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Task Sensitive Feature Exploration and
Learning for Multi-Task Graph Classification

Shirui Pan, Jia Wu, Xingquan Zhu, Guodong Long, Chengqi Zhang

Abstract

Multi-task learning (MTL) is commonly used for jointly optimizing multiple tasks for learning. To date, all existing
MTL methods are designed for tasks with feature-vector represented instances, but cannot be applied to structured
data, such as graphs. More importantly, when carrying out MTL, existing methods mainly focus on exploring overall
commonality or disparity between tasks for learning, but cannot explicitly capture task relationships in the feature
space, so they are unable to answer some fundamental questions, such as what exactly is shared between tasks and
what is the uniqueness of one task differentiating from others?

In this paper, we formulate a new multi-task graph learning problem, and propose a task sensitive feature
exploration and learning algorithm for multi-task graph classification. As graphs do not have features available,
we advocate a task sensitive feature exploration and learning paradigm to jointly discover discriminative subgraph
features across different tasks. In addition, a learning process in the feature space is carried out to categorize each
subgraph feature into three categories: common feature, task auxiliary feature, and task specific feature, indicating
whether the feature is shared by all tasks, by a subset of tasks, or by only one specific task, respectively. The
learned features and multiple tasks are iteratively co-regularized to form a multi-task graph classification model with a
global optimization goal. Experiments on real-world functional brain analysis and chemical compound categorization
demonstrate the algorithm’s performance. Results confirm that our method can be used to explicitly capture task
correlations and uniqueness in the feature space, and explicitly answer what are shared between tasks and what is
the uniqueness of a specific task.

Index Terms

Graph Classification, Subgraph Selection, Feature Selection, Multi-task Learning, Supervised Learning

F

1 INTRODUCTION

Graph classification is becoming increasingly important in recent years due to rapid growth of complex data which
exhibit structural and interdependent relationships. Examples of graph applications range from chemical compound
categorization [1], functional brain analysis [2], [3], to malware detection [4], and biomedical document classification [5].

The key challenge of graph classification lies in the fact that no feature is readily available for learning algorithms
to derive classification model. This challenge has motivated numerous methods to represent graphs in a suitable format
for learning, including (1) Kernel-based algorithms [6], [7], which learn effective kernels to measure similarity between
graph objects, so that the pair-wise similarity matrix can be fed to learning algorithms such as a Support Vector Machine
(SVM) for learning; (2) Subgraph-based algorithms [8], [9], [10], [11], [12], which aim to discover discriminative subgraph
features to represent graph objects into vector space, so that generic machine learning algorithms can be applied.

To date, graph classification has been advanced to many complicated settings, such as multi-label classification [12],
multi-graph learning [13], [14], [15], semi-supervised learning [11], [16], imbalanced learning [17], [18], and cost-
sensitive learning [19], but all these methods are designed to handle single learning tasks. In reality, several relevant
graph learning tasks may co-exist and each has a rather limited number of training graphs. Two motivation examples are
given as follows:
Functional Brain Analysis aims to map human brain as a network (or a graph) to model relationships between diseases
and functions of brain regions [20]. In order to carry out a specific learning task, such as diagnosing Attention Deficit
Hyperactivity Disorder (ADHD) [21], each object has to go through functional magnetic resonance imaging (fMRI) and
intensive data preprocessing to collect training data. This severely limits each task to maximum of only a couple of
hundred objects. One the other hand, institutions may have data collected for different but relevant learning tasks, such
as Gender [22] or Alzheimer’s disease study. The limited samples for each individual tasks, and the commonality between
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Fig. 1. Feature learning and categorization for three graph classification tasks (detailed in Experiments). The first column
shows the top nine subgraphs shared by all tasks (learned by our algorithm). Numeric values next to each subgraph features
indicate the feature utility for NCI-1, 47, and 83 tasks (measured by | 1

nt

∑nt
i=1 yix

j
i |, 0 means the feature is not discriminative

while 1 means the feature perfectly classifies all graphs). The second and third columns show the task auxiliary features
and task specific features learned by our algorithms (each row corresponding to one task). Existing common feature based
MTL algorithm might not find all discriminative features as they ignore the uniqueness of each task. For instance, g1 and g2
are selected as common features but they have limited capability in classifying graphs from task NCI-1. By considering task
auxiliary features and task specific features, the unique property of each task can be well preserved. It is evident that the
task specific subgraphs are even more discriminative than g1 and g2 for NCI-1. Note that task auxiliary features are used by
a subset of tasks. For instance g3 and g4 are only used by NCI-1 and NCI-47, but not by NCI-83.

tasks raise an interesting question as to whether multiple brain function classification tasks can be combined to learn a
multi-task model for maximum performance gain.
Chemical Compound Categorization is important in biomedical research for testing whether a chemical compound is
active to a specific cancer, such as melanoma. For melanoma cancer, determining activities of a molecule is expensive
as it requires time, efforts, and expensive resources [23] to conduct biological assay. In reality, some similar bioassay
tasks 1, such as an anti-cancer test for prostate, may be available. As the graph data for different types of cancer may
share common substructures, learning multiple related tasks together may potentially help improve the generalization
performance of each single task.

Indeed, when several relevant tasks are provided for learning, existing research on multi-task learning has demonstrated
that exploring commonality between tasks can improve the generalization performance. To support MTL, existing
algorithms commonly rely on two types of approaches: (1) multi-task feature learning, which explores common feature
space shared by all tasks. The models, including mixed ℓ2,1 norm sparsity inducing methods [24], [25], composite
regularized algorithms [26], [27], and the most recent calibration based multi-task approach [28], can be formulated as
a regularized loss minimization problem aiming to explore shared feature space among tasks for learning; and (2) task
relationship learning, which simultaneously exploits task relationships and parameters [29], such as task clustering [30],
[31] or isolating [32], so that knowledge can be shared by a group of tasks instead of all tasks.

Although MTL has been applied to many applications, all existing methods work on domains with feature-vector
representation, but cannot be applied to structured data, such as graphs. Intuitively, one can first convert graphs into
feature-vector representation by first discovering a set of frequent subgraphs as features and transferring graphs into
vector format, and then employ state-of-the-art MTL algorithms [24], [28]. Unfortunately, this simple approach separates
subgraph feature selection from the multi-task learning process, and may fail to find discriminative subgraph features for
learning, as evidenced in previous single task graph classification algorithms [8].

In addition, even if one can find good subgraphs to represent graphs as feature-vector instances, existing MTL methods
still cannot effectively handle multi-task graph classification. This is mainly because shared commonality, either in the
feature space or in task correlations, is a commonly believed theme of existing MTL methods. Accordingly, these
methods emphasize on comparing tasks and finding common feature space or correlations for learning, but not on the
uniqueness of individual tasks. This is potentially harmful for graph classification domains, because graphs from similar
domains usually share high global similarity but only differ in a small set of substructures, which may be beneficial
for model learning and should be carefully preserved. More importantly, these unique features are helpful for users to
uncover actual patterns shared by different tasks. For instance, in the drug discovery process, experts are expected to
find common substructures shared by a set of cancer types, as well as discovering features unique to a specific cancer.
Existing MTL methods, unfortunately, mainly focus on exploring the overall commonality or disparity between tasks,

1. https://pubchem.ncbi.nlm.nih.gov/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEB 20XX 3

but cannot explicitly capture detailed relationships between tasks and individual features. An example is showing Fig. 1
where three types of cancer diagnose tasks share some common subgraph features for all tasks (1st column). Some
features are shared by a subset of tasks (2nd column), and some subgraph features are unique for each individual task
(3rd column).

Motivated by the above observations, in this paper, we propose a task sensitive feature exploration and learning
algorithm for multi-task graph classification (namely FelMuG). A unique feature of FelMuG is that it explores and learns
to classify subgraph features into three groups: (1) common features, (2) task auxiliary features, and (3) task specific
features. Common features are the ones shared by all tasks, task auxiliary features can be shared by any subset of tasks,
and a task specific feature is unique to a single task. Task sensitive feature learning not only allows FelMuG to improve
the performance of multi-task learning but also enhances the understanding of task relationships at the feature level.
At the final stage, the learned subgraph features and graph classification tasks are iteratively co-regularized to form
an optimization function, with subgraph exploration and multi-task learning being iteratively optimized for maximum
performance gain.

Our work makes noticeable contributions in the following three aspects:
• Feature learning and categorization for multi-task learning: we propose a novel task sensitive feature learning

algorithm to select and categorize features into different groups. It not only helps improve the classification accuracy
but also provides solutions for understanding relationships and the uniqueness of different tasks at the feature level.

• Cross task subgraph exploration: we derive an effective pruning bound to reduce the exponential subgraph search
space, which facilitates our algorithm to explore discriminative subgraph features without specifying any support
threshold.

• Multi-task graph classification: we advance the single task graph classification setting to multi-task scenarios,
which jointly explore and learn multiple classification models to improve the classification performance over single
task graph classification.

2 DEFINITIONS & PRELIMINARIES
2.1 Problem Definition

Definition 1: Connected Graph: A graph is denoted by G = (V, E, L), where V = {v1, · · · , vnv
} is a set of vertices,

E ⊆ V × V is a set of edges, and L is a labelling function assigning labels to a node or an edge. A connected graph is
a graph with a path between any pair of vertices.

In this paper, we focus on connected graphs and assume that each graph G has a class label y, y ∈ Y = {−1,+1},
indicating label information of the graph, such as an active/negative response of a chemical compound [33].

Definition 2: Subgraph: Given two graphs G = (V, E, L) and gk = (V ′, E′, L′), gk is a subgraph of G (i.e. gk ⊆ G)
if there is an injective function f : V ′ → V , such that ∀(a, b) ∈ E′, we have (f(a), f(b)) ∈ E, L′(a) = L(f(a)),
L′(b) = L(f(b)), L′(a, b) = L(f(a), f(b)). If gk is a subgraph of G (gk ⊆ G), G is a supergraph of gk (G ⊇ gk).
Multi-task Graph Classification: Given a set of graph classification tasks, where each task t ∈ {1, 2, · · · , T} has a set
of labeled graphs {(Gt,1, yt,1), · · · , (Gt,nt , yt,nt)}, we use Gt,i ∈ G (G is the graph space) to denote the ith graph in task
t, and Gt,i’s class label is yt,i ∈ Y = {+1,−1}. Multi-task graph classification aims to learn T functions (classification
models) ft : G → Y, t ∈ [1, T ], which have the best classification accuracy on test graphs over all tasks.

2.2 PRELIMINARIES
Single Task Graph Classification: To support graph classification, state-of-the-art algorithms [8], [10] use a set of
subgraphs from training graphs as features. Each subgraph gk can map a given graph Gt,i into the class label space
Y = {+1,−1} by using a simple decision stump as follows:

~gk(Gt,i) = 2I(gk ⊆ Gt,i)− 1; (1)

Here I(a) = 1 if a holds, and 0 otherwise. The rule simply maps a graph Gti into +1 if gk ∈ Gti otherwise -1.
Let F = {g1, · · · , gm} be the full set of subgraphs in G. We can use F as features to represent each graph Gt,i

into a vector space as xt,i = [~g1(Gt,i), · · · , ~gm(Gt,i)]
T , with xk

t,i = ~gk(Gt,i). In this paper, Gt,i and xt,i are used
interchangeably as they are both referred to the same graph (i.e., the i-th graph in task t). Given full subgraphs F , the
prediction function of task t is a linear classifier:

ft(xt,i) = wT
t · xt,i + bt =

∑
gk∈F

wt,k~gk(Gt,i) + bt (2)

where wt = [wt,1, · · · ,wt,m]T is the weight vector of all features for task t, and bt is the bias of the model. The
predicted class of xt,i is +1 if ft(xt,i) > 0, or -1 otherwise.

Note that for graph data, the feature set F is unavailable and is exponentially large (even infinite). In next section,
we first propose a novel task sensitive feature learning algorithm for graph tasks with feature-vector representation (i.e.,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEB 20XX 4

assuming F is known). In Section 4, we will show how this algorithm can be integrated into subgraph mining process
to explore subgraph features F for general graph tasks.

3 MULTI-TASK GRAPH CLASSIFICATION

In this section, we first formulate a task sensitive feature learning algorithm for multi-task classification (Section 3.1).
Because the formulated problem is a mixed integer problem, we relax it to a convex semi-infinite problem (SIP) in Section
3.2. Because SIP relaxation results in infinite constraints, we further propose an advanced cutting plane optimization
algorithm in Section 3.3 to solve the problem.

3.1 Task Sensitive Feature Learning for Multi-Task Learning
In traditional support vector machines (SVM), one learns a linear function ft(xt,i) = wT

t · xt,i + bt by solving the
following ℓ2-norm regularized problem:

min
wt,bt

1

2
∥wt∥2 + C

nt∑
i=1

L(yt,i, ft(xt,i)) (3)

where L(yt,i, ft(xt,i)) = max (1− yt,i, ft(xt,i), 0) is a hinge loss function, and C is a parameter controlling the
regularization part.

When multiple tasks are given, existing MTL mainly focuses on exploring commonality between tasks, such as common
feature space or task similarity, for learning. Such approaches are unsuitable for graph classification tasks because we
need to gradually explore subgraph feature space, as well as model task relationships, by using explored features, for
maximum performance gain.

Accordingly, our research advocates a new task sensitive feature learning theme to explore and categorize features
into different non-overlapping groups: common features, task auxiliary features, and task specific features. Common
features are the ones shared by all tasks, task auxiliary features are shared by a subset of tasks, and a task specific feature
is only used by a particular task. By doing so, we can model common feature space among tasks, like most existing MTL
algorithms do, and also capture discriminative features with respect to any subset of tasks or a single task. The explicit
capturing of interrelation between features and tasks allows our method to uncover fine-grained task relationships in the
feature space.

As feature learning aims to select non-overlapping groups, the three groups impose hard constraints on the features.
Specifically, for each task we introduce three feature scaling vectors, with δ0 = [δ10 , · · · , δm0 ] ∈ {0, 1}m corresponding
to common features, δts = [δ1ts, · · · , δmts ] ∈ {0, 1}m for task specific features, and δta = [δ1ta, · · · , δmta] ∈ {0, 1}m for
task auxiliary features, respectively.

For δ0, δts or δta, the j-th feature is selected as a common feature if δj0 = 1, as a task specific feature if δjts = 1, or
as a task auxiliary feature if δjta = 1, exclusively. As a result, we can obtain a re-scaled instance for xt,i as follows:

x̂t,i = xt,i ⊙ δt, δt = δ0 + δta + δts (4)

where ⊙ is an element-wise product of two vectors. To control selected features for final classification model, we propose
following constraints on the feature indicated vectors:

∥δ0∥1 =
∑m

j=1 δ
j
0 ≤ K0, δ

j
0 ∈ {0, 1}

∥δts∥1 =
∑m

j=1 δ
j
ts ≤ Ks, δ

j
ts ∈ {0, 1}

∥δta∥1 =
∑m

j=1 δ
j
ta ≤ Ka, δ

j
ta ∈ {0, 1}

δT
0 · δts = 0; δT

0 · δta = 0; (δts)
T · δta = 0∑T

t=1 δ
j
ts ≤ 1;

(5)

where K0, Ks, and Ka are integers indicating the least number of features used in the final models. The fourth constraint
enforces non-overlapping between groups, and the last constraint enforces that a task specific feature is preserved and
unique for one task only.

In order to learn multiple tasks via feature learning, we formulate the following objective function:

min
δt∈D

min
wt,bt,ξt,i

1
2

∑T
t=1 ∥wt∥2 + C

∑T
t=1

∑nt

i=1 ξt,i

s.t. yt,i

(
wT

t

(
xt,i ⊙ δt

)
+ bt

)
+ ξt,i ≥ 1, (6)

ξt,i ≥ 0, t = 1, · · ·T, i = 1 · · ·nt
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where D = {∥δ0∥1 ≤ K0; ∥δts∥1 ≤ Ks; ∥δta∥1 ≤ Ka; δ
T
0 δts = 0; δT0 δta = 0; (δts)

T δta = 0;
∑T

t=1 δ
j
ts ≤

1; δ0, δts, δta ∈ {0, 1}m}.

Merit of our design It is worth noting that we use δ0, δt, and δa to directly learn and categorize features, with learnt
features being used to learn the optimization model. In [34], the authors decompose the weight as wt = w0 + vt; and
existing composite regularization methods such as dirty model [26] and rMTFL method [27] factorizes the weight matrix
of all tasks W = P + Q with different sparsity inducing regularizers. However their formulations cannot explicitly
capture unique discriminative features for a specific task or for a subset of tasks. Furthermore, the ℓ1 or mixed norm
ℓ21 regularizers used in these methods attempt to control the number of select features and the model performance
simultaneously. When the number of selected feature is small, the learnt model will be biased and under-fit the training
data, resulting poor performance. This is attributed to the biased of ℓ1 norm regularization effects [35]. Comparing with
state-of-the-art multi-task feature learning methods, the merit of our design is fourfold:

1) It selects features naturally with desired cardinality. This is more effective than sparsity induced cardinality methods
such as ℓ2,1 regularization.

2) The selected features are automatically categorized into different groups, i.e., common features, task specific
features, and task auxiliary features. This is particularly important for graph classification tasks. Because with
categorized features, experts can easily identify common substructures active against several types of cancers, or
find unique features for a specific type of cancer.

3) The proposed model can be transferred to a convex programming problem, based on which an effective solver can
be developed. Similar scheme has been used in [35], which is, in fact, a special case of our multi-task learning
formula, with only one task being used.

4) The proposed method can be naturally integrated to the subgraph mining process to facilitate graph classification.
The optimization problem in Eq.(6) is a mixed integer problem (MIP), which is non-convex when considering W =

[w1, · · ·wt] and δt together. Furthermore, the number of valid constants δt ∈ D is complicated and infinitely large. Next,
we will relax this formula to a convex problem.

3.2 Convex Relaxation of MTL
Considering the inner minimization problem of Eq.(6) as a whole, its dual problem becomes:

max
αt,i∈A

−1

2

T∑
t=1

∥
nt∑
i=1

αt,iyt,i
(
xt,i ⊙ δt

)
∥2 +

T∑
t=1

nt∑
i=1

αt,i (7)

where A = {αt,i|
∑nt

i=1 αt,iyt,i = 0, ∀t ∈ [1, T ]; 0 ≤ αt,i ≤ C}. For convenience, let st,j be the feature score of the
first term on the j-th dimension of task t, i.e.,

st,j = [

nt∑
i=1

αt,iyt,ix
j
t,i]

2 (8)

Let sj =
∑T

t=1 st,j be the feature score on the j-th dimension over all tasks, then the first term of Eq.(7) can be re-written
as the sum of feature score over all features, i.e.,

T∑
t=1

∥
nt∑
i=1

αt,iyt,i
(
xt,i ⊙ δt

)
∥2 =

m∑
j=1

δj
T∑

t=1
st,j =

m∑
j=1

δjsj

where δj = δj0 + δjts + δjta. For convenience, let α be all lagrangian multipliers αt,i, and δ be all indicated vectors δt
for all tasks, respectively, then

F (α, δ) = −1

2

m∑
j=1

δjsj +

T∑
t=1

nt∑
i=1

αt,i (9)

Then the original objective function Eq.(6) becomes:

min
δ∈D

max
α∈A

F (α, δ) (10)

According to the minmax inequality [36], we have the following lower bound to Eq.(6):

min
δ∈D

max
α∈A

F (α, δ) ≥ max
α∈A

min
δ∈D

F (α, δ) (11)

Moreover, this relaxed problem can be further transferred to a semi-infinite problem (SIP). Motivated by [35], [37],
we introduce another variable ω ∈ R, the last term of Eq.(11) can be formulated as the following SIP.

max
α∈A

{
max
ω

ω : ω ≤ F (α, δ)
}
,∀δ ∈ D (12)
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Algorithm 1 Task Sensitive Feature Learning for Multi-task Graph Classification (FelMuG)
1: αt,i = 1/nt; C ← ∅; o← 0;
2: Select the most violated constraint δ(k)based on α

(o)
t,i ; // Algorithm 2

3: C ← C
∪

δ(k);
4: Solve MKMT problem Eq.(14) to get the optimal α(o) and µ(o);
5: o← o+ 1;
6: repeat 2-5 until convergence.

3.2.1 From MTL to Multi-Kernel Learning
The problem in Eq.(12) can be solved in its dual domain. Introducing another set of Lagrangian variables µ = {µk},
we will have the new Lagrangian function, i.e.,

L(ω,µ) = ω +
∑

δ(k)∈D

µk(F (α, δ)− ω)

Setting its first derivative to 0 w.r.t ω, we have
∑

δ(k)∈D µk = 1. Let M = {µ|
∑

δ(k)∈D µk = 1, µk ≥ 0} be the domain
of µ. The dual problem of Eq.(12) can be written as follows:

max
α∈A

min
µ∈M

µkF (α, δ)

= min
µ∈M

max
α∈A
− 1

2

T∑
t=1

(αt,· ⊙ yt,·)
T (

∑
δ(k)∈D

µkXt,kX
T
t,k)

(αt,· ⊙ yt,·) + αt,·1

(13)

where we have Xt,k = [xt,i ⊙ δ(k), · · · ,xt,nt ⊙ δ(k)], and αt,· and yt,· are the lagrangian multiplier and training
class labels for task t. Accordingly, the problem becomes a convex optimization problem, whose global optimal can be
obtained. More specifically, it is a multi-kernel multi-task problem (MKMT) [38], where Xt,k can be seem as a kernel
defined on a subset of features δ(k) on the t-th task (with T tasks in total). For each task, we aims to learn a convex
combination of a set of kernels by

∑
δ(k)∈D µkXt,kX

T
t,k. Across tasks, they share a set of common kernel functions

whose index is defined by µk.

3.3 Cutting Plane for Infinite Constraint Optimization
The main challenge to solve MKMT problem (Eq.(13)) is that there are an infinite number of constraints (δ(k) ∈ D).
Fortunately, not all constraints are active at optimality. In this paper, we propose to solve this problem by using Cutting
Plane algorithm [39]. The idea of cutting plane algorithm is to start with an empty working set C and iteratively
selects the most violated constraint δ(k) to be included into the working set C and re-solve the reduced problem of
Eq.(13). The whole process continues until there is no more active constraint. Because in each iteration, the size of C is
relatively small, the cutting plane algorithm is very efficient for large-scale data/features optimization. Algorithm 1 list
the procedures of using cutting plane for feature learning. After convergence, the final prediction rule for xt,q from task
t is f(xt,q) =

∑|C|
k=1 µk

∑nt

i=1 αt,iyt,i(xt,i ⊙ δ(k))xT
t,q .

The main steps of cutting plane algorithm consist of two components: (1) MKMT subproblem solving, and (2) The
most violated constraint selection. In the following, we introduce solutions to the two sub-problems.

3.3.1 Solving the MKMT Subproblem
Multiple Kernel Multi-task learning (MKMT) was studied recently in [38], which assumes that over a set of T tasks there
are a set of kernel matrices in each task. By selecting a common kernel representation, multiple tasks can be mutually
beneficial to each other. Based on the current selected kernel set C in step 3 of Algorithm 1, our subproblem is equal to
solve the following reduced MKMT subproblem of Eq.(13):

min
µ∈M

max
α∈A

−1
2

T∑
t=1

(αt,· ⊙ yt,·)
T K(αt,· ⊙ yt,·) + αt,·1;

with K =
∑

δ(k)∈C µkXt,kX
T
t,k

(14)

The problem in Eq.(14) can be effectively solved by using existing MKMT solvers [38]. Specifically, we can solve
Eq.(14) via an iterative procedure: (1) fixing µ and solving Eq.(14) to update α based on a set of δ(k) ∈ C, which boils
down to solving T independent standard SVM problem; then (2) fixing α and using reduced gradient method [40] to
update µ. The two steps continue until they converge.
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3.3.2 Most Violated Constraint Selection
Finding the most violated constraint given α in Eq.(12) is the same as solving the problem of minδ∈D F (α, δ). Because
the second term in Eq.(9) is constant given α, the problem is reduced to maxδ

∑m
j=1 δ

jsj . The complicated constraint
in D can be rewritten as a set of summarization constraints, leading to the following problem:

max
δ0,δts,δta

∑m
j=1 δ

jsj

s.t. ∥δ0∥1 =
∑m

j=1 δ
j
0 ≤ K0, δ

j
0 ∈ {0, 1};

∥δt∥1 =
∑m

j=1 δ
j
ts ≤ Ks, δ

j
ts ∈ {0, 1};

∥δa∥1 =
∑m

j=1 δ
j
ta ≤ Ka, δ

j
ta ∈ {0, 1};

δj = δj0 + δja + δjt ≤ 1;∑T
t=1 δ

j
t ≤ 1;

(15)

Accordingly, the problem becomes a binary and linear programming problem, i.e., the knapsack problem [41]. If the
features are known, many methods such as dynamic programming or the greedy algorithm can be applied to solve the
problem. Various optimization solvers such as the optimization toolbox provided by MATLAB can address this problem
effectively.

Challenge for Graph Data: For graph data, Eq.(15) has a major difficulty, because (1) subgraph feature set xt,i =
[~g1(Gt,i), · · · , ~gm(Gt,i)]

T is unknown, and (2) the number of subgraph features is exponentially large (or infinite).
For instance, if the maximum number of nodes in the graph database is nv , the number of subgraphs is m = 2nv . In
next section, we seamlessly integrate this problem into the subgraph exploration process to explore subgraph features for
graph classification tasks.

4 MULTI-TASK SUBGRAPH EXPLORATION

For graph classification, finding the most violated constraint, i.e., solving Eq.(15), in each iteration for our algorithm is
NP hard as it requires enumeration of the whole subgraph space. One possible way is to first mine a set of frequent
subgraphs, and then apply the multi-task algorithm. But this is subject to the risk of missing discriminative subgraphs,
because not every subgraph is checked and evaluated across all tasks. In this section, we propose an effective algorithm
to handle the infinite subgraph problem. Our idea is to employ subgraph mining algorithm gSpan [42] to mine a small
set of potential subgraph features Fp, and then solve Eq.(15) based on Fp. For the potential subgraph feature set Fp,
we ensure that if a subgraph does not appear in Fp, it will not be selected in the optimal set defined in Eq.(15). As Fp

is very small, Eq.(15) can be solved efficiently.

4.1 Multi-Task Subgraph Selection
Although we cannot directly obtain the subgraph features which maximize

∑m
j=1 δ

jsj subject to δ ∈ D, we can reduce
the potential subgraph features by employing top K subgraph mining procedures. For convenience, define K = K0 +∑

t Ks+
∑

t Ka, and let Ft be the set of subgraphs with top K utility scores defined by st,j = [
∑nt

i=1 αt,iyt,ix
j
t,i]

2 (Eq.
(8)) on task t. Then we can construct a small set of potential subgraphs Fs =

∪
Ft.

Proposition 1: ∀gj ∈ F , if gj /∈ Fp, then δj0, δjts, and δjta will be 0 defined in Eq.(15).
This proposition can be assured as we select at most K = K0 +

∑
t Ks +

∑
t Ka subgraph in Eq.(15). If one graph is

not the top K highest subgraph in any task, i.e., g /∈ Fp, it will not be selected by solving Eq.(15).
Now the problem in Eq.(15) is decomposed to T independent top K subgraph mining problems. Specifically, for each

task, we aim to select K subgraph features with highest discriminative scores, defined by st,j in Eq.(8). Then we can
solve Eq.(15) effectively via binary and linear problem solvers. The algorithm for most violated constraint solving for
graph data is illustrated in Algorithm 2.
Top K subgraph Mining In order to discover top K subgraphs, it requires the search of exponentially large subgraph
space. In this subsection, we derive an upper-bound for each subgraph score, and use the branch-and-bound scheme to
reduce the subgraph space.

Theorem 1: (Single Task Feature Score Upper-bound:) Let gj and gq be two subgraph patterns, and gj ⊆ gq , for
the subgraph gj , we define on the t-th task,

A1(gj) = 2
∑

{i|yt,i=+1,gj∈Gt,i} αt,i

A2(gj) = 2
∑

{i|yt,i=−1,gj∈Gt,i} αt,i

A3 =
∑nt

i=1 αt,iyt,i

Θ̂(gj , t) =

{
max{[A1(gj)−A3]

2, [A2(gj)]
2} : A3 < 0

max{[A2(gj) +A3]
2, [A1(gj)]

2} : A3 ≥ 0
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Algorithm 2 Most Violated Constraint Selection for Exponentially Large Subgraph Space
1: K = K0 +

∑
t Ks +

∑
t Ka;

2: Ft ← mine top K subgraph by Algorithm 3, ∀t ∈ 1 · · ·T ;
3: Fp ←

∪
Ft;

4: Calculate sj =
∑T

t=1 st,j for each subgraph gj ∈ Fp based on Eq. (8);
5: Solve Eq. (15) based on Fp to get δ0, δtp, and δta.

Algorithm 3 Top K Subgraph Mining
Require:
{(Gt,i, yt,i)}nt

i=1 : Graph Datasets for the task t;
αt,i : Weight for each graph example;
K: Number of optimal subgraph patterns;

Ensure:
Ft = {gj}j=1,··· ,K : The top K subgraphs;

1: η = 0, Ft ← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gj ← current visited subgraph in DFS Code Tree;
4: if gj has been examined then
5: continue;
6: end if
7: Compute scores st,j for subgraph gj according Eq.(8);
8: if st,j > η then
9: Ft ← Ft

∪
gj ;

10: end if
11: if |Ft| > K then
12: g⋆ ← argmingk∈Ft Θ(gk);
13: Ft ← Ft/g

⋆;
14: η ← mingk∈P Θ(gk);
15: end if
16: if Θ̂(gj , t) > η then
17: Depth-first search the subtree rooted from node gp;
18: end if
19: end while
20: return Ft = {gj}j=1,··· ,K ;

then st,q ≤ Θ̂(gj), where st,q is defined as the single task feature score in Eq.(8).
Proof: We start with the definition of st,j :

st,q = [
∑nt

i=1 αt,iyt,ix
q
t,i]

2

= [
nt∑
i=1

yt,iαt,i · {2I(gq ⊆ Gt,i)− 1}]2

= [2
∑

gq⊆Gt

yt,iαt,i −
∑nt

i=1 αt,iyt,i]
2

= |A1(gq)−A2(gq)−A3]
2

≤
{

max{[A1(gq)−A3]
2, [A2(gq)]

2} : A3 < 0
max{[A2(gq) +A3]

2, [A1(gq)]
2} : A3 ≥ 0

≤
{

max{[A1(gj)−A3]
2, [A2(gj)]

2} : A3 < 0
max{[A2(gj) +A3]

2, [A1(gj)]
2} : A3 ≥ 0

= Θ̂(gj , t)

The first inequality holds as for αt,i ≥ 0, A1(gq) ≥ 0 and A2(gq) ≥ 0, so the upper-bound depends on A3. If A3 < 0,
A1(gq) and A3 will have different signs, then the upper-bound is a maximum of {[A1(gq)−A3]

2, [A2(gq)]
2}. The case

is similar for A3 ≥ 0. The second inequity holds because A1(gq) ≤ A1(gj) and A2(gq) ≤ A2(gj) for gj ⊆ gq .
According to Theorem 1, once a subgraph gj is generated, the feature scores for all its super-graphs are upper-bounded

by Θ̂(gj , t). Therefore, we use this rule to prune exponentially unpromising candidates effectively.
Multi-Task Subgraph Mining Algorithm: Our multi-task subgraph mining algorithm is listed in Algorithm 3. The
minimum value η in optimal set Ft is initialized on step 1. Duplicated subgraph features are pruned on steps 4-5, and
the discriminative score st,j for gj are calculated on step 6. If st,j is larger than η, we add gj to the feature set Ft (steps
7-8). If the size of Ft exceeds the predefined size K, the subgraph with the minimum discriminative score is removed
(steps 10-12), and the minimum optimal value η is updated. We use our branch-and-bound pruning rules, Theorems 1,
to prune the search space on steps 13-14. Finally, the optimal set Ft is returned on step 15.
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The above pruning process is a key feature of our algorithm, because it does not require any support threshold for
subgraph mining. As a result, no discriminative subgraph will be missed by our algorithm.

5 TIME COMPLEXITY ANALYSIS

Our FelMuG algorithm can be applied to general multi-task learning with vector representation as well as graph data,
as will be shown in our

Generic Multi-task Learning: Algorithm 1 runs iteratively in two steps: (1) solve MTML subproblem, and (2) select
most violated constraints. The first step consists of T SVM training and updating the µ vector. The SVM training requires
approximately O(n2.5) w.r.t the number of training instances n, or linear O(m̂n) w.r.t the number of instances n and
selected features m̂ by using advanced solvers, such as LIBLinear [43]. Updating µ requires O(T · |C| · n2

t,sv) with
nt,sv denoting the number of support vectors related to task t [38]. For the second subproblem, we use Matlab function
bintprog with polynomial time complexity in our experiment. Other methods such as dynamic programming may achieve
a linear time complexity O(m̂τ), where τ is the maximum capacity of the Knapsack problem. Assume the number of
iterations for Algorithm 1 is S, and the number of iteration to solve MKMT problem is S1, the time complexity of
FelMuG for general multi-task learning is

O
(
ST

(
S1(m̂n+ |C| · n2

t,sv) + m̂τ
))

Note that both |C| and nt,sv are very small because only a small number of constraints and a small amount of support
vectors are involved. For S and S1, both of them are very small as well. In our experiments, only tens of iterations are
required to reach convergence. As a result, FelMuG is very efficient for multi-task classification.

Multi-task Graph Classification: For graph data, the time complexity becomes

O
(
ST

(
S1(m̂n+ |C| · n2

t,sv) + m̂τ ·O(gSpan)
))

where O(gSpan) is the time complexity of gSpan style algorithm for top K subgraph mining. Intuitively, this is an
NP-complete problem because the subgraph space is exponentially large. However, we have derived an upper-bound and
use the branch-and-bound scheme to prune unpromising subgraphs. Our experiments will show the effectiveness of the
pruning scheme. Furthermore, other technique such as re-using the subgraph space [8], [19] can be employed to construct
a DFS tree in the first iteration. During the remaining iterations, one can search and expand this DFS tree effectively. In
general, Note that O(gSpan) time complexity is inevitable for subgraph based graph classification [8], [11].

6 EXPERIMENTS

In this section, we first validate the feature learning module of FelMuG on synthetic vector datasets, and then evaluate
FelMuG’s performance on three real-world domains for multi-task graph classification. The source code of FelMuG
algorithm and the benchmark graph datasets are available online 2.

6.1 Experimental Settings
6.1.1 Benchmark data
We employ two types of benchmark data, synthetic vector data and real-world graph data, in our experiments. For
synthetic data, we predefine a set of tasks with known feature relationships, so we can validate how effective FelMuG
can capture/retrieve the pre-defined relationships. For real-world graphs, we demonstrate that FelMuG’s feature learning
and multi-task co-regularization achieves much better performance than its peers for function brain analysis and chemical
compound classification.
Synthetic vector data are modified from the one used in [38] and include four tasks. Each task is a binary classification
problem with m features. Of these m features, there are d0 features shared by all tasks (i.e. common features). In addition,
there are dts task specific features and dta task auxiliary features which are relevant to task t. Therefore, for each task t,
there are dt = d0+dts+dta effective features corresponding to it. The dt effective features follow a Gaussian probability
density function with mean u and −u, respectively, to define a two class classification problem (the covariance matrices
of Gaussian distributions are randomly drawn from a Wishart distribution). The mean values u are randomly drawn
from {−1,+1}dt . The other m − dt non-effective features follow an independent and identically distributed Gaussian
probability distribution with zero mean and unit variance for both classes. Similar to [38], we generate four tasks, each
with n = 100, nv = 100, and nthe = 5000 samples for training, validation, and testing, respectively. Before learning, all
data are normalized to zeros mean and unit variance. Because we know ground-truth features relevant to a task t, we

2. http://www.cse.fau.edu/∼xqzhu/FelMuG/index.html
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TABLE 1
Description of Graph Datasets

Collections ID #Pos #Total Dataset Description

NCI

1 1793 37349 Non-Small Cell Lung
33 1467 37022 Melanoma
41 1350 25336 Prostate
47 1735 37298 Central Nerv Sys
81 2081 37549 Colon
83 1959 25550 Breast
109 1773 37518 Ovarian
123 2715 36903 Leukemia
145 1641 37043 Renal

BrainNet
KKI 46 83 ADHD

OHSU 44 79 Hyper/Impulsive (HI)
Peking 1 36 85 Gender (GD)

PTC
SubMR 32 87 Male Rat (MR)
SubFR 35 85 Female Rat (FR)
SubMM 29 85 Male Mouse (MM)
SubFM 35 88 Female Mouse (FM)

can easily evaluate the feature learning performance by comparing the learned final feature vectors δt = δ0 + δts + δta
with the ground-truth d = d0 + dts + dta.

NIC Anti-cancer activity prediction data3 are benchmark for predicting biological activities of small molecules for
different types of cancers. Each molecule is represented as a graph, with atoms representing nodes and bonds denoting
edges. A molecule is positive if it is active against a certain type of cancer, or negative otherwise. Table 1 summarizes
nine NCI graph classification tasks used in our experiments. We randomly select #Pos number of negative graphs from
each original graph set to create a multi-task graph classification problem with balanced training graphs for each task.
Note that although each of the nine tasks focuses on a specific type of cancer, all these tasks are relevant in cancer
prediction and some common substructures may exist for all types of cancers (as shown in Fig. 1). This makes NCI an
ideal benchmark for multi-task graph classification.

PTC Predictive Toxicology Challenge Data include a number of carcinogenicity tasks for toxicology prediction of
chemical compounds4. The dataset we selected contains 417 compounds from four types of test animals: MM (male
mouse), FM (female mouse), MR (male rat), and FR (female rat). Each compound is with one label selected from
{CE, SE, P, E, EE, IS, NE, N}, which stands for Clear Evidence of Carcinogenic Activity (CE), Some Evidence of
Carcinogenic Activity (SE), Positive (P), Equivocal (E), Equivocal Evidence of Carcinogenic Activity (EE), Inadequate
Study of Carcinogenic Activity (IS), No Evidence of Carcinogenic Activity (NE), and Negative (N). Similar to [44], we
set {CE, SE, P} as positive label, and {NE, N} as negative label. In order to formulate multiple tasks, we randomly split
417 compounds into four equal non-overlapping subsets. For each subset, we only consider one type of carcinogenicity
test as its learning task. The subset information is also listed in Table 1.

BrainNet Functional Brain Network Analysis Data are constructed from the whole brain functional magnetic resonance
image (fMRI) atlas [20]. The purpose of the study is to map brain as a network (or a graph) where each node corresponds
to a region of Interest (ROI) and the edge indicates correlations between two ROIs. In our experiments, we use functional
parcellation results, CC200, from [20], which parcellate each brain into 200 regions of interest. In order to discover
relationships between ROIs, the mean values of each ROI are recorded with respect to certain voxel time courses. By
using Pearson correlations between two time courses, we can calculate correlation between two ROIs, and a graph is
constructed by connecting ROIs whose correlations is higher than a threshold value (r¿0.7 in our experiment). An example
of fMRI functional parcellation results and the corresponding brain graph are shown in Fig. 2. In our experiment, we
construct three brain classification tasks, corresponding to Attention Deficit Hyperactivity Disorder (ADHD) classification,
Hyperactive-Impulsive classification (HI), and gender classification (GD). The detailed graph information is summarized
in Table 1. For ADHD and HI tasks, the functional response is real values, so we discretize the functional response to
binary values by using a simple threshold (f=50 in our experiment).

6.1.2 Baseline Methods
Multi-Task Learning Baselines: We compare the feature learning with state-of-the-art multi-task learning methods,
i.e., Sep-L1, Logistic-L1, Logistic-L21 [24], rMTFL [27], Dirty [26], and Calibration [28] approaches. Sep-L1 performs

3. http://pubchem.ncbi.nlm.nih.gov
4. http://www.predictive-toxicology.org/ptc/
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(A)  ROI Atlas Visualization                           (B)  Graph Representation of Brain Network 

  

  

Fig. 2. An example of brain functional parcellation results from fMRI image (A), and corresponding brain graph (B). Each
color region in (A) is a region of interest (ROI), which corresponds to a node in (B). (rf.[20]).

feature learning separately on each task and Logistic-L1 jointly learns multi-task features with Lasso regularization and
the logistic loss function. The calibration approach is the most recent multi-task feature learning algorithm [28]. All these
algorithms are available in the MALSAR toolbox [45].
Graph Classification Baselines: We compare our method with three state-of-the-art graph classification methods, i.e.,
gBoost [8], gSemi [11], and gMLC [12]. These methods learn graph classification task separately, without considering
graph samples from other tasks. To build multi-task graph classification baselines, we use the above methods to firstly
mine a set of frequent subgraphs from all training graphs (we set minimum support as 0.1, which results in over 2500
subgraph features on NCI datasets), and then use discovered subgraph features to transfer each graph dataset into a vector
format, and then apply above multi-task learning baselines to the transferred vector datasets.

Unless otherwise specified, the parameters for FelMuG are empirically set as follows: C=0.1, Ka=2, and Ks=1. K0

is selected from {5, 10, 15, 20}. Let the maximum iteration number in Algorithm 1 be S=15, then FelMuG will select
at most K ×S features with K = K0 +

∑
Ka +

∑
Ks. For the comparing algorithms, we select the parameters from a

set of candidates according to the property of each algorithm. For instance, for gBoost, the parameter v is selected from
{0.2, 0.3, 0.4, 0.5}; and for Logistic-L21 algorithm, the parameter λ is chosen from 0.02 to 0.1 step by 0.02. The best
parameters are selected based on the validation set. For graph classification, we repeat 10 times of each experiment for
NCI graphs and conduct 10-fold cross-validation for PTC and brain networks. Following [8], we report the best average
accuracy and average AUC values over all tasks for graph classification tasks.

6.2 Feature Learning Result Comparisons
Fig. 3 reports the feature learning results of different algorithms, which show that all MTL algorithms can obtain sparse
solutions and find features shared by all tasks. Among baseline algorithms, Logistic-L21, rMTFL, and Calibration select
similar features, because they aim to select common features (for rMTFL, no outlier task exists thus it achieves similar
results to ℓ21 regularization). Meanwhile, because ℓ1 regularization is used in Sep-L1, Logistic-L1, and Dirty methods,
the learned features are more sparse for these algorithms. Nonetheless, the results show that FelMuG recovers the relevant
features best among all algorithm because it explicitly captures common features, task specific features, and task auxiliary
features for each task.

In Fig. 4, we vary the number of relevant features d0 and report the feature selection and multi-task classification
results, which show that FelMuG can recover much more relevant features than other algorithms. In addition, Fig. 4.(B)
shows that FelMuG achieves the best feature recovery quality (F-measure) among all methods. This is because existing
MTL algorithms mainly focus on common features but inherently overlook task specific and task auxiliary features. In
contrast, our design not only learns common features, but also captures the underlying difference between each task.
Fig. 4.(C) shows that FelMuG is comparable or outperforms state-of-the-art MTL algorithms in terms of accuracy.

6.3 Brain and Chemical Compound Graph Classification
Performance on NCI: For NCI tasks, we randomly label a small set of graphs as training graphs for each task, and
the remaining graphs are used for testing. The number of training graphs in each task varies from 50 to 400. We report
the average accuracies and AUC values over all tasks under 10 times of train/test split in Fig. 5.

The results in Fig. 5 show that when increasing training data for each task, all algorithms achieve continuous
improvement in accuracy and AUC values. FelMuG outperforms graph classification baselines (including gBoost, gSemi,
and gMLC). This is main because these baselines are single task algorithms which ignore relevant graphs from similar
tasks. Because subgraph features are represented by the connections of some common atoms, there might be some
common discriminative structures which are beneficial to relevant learning tasks.

For existing MTL algorithms, regardless of which regularizers are used in the algorithm, they will first mine a set of
frequent subgraph as features and then employ multi-task learning techniques for classification. Although these methods
enjoy the benefits of MTL by jointly optimizing related learning tasks, they still suffer from severe disadvantages: (1) their
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(A) Ground Truth of Relevant Features
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(C) Features Recovered by Sep−L1 Algorithm
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(D) Features Recovered by Logistic−L1 Algorithm
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(E) Features Recovered by Logistic−L21 Algorithm
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(F) Features Recovered by rMTFL Algorithm
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(G) Features Recovered by Dirty Algorithm
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(H) Features Recovered by Calibration Algorithm
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Fig. 3. Relevant features recovered by different algorithms for four tasks with m = 30, d0 = 5, dta = 2, dts = 2. Blue,
red, and green colored cells refer to common features, task auxiliary features, and task specific features, respectively. (A):
Ground truth of the effective features; (B): Features learned by FelMuG from δt with K0 = 2, Ks = Ka = 1; (C-H): Features
discovered by baselines from W. Only FelMuG (B) can explicitly answers which features are shared by all tasks, by set of
tasks, or by a single task.
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Fig. 4. Feature learning performance on synthetic data with varying d0. We generate data with dta = dts = d0/2, and
m=100. FelMuG is learned with K0 = Ka = Kt=2. A Recall value “1” means an algorithm can recover all relevant features,
and F-measure with “1” means perfect recovery of all relevant features. The results show FelMuG achieves competitive or
better classification accuracy on all tasks (C), and the recovered features are much better than the other algorithms (A) and
(B).

subgraph mining process is not driven by multi-task learning objective, and will therefore miss discriminative subgraphs
at the first step; (2) they ignore task specific and task auxiliary features for each task, so cannot capture the underlying
unique discriminative subgraphs of each task. As the subgraph features are crucial for graph classification, a simple
adaptation of existing MTL algorithm for graph classification is suboptimal.

In contrast, the proposed FelMuG method not only has the advantages of utilizing graph samples from relevant tasks,
but also unifies multi-task subgraph feature learning and model learning into one objective function. This design helps
FelMuG outperform single task graph classification and MTL algorithms with significant performance gains.
Performance on Functional Brain Analysis and PTC Tasks: For functional brain analysis and PTC graph classification
tasks, the number of training graphs for each task is very limited. So instead of varying the training samples for each
task (such as for NCI tasks), we conduct 10-fold cross-validation on these tasks. In this way, we can reduce the bias of
each method caused by limited training samples.

The results in Figures and 6 and 7 show that FelMuG achieves considerable performance gains over single task graph
classification and two-step multi-task methods for graph classification. Note that for PTC tasks, AUC values are more
important because they are all imbalanced tasks.

6.4 Multi-Task Subgraph Exploration Efficiency
In this subsection, we investigate the efficiency of FelMuG in reducing the search space [Theorem 1 in Sec.4.1]
for subgraph feature exploration. Because the search space is infinitely large, it is challenging to assess the pruning
effectiveness of FelMuG. Accordingly, we introduce a threshold value min sup, which denotes the minimum frequency
of each qualified subgraph feature in the training graph dataset, to bound the number of subgraphs in the search space. In
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Fig. 5. Average accuracy and AUC values for NCI graph classification tasks with different number of training graphs in each
task.
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Fig. 6. Average accuracy and AUC values for functional brain analysis tasks.

doing so, we know the total number of subgraph candidates, and can then assess the pruning efficiency by checking the
percentage of candidates pruned by the pruning process. The frequent subgraph based algorithm is termed Fre-FelMuG.

The results in Figs. 8.(A) and (C) show that with the increase of the support threshold value min sup, all methods
experience reduced running time. This is because a large support value will result in a small number of subgraph features
(Figs. 8.(B) and (D)). It is obvious that our algorithm can reduce unpromising subgraph features significantly while
Fre-FelMuG needs to enumerate an exponentially large number of candidates. Our algorithm is an order of magnitude
faster than the non-prune baseline.

It is worth noting that using a threshold value min sup in the subgraph pattern mining may result in missing of
discriminative subgraph features, because some subgraph features may be very informative for classification but are not
frequent to meet the support threshold value. However, discarding the support threshold value (i.e., min sup = 0) will
make most algorithms unable to find subgraph patterns. For example, in our experiments, we have tried to further reduce
the support threshold min sup for Fre-FelMuG, but it caused an out-of-memory error on a 16 GB memory machine
for NCI tasks. In comparison, our FelMuG algorithm is able to mine discriminative subgraphs very quickly, even if the
support threshold is removed (i.e., min sup = 0).

7 RELATED WORK

Our work is closely related to graph classification and multi-task learning.
Graph Classification. Existing methods for graph classification [46], [8], [10], [47], [11], [17], [48], [49] can be roughly
distinguished into two groups: kernel based methods and subgraph feature based methods.
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Fig. 7. Average accuracy and AUC values for PTC graph classification tasks.
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Fig. 8. Pruning efficiency on NCI and PTC graph classification Tasks.

The kernel based approaches aim to directly learn global similarities between graphs by using some graph kernels [47],
[6], [7]. Then global similarities are fed into similarity based classifiers, such as KNN or SVM, for learning. One obvious
drawback of global similarity based approaches is that the similarity is calculated based on the global graph structures
directly, such as random walks or embedding space. Therefore, it is not clear which substructures are mostly important
for classifying graphs between different classes.

In many graph classification domains, such as molecule classification, graphs from one specific class may have low
global similarities but they actually share some unique substructures. Therefore, using discriminative substructure as
features and transferring graphs into vector space becomes a popular solution. For subgraph based methods, a key issue
is to define a proxy measurement to assess the utility of each subgraph. Yan et al. proposed [50] a LEAP algorithm
to exploit the correlation between structural similarity and significance similarity, so that a branch-and-bound rule can
be derived to prune out unpromising searching space efficiently. Ranu and Singh [51] proposed a scalable GraphSig
algorithm, which is able to mine the significant subgraph with low frequencies. Thoma et al. [9] propose a CORK
algorithm, in combination with frequent subgraph mining algorithm such as gSpan [42], to find subgraph features. Instead
of carrying out explicit subgraph feature mining, a recent work [46] proposes to find class-conditional “signal-subgraph”
which is defined as the connection of edges that are probabilistically different between classes. Recently, researchers
have also proposed to address complicated graph classification tasks, such as semi-supervised classification [11], [16],
multi-label classification [12]. We have extended the graph classification task to multi-view-graph learning [52] and
multi-graph classification scenarios [15], [13], [14]. For multi-view-graph learning, an object consists of multiple views
each is represented as a graph structure. For multi-graph classification, the objective is to classify a bag which consists
of multiple graphs.

Boosting methods [44], [8], [17], [10] are also popular for graph classification. In [10], the authors proposed to
boost the subgraph decision stumps from frequent subgraphs. In [8], the authors proposed a gBoost algorithm which
iteratively selects subgraphs from the whole subgraph space (instead of frequent subgraphs only), which has shown
better performance for graph classification than using frequent subgraph filter-based methods. Recently, we have extended
gBoost algorithm to imbalanced graph classification settings in [17], [18] and cost-sensitive learning for large-scale graph
classification [19].

The aforementioned graph classification methods, regardless similarity based methods or subgraph based approaches,
only consider one single task, thus they are ineffective for multi-task settings where several graph classification tasks are
related to each other.
Multi-Task Learning. State-of-the-art algorithms on multi-task learning [34], [24], [53], [45], [54], [29], [55] can also be
roughly divided into two categories: (1) Regularized multi-task feature learning methods [34], [24], [45], which assume all
tasks are homogeneous and the learning is to discover common feature representation across all tasks. (2) Task relationship
exploration methods [53], [54], [29], [56], which either exploit task relationships via trace norm regularization to achieve
some similar parameters among similar tasks [56], or try to learn a task covariance matrix from data if the task relationship
is not known in advance [53], [29].

Note that multi-task learning is closely related to transfer learning [57], but the difference is fundamental. Transfer
learning aims to improve the learning on a single target task by using data from other tasks as auxiliary information. For
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multi-task learning, all tasks are equally important and should be learned simultaneously. A recent work [58] address
transfer learning for graph databases, but its scope and objective are different from the proposed MTG.

8 CONCLUSION

In this paper, we formulated a new multi-task graph learning problem. We argued that existing multi-task learning
algorithms are inapplicable to graphs, mainly because they cannot handle structured data, and they cannot explicitly
capture relationships between tasks and individual features, which are crucial for classifying and understanding graph
tasks. Accordingly, we proposed, FelMuG, a task sensitive feature exploration and learning algorithm for multi-task
graph classification. The unique feature of FelMuG lies on its task sensitive feature exploration and learning module,
which explicitly categorizes each subgraph feature into three categories: common feature, task auxiliary feature, and
task specific feature. The learned features and multiple tasks are iteratively co-regularized to form a multi-task graph
classification model with a global optimization goal. Experiments on synthetic and real-world data confirm that (1)
FelMuG can accurately capture feature relationships to tasks; (2) cross task subgraph feature exploration and learning
can effectively discover discriminative subgraph features for learning; and (3) FelMuG outperforms all baselines for
real-world multi-task functional brain analysis and chemical compound classification.
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