algorithm based on the above. Here
we call the new algorithm as Three-Group Classification Model Using Case-Based
Reasoning. This new algorithm uses the traditional method of two groups three
times. First according to the number of faults, he partitioned the case library into
three groups, Green, Yellow and Red. The following four steps described this new
algorithm.

Stepl: Compute the distance of each module of the unclassified cases with
all cases in the Green and Red groups using a similarity function. According to the
distances, we parse the unclassified cases into two parts, named Test-I and Test-II.

The classification rule is as following:

Green if —ddRed > gﬁ
Class(z;) = Green on (1.6)

Red otherwise

where dgreen and dgeq represent the average distance to the group of Green
and Red. Cgp is the cost of Type_GR error, Crg is the cost of Type_RG error.

Step2: Compute the distance of each modules of the Test-I data set with all
cases in the Green and Yellow groups using the same similarity function as Stepl.
According to the distances, we parse the Test-I data set into two parts, the Test-

Green group and the Test-Yellowl group. The classification rule is as following:

Green if %ﬂﬂ > g—‘ég
Class(z;) = e (1.7)

Yellow otherwise
where dgreen and dyeon represent the average distance to the group of Green
and Yellow. Cgy is the cost of Type_YG error, Cgy is the cost of Type_GY error.
Step3: Compute the distance of each modules of the Test-IT data set with all
cases in the Yellow and Red groups using the same similarity function. According
to the distances, we parse the Test-II data set into two parts, Test-Red group and

Test-Yellow2 group. The classification rule is as following:

Yellow if ;%ed > Car
Class(z;) = Vellow . (1.8)
Red otherwise

where dyejon and dgeq represent the average distance to the group of Yellow

and Red. Cgy is the cost of Type_RY error, Cypg is the cost of Type_YR error.

Fit Data Set
Green Red

Model_GY Model_GR Model_YR

/ AN
Y Y
Test Data Set
Green @ Red

Figure 1.1: The Figure of CBR Classification with Three Groups

Step4: At last, we get Test-Yellow group by combining Test-Yellow1 group
and Test-Yellow2 group. Thus we have classified the test data set into three groups:
Test-Green, Test-Yellow and Test-Red.

Figure 1.1 shows the idea of this algorithm.

These three groups can lead to six misclassifications.

e Type GR: A Green module is classified as Red.

10

Table 1.1: Summary of Two Group Model Error Types

Actual Predicted Risk Group
Risk Group | High | Low
Low Type I -
High - Type 11

Table 1.2: Summary of Three Group Model Error Types

Actual Predicted Risk Group
Risk Group | High [Medium | Low
Low Type 1 | Type 2 -
Medium Type 3 - Type 4
High - Type 5 | Type 6

Type_GY: A Green module is classified as Yellow.

Type_YR: A Yellow module is classified as Red.

Type_YG: A Yellow module is classified as Green.

Type_RY: A Red module is classified as Yellow.

Type_RG: A Red module is classified as Green.

Table 7?7 summarizes the misclassifications. This new algorithm has been im-
plemented using C++ and added as a new feature to SMART version 2.0. Figure 1.2

and Figure 1.3 show the user GUI general and tab page interfaces in SMART.

11

i SMART: Software Measurement Analyziz and Reliability Toolkit

File Help

CER with Twao Data Cluztering
General

Caze-Bazed Feazoning

CBR with Three Data Cluztering
Module Order Model

— Project Information

Project Mame: ItESt

Project Description; Hello 'world!

Signifizance Test
Threshold1 [Fit Data): |1-U Threshald2(Fit D ata): |2-U

[ooo02 =] Test
ThiesholdiTest Data) [0 Thieshold2(Test Data): [20 et

— Data [nformation
Fit Data File: [188 modules]

IH:'xSHEHsmartE.DHfitdataseH .dat
Test Data File: [34 modules]

IH:HSHE'xsmartE.D'xtestdataset'l .dat

[T Use weights File?

Files.. I
[T Standardize Data?

Load Data Files. .

.
.

N

| Yiew Data |

P& S

— ketric Infarmation

MHumber of
Jruzed zed
hetric 3 b etric 1
]
4
Intercept |n.nnnnnnnn
Dependent Im

Groups

12

Figure 1.2: The General Interface of CBR Classification with Three

i SMART: Software Measurement Analyzis and Rehability Toolkit !Elm

File Help
General Caze-Bazed Reasoning | todule Order kodel |
CER with Two Diata Clustering CER with Three Data Clustering
Case Similarity Function: Uil off et paliims
| Euclidean Distance =l feed foq0o00000 - Add
Caze Selection Algorithrm: FevarEnee | o 20000000 —
IEIustering Unweighted.ﬁ.veragej giggggggg Remaowve |
Perform ‘
Mumber of Cazes: 1 ™ Dutlier ggggggggg ﬂl
Anabsis? o 7nn0oon0
Caze Librany: Target Data 0.20000000 |
= Fit " Fit 0.30000000 =
P P 100000000 =)
Fun E=perment Frint Besults | Save Resultz
CR. | Mum P | Type RG | Type BY | Num ¥ | Type ¥G | Type Y=
0o 19 0 0.0%] 0 0.0%] 10 0 0.0%] 17 [B3,
020 13 0 0.0%] 1[5.3%] 12 1[3.7%] 1451
0.30 17 0 0.0%] 2[10.5%) 12 I[1%)] 12 44.
0.40 16 0 0.0%] 3[15.8%)] 17 I[1%)] 725
0.50 13 1[5.3%] A 26.3%)] 14 A[18.5%] 4[14.1
0.E0 12 1[5.3%] B[31.6%) 14 B[22.2%)] 311
070 11 2[10.5%)] B[31.6%) 14 1070 37.0%) 311
0.80 11 3[15.8%)] B[26.3%] 14 11 [40.7%] 2 F.d_
0.90 11 3[15.8%) B[26.3%)] 13 12[44.4%) 20 7.4

1

'I.FEI 10 31583 6131.6% 13 12144 42 EIlTLI
[

Figure 1.3: The Interface of C BR Classification with Three Groups

13

1.6 Statistical Modeling Methodology

In this section, we discuss the methodology of Discriminant Analysis. We
will compare this method with Case-Based Reasoning Classification.

The measurement of software is becoming an established discipline in many
software organizations. Typically, we attempt to predict the quality of a software
system based on some quantifiable measures. These measures can then be used as
input to a predictive or classification model. Using these models, the development
process can be modified to help improve the quality of the system in a manner that
is repeatable across similar environments.

The set of available software metrics is quite large. For example, program
size could be expressed as lines of code, the number of executable statements, and
many of the Software Science metrics proposed by Halstead [5]. Furthermore, these
metrics often tend to be highly correlated. This correlation of the metrics is called
multicollinearity .

To circumvent the problem of multicollinearity, researchers often limit their
study to a few carefully selected software measures. On the other hand, taking
as many metrics as possible into consideration should lead to a more complete
model, since each measurement assesses a particular but sometimes overlapping
aspect of the software. Munson and Khoshgoftaar addressed this issue by proposing
the application of principal components analysis when developing a multiple linear

regression model [18]. Furthermore, it has been shown that regression models and

14

neural network models using principal components can perform better than the
corresponding model using the raw data [10, 11]. In Section 1.7, we will discuss
discriminant modeling. For a discussion about principal components analysis, refer

to [3].

1.7 Discriminant Modeling

Discriminant analysis is a statistical method that determines the optimum
assignment of observations to two or more distinct groups based upon one or more
quantitative measurements. These measurements are assumed to differ from group
to group. Given a set of observations with known group memberships, i.e., a fitting
data set, the methodology develops an assignment rule such that the chance of
misclassification is minimized. The resulting model may be used to classify future
observations based on the observed quantitative measures.

Discriminant analysis has been demonstrated to be useful for classifying high
and low risk program modules [21, 9]. In this context, risk refers to the number
of faults likely to be in the program module under consideration. The point at
which the high and low risk boundary is drawn is subjective, and will vary from
environment to environment. For example, modules with more than ten faults can
be considered high risk while those with less than ten faults are considered low risk.

In order to distinguish from the terms we used before like Green, Yellow

and Red, we apply discriminant analysis to build a model that classifies program

15

modules as high, medium, and low risk. Essentially there is no difference between
Green, Yellow, Red and low, medium, high risk group. The observations used to fit
the discriminant model are based on program files. The quantitative measurements
upon which classification is based (independent variables) are principal components
derived from a set of software product measurements extracted directly from the
source code. Many common software product measures tend to be correlated while
principal components are orthogonal [10]. Thus, principal components are favored
as we can avoid the model selection problems that stem from correlations among the
independent variables [3]. Though the large set of correlated measures will likely
provide more information, the first few principal components will capture a large
proportion of the software measurement variance.

The classification (dependent) variable, Faults, is a measure of the number of
errors that will be detected at the end of a specific development phase. The modules
are divided into three groups based on two cutoff values. Modules exceeding the
high cutoff point are assigned to the high risk group or Red. Those less than or
equal to the low cutoff are assigned to the low risk group or Green. Finally, modules
greater than the low cutoff and less than or equal to the high cutoff are assigned
to the medium risk group or Yellow. The cutoff values clearly determine the size of
each group and will vary from environment to environment. Typically, the cutoff
values are determined based on the past history of projects developed in a similar

environment.

16

Table 1.3: Summary of Two Group Model Error Types

Actual Predicted Risk Group
Risk Group | High | Low
Low Type I -
High - Type 11

Table 1.4: Summary of Three Group Model Error Types

Actual Predicted Risk Group
Risk Group | High [Medium | Low
Low Type 1 | Type 2 -
Medium Type 3 - Type 4
High - Type 5 | Type 6

This way can lead to 6 type of misclassifications.

Type 1: A low risk module is classified as high risk.

A low risk module is classified as medium risk.

Type 2:

Type 3: A medium risk module is classified as high risk.

Type 4: A medium risk module is classified as low risk.

Type 5: A high risk module is classified as medium risk.

Type 6: A high risk module is classified as low risk.

Table 1.4 summarizes the error type hierarchy for this three group classifica-

tion model.

17

Of the six error types listed, Type 1 and Type 6 errors are considered the
most serious. Each represents the maximum misclassification possible as measured
by the distance between the actual and predicted groups. A Type 1 misclassification
error occurs when a low risk module is classified as high risk. The consequences of
such an error type are similar to the Type I case for the two group model. A Type
6 misclassification happens when a high risk module is classified as low risk. This
error type has consequences similar to the Type II case for the two group model.
This suggests that the cost of a Type 6 error is higher than a Type 1 error. A good
model will minimize the number of Type 6 errors.

The three group discriminant model, will place a module into one of three
groups based upon its probability of membership. For example, if the probability
of membership into the three groups are 0.1, 0.3, and 0.6 respectively, the mod-
ule will be placed into the group corresponding to the membership probability of
0.6. Remember that the probability of membership is a function of the indepen-
dent variables. In our case, they are the principal components derived from the
observed software product metrics. For some modules that are correctly classified,
the membership probability will be much greater than the sum of the membership
probabilities of the remaining groups. This indicates a high probability of correct
classification. Conversely, some modules correctly classified will have probabilities
less than the sum of the membership probabilities of the remaining groups indicat-

ing a lower probability of correct assignment. For those modules correctly classified

18

into group G;, 1 — ¢; is a measure of the uncertainty of the classification, where g;
is the probability of membership to G;.
Before we can discuss discriminant analysis in more detail, we need to intro-

duce the following notation:

e x is a p-dimensional vector containing the quantitative variables comprising

an observation,

e g is the number of groups,

e (; are mutually exclusive groups,

e n; is the number of observations in group 7 of the fitting set,

e fi(x) is the probability of x € Gj,

e 7; is the prior probability of membership, or proportion of observations in Gj,

and

e ¢;(x) is the posterior probability of membership in G; given x.

In general, an observation x;;, where ¢ = 1,2,...,9, and 1 < j < n;, is a
vector of p principal components derived from software product measures for the ;%
program module of group G;. For each group G;, a certain proportion of modules,

m;, will fall into that group. For i = 1,2,...,9, fi(x) is the probability density

19

function of those x falling into group G;. To minimize the total probability of

misclassification, the model assigns the observation x to group G; if

mifi(x) 2 mifi(x), §=12,...,9. (1.9)

The assignment on the boundary is arbitrary. For example when g = 2, the model

assigns the observation x to group G, if

hlx) m (1.10)

fLEx) "~ m
and to group Go otherwise. When f;(x)/f2(x) = m2/m, the assignment is arbitrary.
Equation 1.9 means that assigning x to the group having the maximum pos-

terior probability, i.e., if ¢;(x) > ¢;(x), j = 1,2,..., g, then x is assigned to group

G;. Using Bayes’ rule, the posterior probability is defined as

gi(xo) = Pr[x € Gi|x = x¢]
Pr[x = x¢|x € G;] Pr[x € G|]

g
Y Prlx = x¢[x € G4] Pr[x € G}

_filxo)mi (1.11)

g
> _fi(xo)m;
j=1

For g = 2, equation 1.11 may be rewritten as

fi(xo0)m;
fi(xo)m + fa(xo)mo (1.12)

Qi(xo) =

Next, the group specific densities, fi(x),i = 1,2,...,g, must be estimated.

If the group specific densities are known, a parametric approach may be used. For

20

example, one may assume each group has multivariate normal distribution. Alter-
natively, a nonparametric method may be used. Nonparametric methods of density
estimation are not based on distributional assumptions [26].

Schneidewind has discussed the usefulness of nonparametric statistical meth-
ods in modeling software engineering data [25]. In addition, our experience has
confirmed a published report that software product measures are usually not nor-
mally distributed [24]. Since a parametric description is likely to be inadequate, we
consider only a nonparametric model in this study. The following notation is now

needed to complete our discussion on nonparametric discriminant modeling:

y, z are p-dimensional vectors,

fi(x|)) is an approximation of f;(x),

e) is a smoothing parameter,

K;(y|z, \) is a kernel density function, and

S; is the covariance matrix for the sample data in Gj;.

In a nonparametric model, the density, f;(x), is estimated from the sample
data, x;;, ¢t =1,2,..., g, where 1 < j < n;. Using the kernel method of multivariate

density estimation [26], f;(x) is estimated by

~ 1
fi(x|A) = - ZKi(x|Xij’)‘)’

2]:1

21

where K;(y|z,\) gives a kernel probability density function on y with mode at z
and smoothing parameter A\. Of the many kernel functions available, we used the

normal kernel,
Ki(ylz, A) = (2722 "% |8, 72 exp{(—1/2)2)(y — 2)'S; (v — 2)},

where |S;| is the determinant of the covariance matrix S;. Various methodologies
have been proposed for selecting the value of A\. For most applications it is sufficient
to empirically determine the value of A that best fits the observed data. Substituting

into Equation 1.10 with f;(x) = f,-(x\)\), gives the discriminant function.

1.8 Stepwise Model Selection

Prior to fitting a discriminant model, one must identify which combination of
independent variables yields the best classification. This is known as model selection.
Model selection selects m < p measures, where p is the number of independent
variables comprising each observation. The m measures selected each contribute to
the model at a significance level determined by the analyst. In this study, stepwise
discriminant analysis was used.

Stepwise discriminant analysis is an iterative procedure [26]. Independent
variables are entered into the model in an incremental manner, based on an F' test
from analysis of variance, which is recomputed for each change in the current model.
The process begins with no variables in the model. Then, we add the variable not

already in the model with the best significance level, as long as its significance is

22

better than the threshold (5%). Then we remove the variable already in the model
with the worst significance level, as long as its significance is worse than the threshold

(5%). These steps are repeated until no variable can be added to the model.

1.9 Evaluation of Models

The normal rule to evaluate a model is to use the fit data set to estimate
parameters of a model. The test data set is used to evaluate its accuracy. Both
data sets consist of the actual class and values of the independent variables for each
observation. Ideally, the test data set is an independent sample of observations.

In our study, first we use all the observations collected from the system under
investigation to fit a model. The fitted model is then applied to the fitting data,
classifying it into groups. The number of classification errors quantifies the models
quality of fit.

We evaluate our model by evaluating the ability of the model to correctly
classify new program modules into one of three groups predefined like Green, Yellow
and Red, or high, medium, and low risk. A complete study will evaluate a model’s
classification performance within the limits of the data available for study. Quality
of fit alone does not imply the model will have good predictive quality [12].

Normally, we prefer to evaluate the classification performance of a model by
applying it to data collected from a similar system, a testing data set, and compare

the predictions with the known results. In this case, however, data from a similar

23

project was not available.

Data splitting may be appropriate when data on a similar subsequent project
is not available. Data splitting is often used provided the data set is large. Using
this method, the data set is randomly partitioned into two sets: one to fit the model
and one to test predictive quality of the model. Since our data set was not large
enough to justify the data splitting technique, we chose to apply a modified data
splitting technique to evaluate the classification performance of our model. This
method usually is called Cross-Validation, sometimes called “U-Method” [6].

Using this method, we fitted a model, Mod;, with all N observations except
the ¢, 1 < ¢ < N, and predicted the missing observation, a testing set of size 1.
Classifying the missing observation this way simulates the application of the model
to a current project with unknown results. In practice, this means N different
discriminant models were fitted with NV — 1 observations and each model was then
used to classify the missing observation.

This technique is considered a true validation since the i** observation is not
used at the same time to fit the model and to assess the predictive quality. This
method is appropriate for small data sets than data splitting, but involves more
computation per observation. It is often used in multiple linear regression in cases

where the data set is small [22].

24

1]

2]

3]

[4]

[5]
[6]

[7]

8]

[9]

BIBLIOGRAPHY

V. R. Basili, L. C. Briand, and W. Melo. A validation of object-oriented de-
sign metrics as quality factors. IEEE Transactions on Software Engineering,
22(10):751-761, October 1996.

B. Beizer. Software Testing Techniques. Van Nostand Reinhold, New York,
2nd edition, 1990.

W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Appli-
cations. John Wiley and Sons, New York, 1984.

Norman E. Fenton and Shari Lawerence Pfleeger. Software Metrics. PWS
Publishing Company, New York, 2d edition, 1997.

M. Halstead. Elements of Software Science. Elsevier, New York, 1977.

T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone software
modules: Prior probabilities, costs, and model evaluation. Technical Re-
port TR-CSE-97-52, Florida Atlantic University, Boca Raton, FL, June 1997.

Taghi M. Khoshgoftaar, Edward. B. Allen, Robert Halstead, Gary P. Trio,
and Ronald Flass. Process measures for predicting software quality. Com-
puter, 31(4):66-72, April 1998.

Taghi M. Khoshgoftaar, Edward. B. Allen, Kalai S. Kalaichelvan, and Nishith
Goel. The impact of software evolution and reuse on software quality. Em-
pirical Software Engineering: An International Journal, 1(1):31-44, 1996.

Taghi M. Khoshgoftaar, David L. Lanning, and Abhijit S. Pandya. A com-
parative study of pattern recognition techniques for quality evaluation of
telecommunications software. IEEE Journal on Selected Areas in Communi-
cations, 12(2):279-291, February 1994.

25

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Taghi M. Khoshgoftaar and J. C. Munson. Predicting software development
errors using software complexity metrics. IEEE Journal on Selected Areas in
Communications, 8(2):253-261, February 1990.

Taghi M. Khoshgoftaar and Robert M. Szabo. Predicting software quality
during testing using neural network models: A comparative study. Interna-
tional Journal of Reliability, Quality, and Safety Engineering, 1(3):303-319,
September 1994.

Taghi M. Khoshgoftaar, Robert M. Szabo, and Timothy G. Woodcock. An
empirical study of program quality during testing and maintenance. Software
Quality Journal, 3(3):137-151, September 1994.

T.M. Khoshgoftaar, E.B. Allen, and J.C. Busboom. Modeling software qual-
ity: The software measurement analysis and reliability toolkit. In Process-
ings of the Twelfth IEEE International Conference on Tools with Artificial
Intelligence, pages 54-61, Nov. 2000.

B. A. Kitchenham, L. M. Pickard, and S. J. Linkman. An evaluation of some
design metrics. Software Engineering Journal, 5(1):50-58, 1990.

David L. Lanning and T. M. Khoshgoftaar. The impact of software enhance-
ment on software reliability. IEEE Transactions on Reliability, 44(4):677-
682, December 1995.

M. R. Lyu. Introduction. In M. R. Lyu, editor, Handbook of Software Reli-
ability Engineering, chapter 1, pages 3—-25. McGraw-Hill, New York, 1996.

T. J. McCabe. A complexity metric. IEEE Transactions on Software Engi-
neering, SE-2(4):308-320, December 1976.

J. C. Munson and T. M. Khoshgoftaar. The dimensionality of program com-
plexity. In Proceedings of the Eleventh International Conference on Software
Engineering, pages 245-253, Pittsburgh, PA, May 1989. IEEE Computer So-
ciety.

J. C. Munson and T. M. Khoshgoftaar. Some primitive control flow metrics.
In Proceedings of the Annual Oregon Workshop on Software Metrics, Silver

26

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Falls, OR, March 1991. Oregon Center for Advanced Technology Education,
Portland State University.

J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone pro-
grams. IEEE Transactions on Software Engineering, pages 423-433, May
1992.

J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone pro-
grams. IEEE Transactions on Software Engineering, 18(5):423-433, May
1992.

R. H. Myers. Classical and Modern Regression with Applications. Duxbury
Press, Boston MA, 1990.

R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill, New York, 3rd edition, 1992.

P. N. Robillard and D. Coupal. Study on the normality of metrics distri-
butions. Proceedings of the Annual Oregon Workshop on Software Metrics,
March 1991.

N. F. Schneidewind. Methodology for validating software metrics. [EEE
Transactions on Software Engineering, 18(5):410-422, May 1992.

G. A. F. Seber. Multivariate observations. IEEE Computer, 1994.

M. Shepperd. Early life-cycle metrics and software quality models. Journal
of Information and Software Technology, 32(4):311-316, 1990.

Robert M. Szabo and Taghi M. Khoshgoftaar. Classifying software modules
into three risk groups. In Hoang Pham and Ming-Wei Lu, editors, Proceed-
ings: Sixth ISSAT International Conference on Reliability and Quality in
Design, Orlando, Florida USA, August 1999. International Society of Sci-
ence and Applied Technologies. Invited paper. In press.

N. Wirth. A plea for lean software. IEEE Computer, 28(2):64—68, February
1995.

27

