Developing Accurate
Software Quality Models
Using a Faster, Easier , and Cheaper
Method

Taghi M. Khoshgoftaar
Linda Lim
Erik Geleyn

Empirical Software Engineering Laboratory
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431
(561)297-3994
taghi@cse.fau.edu
http://www.cse.fau.edu/esel.html

Overview

Introduction
Case Based Reasoning
Case Study Methodology

Empirical Case Study Experiments

Conclusions

Introduction

Models and measurements are the means for under-
standing, controlling, and improving development pro-
cesses.

Various classification and prediction models are avail-
able.

Case based reasoning (CBR) is an effective technique.

Our empirical work demonstrates that substantial ben-
efits can be achieved using a simple prediction model
such as CBR.

Case Based Reasoning

Concepts

e Based on automated reasoning processes.

e Easy to use and results are easy to understand and
interpret.

e Looks at past cases that are similar to the present
case in an attempt to predict or classify the spe-
cific attributes desired.

Case Based Reasoning

Working hypothesis

Current cases that are in development will more than
likely also be fault-prone if past cases having similar
attributes were fault-prone.

Case Based Reasoning

Additional advantages

The ability to alert users when a new case is out-
side the bounds of current experience.

The ability to interpret the automated classifica-
tion through the detailed description of the most
similar case.

The ability to take advantage of new or revised
information as it becomes available.

The ability for fast retrieval as the size of the li-
brary scales up.

Case Based Reasoning
Fit and Test Data Sets

Past cases contained in a library. Each case con-
tains all the known attributes, independent and
dependent variables.

This set of past cases is collectively known as the
fit data set.

The target (test) data set containing the present
cases are usually from a current project.

In the target (test) data set, only the independent
variables are known.

By applying the models built using the fit data
set to the target data set, we can determine the
dependent variables for the present cases.

Case Based Reasoning

Similarity Functions

Calculates the distance, dij, from the current case, x;,
to each of the cases in the library, Cj-

Several type of similarity functions are available:

e Absolute Distance

e Euclidean Distance

e Mahalonobis Distance

Case Based Reasoning

Mahalonobis Distance

e Alternative to Euclidean Distance
e EXxplicitly accounts for correlation among attributes

e Independent variables do not need to be standard-
ized

dij = (¢j — 2;)'S™ 1 (c; — z;) (1)
Prime (') means transpose, and S is the variance-

covariance matrix of the independent variables over
the entire case library. S—1 is its inverse.

Case Based Reasoning

Solution Algorithm

A solution algorithm is used to estimate the actual
value of the dependent variable.

Two solution algorithms are available:

e Unweighted Average

e Inverse-Distance Weighted Average

Case Based Reasoning

Inverse-Distance Weighted Average

Distance between the current case and the closest
cases in the library are weights in a weighted average.

iy = @)
T Yien1/d;
Ui = > iy (3)

JEN

Case Based Reasoning

Classification Methods

Used to classify a dependent variable into a particular
class (fault-prone, not fault-prone).

The types of classification methods include:

e Data Clustering

e Majority Voting

Case Based Reasoning

Data Clustering

The library is partitioned into clusters according to the
actual class of each case. Distances to the clusters
are computed for the current case.

: dfp(wz) Cr
NEP, f dppp(;) > T (4)

FP, Otherwise

Class(x;) = {

Case Based Reasoning

Model evaluation

Prediction: We use Average Absolute Error (AAE)
and Average Relative Error (ARE):

n

1 .
AAE = =) |y, — il (5)
ni—1
1 n -
ni=1lyi 1

Classification: The misclassification rates are de-
termined by assessing the actual classifications. A
type I misclassification predicts a not fault-prone
to be fault-prone while a type II misclassification
predicts a fault-prone module to be not fault-prone.

Case Study Methodology
Definitions

Case study: Research technique where we identify key
factors that may affect the outcome of an activity and
document the activity.

Projects for a case study should:

1. Be developed by a group, rather than an individual
programmer.

2. Be developed by professionals, rather than stu-
dents.

3. Be developed in an industrial environment rather
than an artificial setting.

4. Be large enough to be comparable to real industry
projects.

Case Study Methodology
Building the models

1. Preprocess measurements to improve the model.

2. Choose a model validation strategy, such as re-
substitution, data splitting, cross-validation, mul-
tiple releases, or multiple projects. We used cross-
validation and data splitting.

3. Prepare fit and test data sets.

Case Study Methodology
Building the models

4. Select significant independent variables from a set
of candidates, based on the fit data set.

5. Estimate parameters (similarity function, number
of nearest neighbors, solution algorithm) of the
model on the selected independent variables, based
on the fit data set.

6. Use the model to predict the quality factor or the
class of each module in the test data set, and
compare predictions to actual outcome for the test
data set.

Case Study Methodology
Validation Strategy

e Cross-validation: Let one observation be the tar-
get data set and all others be the fit data set.
Build a model and evaluate it for the current ob-
servation or target data set. Repeat for each ob-
servation, resulting in n models. Let the misclas-
sification rates summarize the n evaluations of the
models.

e Data Splitting: Derives a fit data set and a tar-
get (test) set by randomly sampling from the cases
available and impartially partitioning them into two
data sets.

Case Study Methodology
Empirical Modeling Tool

The Software Measurement Analysis and Reliability
Toolkit (SMART):

e Developed at the Empirical Software Engineering
Lab (ESEL)

e Microsoft Visual C++4, and runs on Windows 95
or Windows NT

e Graphical User Interface to allow users to select
model parameters such as similarity functions, so-
lution algorithms, number of cases, etc

Empirical Case Study Experiments

System description

The two data sets were obtained from the industry.
The project consisted of two large Windows-based
applications used primarily for customizing the con-
figuration of wireless products. The data sets were
obtained from the initial release of these applications.

The applications are written in C+-4, and they provide
similar functionality.

Empirical Case Study Experiments

System description

Applications | Service Configuration Software
Language C++
Application 1: AENSCL* 320 million
Application 1: Actual Lines of Code 29 million
Application 2: AENSCL* 300 million
Application 2: Actual Lines of Code 27.5 million
Number of source files 1400

* AENCSL is Assembly Equivalent Non-Commented Source Lines of Code

Empirical Case Study Experiments

Software Metrics

Symbol

Description

Product Metrics,
Statement metrics

BASE LOC

Number of lines of code for the source file
version just prior to the coding phase.
This represents auto-generated code.

SYST_LOC

Number of lines of code for the source file
version delivered to system test.

BASE_COM

Number of lines of commented code for the source
file version just prior to the coding phase.
This represents auto-generated code.

SYST_COM

Number of lines of commented code for the source
file version delivered to system test.

Process Metrics

INSP

Number of times the source file was inspected
prior to system test.

Empirical Case Study Experiments

Experiments

We conducted 6 classification experiments using the
following classification rule:

FP, if y<Threshold

NFP, Otherwise (7)

Class = {

e Experiments 1-3 used the entire data set as both
the fit and target data set. For thresholds 1,2 and
3.

e Experiments 4-6 used 2/3 of data as fit data set
and 1/3 as target data set. For thresholds 1,2
and 3.

Empirical Case Study Experiments

Classification Experiments

e [hreshold 1: a file is fault-prone if it contains one
or more faults- y > 1

In this case 402 files (33%) are actually considered
as fault-prone and 809 (67%) as not fault-prone.

e [hreshold 2: a file is fault-prone if it contains two
or more faults- y > 2

262 files (22%) are actually considered as fault-
prone and 949 (78%) as not fault-prone.

e [hreshold 3: a file is fault-prone if it contains
three or more faults- y > 3

200 files (17%) are actually considered as fault-
prone and 1011 (83%) as not fault-prone.

Empirical Case Study Experiments

Classification Experiments 1-3

We used cross-validation to build and validate the
model. The two parameters in our classification mod-
els are ny, and the cost ratio. Our objective was
to obtain balanced misclassification rates with type II
misclassification as low as possible.

Empirical Case Study Experiments

Classification Experiment 1, Cost

Ratios
Fit(Cross - Validation
Cost ratio CI/CII | Typel | Typell
0.0005 31.77% 3.73%
0.001 31.77% 3.73%
0.0015 31.64% 3.73%
0.002 31.64% 3.73%
0.0025 31.40% 3.73%
0.05 25.96% 5.72%
0.1 22.99% 6.22%
0.15 21.26% 7.46%
0.2 20.03% 8.96%
0.25 18.91% 9.70%
0.3 17.80% 10.20%
0.35 16.19% 10.45%
0.4 15.58% 11.94%
0.45 14.83% 12.44%
0.5 14.34% 13.68%
0.55 13.23% 15.42%
0.6 12.36% 16.67%
0.65 11.99% 17.41%
0.7 11.50% 19.15%
0.75 11.13% 19.65%
0.8 10.14% 20.65%
0.85 9.64% 21.39%
0.9 8.78% 22.39%
0.95 8.41% 23.13%
1 7.05% 24.63%
1.5 5.81% 31.84%
2 4.45% 37.07%
2.5 3.83% 40.55
3.00 3.59% 45.52%
3.50 3.21% 47.51%
4.00 2.97% 49.50%
4.50 2.23% 50.25%
5.00 2.10% 53.23%

Empirical Case Study Experiments

Classification Experiment 1, Cost
Ratios

Fault-Proneness Threshold = 1.0

8 60.000/2 Typell

.:g g 0 ——Typel
% § —=—Typell
R WO

=

0 1 2 3 4 5 6
Cost Ratio (C,/C,,)

Empirical Case Study Experiments

Return on Investment (ROI) for
Experiment 1

The best cost ratio determined empirically is 0.50.

Type I cost = 1 unit.

Type II cost = (1/0.50) 2 units.

Actual Type II cost = 3 units (Cost of forfeited
benefit + reviews).

Empirical Case Study Experiments

Return on Investment (ROI) for
Experiment 1

Cost of reviews would be 463 units (809*%0.1434%*1)
+ (402%(1-0.1368)*1).

Reliability improvement for 347 (402*0.8632) fault-
prone files.

We avoided 1041 units (347*3) in debugging costs
later.

ROI 1041:463 (We invested 463 units of effort
that yielded to 1041 units saved).

Empirical Case Study Experiments

Evaluation of the Classification
Results for Experiment 1-3

T | Typel | Type 2 ROI Prior (%) Reduction (%)
Debug cost | Fault-prone Fault-prone

1 | 14.34% | 13.68% 1041:463 33.20% 4.54%

2 | 13.91% | 14.50% 721:356 21.64% 3.13%

3 | 14.74% | 14.00% 602:321 16.52% 2.13%

ROI can be much greater than what our model results
indicate. Since it only accounts for the direct saving
allowed by the early prediction of the fault-prone mod-

ules.

Empirical Case Study Experiments

Classification Experiments 4-6

We used cross-validation using the fit data set and
data splitting using the target data set.

e Fit data set: 807 observations.

e Target data set: 404 observations.

e We performed 50 splits for accurate model results.

e Same three fault-proneness thresholds were used.

Empirical Case Study Experiments

All Classification 4-6, Results

Cross-Validation Data Splitting Average
Fit/Target Fit/Target
Typel | Typell | Typel | Typell ny CI/CII
1 | 15.91% | 15.55% | 15.75% | 16.37% | 2.28 | 0.57
2 | 15.09% | 14.71% | 15.08% | 16.19% | 2.10 0.40
3 | 15.65% | 15.28% | 15.08% | 16.55% | 3.16 0.37

Conclusions

|_essons Learned

Our research gave evidence of the following results:

e As the delivery date for a product quickly ap-
proaches, time becomes an increasingly precious
commodity.

e [he use of the software quality models built can
allow management to make more appropriate use
of the precious time left.

e T his will ensure that the established reliability and
quality standards can still be achieved.

e \We have proven that CBR is a simple modeling
methodology that can be used to develop accurate
and useful models faster, easier, and cheaper.

References

