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Recent developments in storage technology and network architectures have made it possible and affordable for scientific 
institutes, commercial enterprises, and government agencies to gather and store data from multiple sources. The 
increasing globalization has also demanded that many business applications involve storing information at 
geographically distributed locations for analysis. Examples include market basket transaction data from different 
branches of a wholesale store, data collections of a particular branch in different time periods, census data of different 
states in a particular year, and data of a certain state in different years. For years, knowledge discovery and data mining 
(also referred to as KDD) has proven to be crucial for discovering novel and actionable patterns hidden in the data. 
Discovering patterns from multiple information sources provides a unique way to reveal complex relationships, such as 
correlations, contrasts, and similarities across multiple collections.  

Although the capability of distributed data storage brings us opportunities to improve the quality of data management 
and decision making, the nature of these distributed data repositories also generates significant challenges for inter-
repository pattern discovery. Here, we list three major ones: (1) how to efficiently identify quality knowledge from a 
single data source, where patterns reveal local knowledge for each particular data repository, commonly referred to as 
local patterns; (2) how to integrate and unify multiple information sources into one single view such that previous 
unseen patterns can be discovered, commonly referred to as global patterns; and (3) how to discover the relationships of 
the patterns hidden across multiple information sources, where the features of the patterns (such as pattern frequencies 
and their utilities) across different data repositories define inter-repository relationships, which we refer to as inter 

patterns.

In the past, researchers proposed many approaches to handle multiple information sources, but solutions have been 
mainly focused on scaling mining algorithms for the discovery of local patterns and global patterns. The aim of this 
workshop is to bring together data mining experts to revisit the problem of pattern discovery from multiple information 
sources, and identify and synthesize current needs for such purposes.  Representative questions to be addressed include 
but are not limited to: 

Mining from heterogeneous information sources 

Data integration and data warehousing 

Multiple information sources management 

Local pattern analysis and fusion 

Global pattern synthesizing and assessment 

Inter pattern discovery and comparison 

Distributed and high-performance data mining 

Stream data mining algorithms 

Mining domain specific multiple information sources 

Security and privacy issues in multiple information sources 

Interactive data mining systems 

The workshop received 11 submissions, from which 4 regular papers and 3 short papers were selected. We are grateful to 
all program committee members for their constructive comments and suggestions in organizing the workshop. We thank 
them for finishing all the reviews in a very short amount of time. We would also like to thank all the authors who 
submitted their papers to the workshop; we could not make an excellent workshop program without their support. The 
support of the National Science Foundation of China (#60674109) is acknowledged! 

More information about the workshop can be found at: http://www.cse.fau.edu/~xqzhu/mmis/kdd07_mmis.html

August 2007 
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ABSTRACT
This paper demonstrates how methods borrowed from information 

fusion can improve the performance of a classifier by constructing 

(“fusing”) new features that are combinations of existing numeric 

features. This work is an example of local pattern analysis and 

fusion because it identifies potentially useful patterns (i.e., feature 

combinations) from a single data source. In our work, we fuse 

features by mapping the numeric values for each feature to a rank 

and then averaging these ranks. The quality of the fused features 

is measured with respect to how well they classify minority-class 

examples, which makes this method especially effective for deal-

ing with data sets that exhibit class imbalance. This paper evalu-

ates our combinatorial feature fusion method on ten data sets, 

using three learning methods. The results indicate that our method 

can be quite effective in improving classifier performance, al-

though it seems to improve the performance of some learning 

methods more than others. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords
Feature construction, classification, class imbalance, information 

fusion, combinatorial fusion analysis 

1. INTRODUCTION
The performance of a classification algorithm is highly dependent 

on the descriptions associated with each example. For this reason, 

practitioners typically spend a great deal to time making sure that 

these descriptions are accurate and capture the key aspects of the 

data. A good practitioner will choose the features used to describe 

the data very carefully. However, deciding which information to 

encode and how to encode it in a feature is quite difficult and the 

best way to do so depends not only on the domain, but on the 

learning method. For this reason, there have been a variety of 

attempts over the years to automate part of this process. This work 

has had a variety of names over the years (although sometimes the 

emphasis is different) and has been called constructive induction 

[13], feature engineering [18], feature construction [6] and feature 

mining [11]. In this paper we discuss how existing numerical fea-

tures can be combined, without human effort, in order to improve 

classification performance. This work can also be considered an 

example of local pattern analysis and fusion because we identify 

potentially useful patterns in the data (i.e., feature combinations) 

from a single data source. 

The work described in this paper is notable for several reasons. 

First, unlike the majority of work in this area, we are specifically 

concerned with improving the performance of data with substan-

tial class imbalance. Such problems, although quite challenging, 

are quite common and are typical in domains such as medical 

diagnosis [7], fraud detection [4], and in predicting equipment 

failures [20]. Furthermore, there are reasons to believe that this 

important class of problems has the most to benefit from feature 

construction, since some learners may not be able to detect subtle 

patterns that only become apparent when several features are ex-

amined together [19]. Our work also differs from other work in 

that our feature combination operator does not directly use the 

values of the component features but rather their ranks. This al-

lows us to combine numerical features in a meaningful way, with-

out worrying about issues such as scaling. This approach is par-

ticularly appropriate given the increased interest in the use of 

ranking in the data mining [10] and machine learning communities 

[5].  Our approach also can be viewed as an extension of work 

from the information fusion community, since techniques similar 

to the ones we use in this paper have been used to “fuse” informa-

tion from disparate sources [9]. The work in this paper can be 

viewed as a specific type of information fusion, which we refer to 

as feature fusion (yet another term for feature construction). 

We describe our combinatorial feature-fusion method in detail in 

Section 2 and then describe our experimental methodology in 

Section 3. Our experiments will evaluate our combinatorial fea-

ture-fusion strategy on ten data sets, using three learning methods 

(naïve Bayes, decision trees, and nearest-neighbor). The results 

from these experiments are described and analyzed in Section 4. 

We then discuss related work in Section 5. We finish by discuss-

ing our main conclusions and areas for future work in Section 6. 

2. COMBINATORIAL FEATURE FUSION 
This section describes the basic combinatorial feature-fusion 

method. We begin by providing some basic background informa-

tion in Section 2.1. In Section 2.2 we describe our combinatorial 

feature-fusion algorithm. 

2.1 Background
Our combinatorial feature-fusion method constructs new features 

by combining old features. In Section 2.1.1 we introduce some 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, re-

quires prior specific permission and/or a fee. 

MMIS ‘07, August 12, 2007, San Jose, CA, USA. 

Copyright 2007 ACM 978-1-59593-840-4….$5.00. 
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basic terminology and describe how features are combined, or 

fused. Then in Section 2.1.2 we discuss a variety of strategies for 

selecting the features to be fused. The algorithm described in Sec-

tion 2.2 will then describe how the fusion strategy and fusion 

mechanism can be used to construct a set of features that will 

often improve classifier performance. 

2.1.1 Terminology and Basic Steps 
In this section we will use a simple example to help explain the 

relevant terminology and preliminary steps related to feature fu-

sion. This example will also be used in Section 2.2 to help explain 

the feature-fusion algorithm. Please note that because our feature-

fusion method only works with numeric features, for simplicity 

we assume all features are numeric. Non-numeric features are not 

a problem in practice—they simply will be passed to the classifier, 

unchanged.

A data set is made up of examples, or records, each of which has a 

fixed number of features. Consistent with previous work on in-

formation fusion [9,10], we view the value of a feature as a score.

Typical examples of scores are a person’s salary, a student’s exam 

score, and a baseball pitcher’s earned run average. Note that in the 

first two cases a higher score is desirable and in the last case a 

lower one is to be preferred. 

Table 1 introduces our sample data set. This data set contains 

eight examples, labeled A-H, with five numeric features, F1-F5, 

and a binary class variable with values 0 or 1. In this example 

class 1 is the minority class and comprises 3/8 or 37.5% of the 

examples. 

Table 1: A sample dataset 

F1 F2 F3 F4 F5 Class 

A 1 4 3 2 8 1 

B 3 3 5 5 4 0 

C 5 5 2 6 7 1 

D 7 6 15 3 2 0 

E 11 13 16 7 14 0 

F 15 16 4 13 11 0 

G 9 7 14 1 18 1 

H 17 15 9 8 3 0 

Early in our combinatorial feature-fusion method we replace each 

score (i.e., feature value) with a rank, where a lower rank is better. 

We convert each score into a rank using a rank function. In this 

paper the rank function adheres to the standard notion of a rank. 

We sort the score values for each feature in either increasing or 

decreasing order and then assign the rank based on this ordering. 

Table 2 shows the values of the features for the sample data set 

after the scores have been replaced by ranks. In this case the ranks 

were assigned after sorting the feature values in increasing order. 

As a specific example, because the three lowest values for F3 in 

Table 1 are 2, 3, 4 and these values appear in rows C, A, and F, 

respectively, the ranks in Table 2 for F2 for records C, A, and F 

are 1, 2, and 3, respectively. 

We determine whether the ranks should be assigned based on 

increasing or decreasing order of the score values by determining 

the performance of the feature using both ordering schemes and 

then we use the ordering that yields the best performance (we 

describe how to compute a feature’s performance shortly). In our 

method, once the scores are replaced with a rank they are never 

used again. The rank values are used when combining features and 

when invoking the learning algorithm (i.e., the rank values are 

used as the feature values). 

Table 2:  Sample data set with scores replaced by ranks 

F1 F2 F3 F4 F5 

A 1 2 2 2 5 

B 2 1 4 4 3 

C 3 3 1 5 4 

D 4 4 7 3 1 

E 6 6 8 6 7 

F 7 8 3 8 6 

G 5 5 6 1 8 

H 8 7 5 7 2 

Next we show how to compute the “performance” of a feature. 

This performance metric essentially measures how well the rank 

of the feature correlates with the minority-class examples. That is, 

for a feature, do the examples with a good rank tend to belong to 

the minority class? We explain how to compute this performance 

metric using feature F2 from our sample data set.  First, we sort 

the records in the data set by the rank value of F2. The results are 

shown in Table 3. The performance of F2 is then computed as the 

fraction of the records at the “top” of the table that belong to the 

minority class. How many records do we look at? The number of 

records is based on the percentage of minority-class examples in 

the training data. In this case 3 of 8 of the training examples 

(37.5%) belong to the minority class so we look at the top 3 re-

cords. In this example that means that the performance of F2 is 

2/3, the number of class “1” values in the top 3 records (recall that 

“1” is the minority-class value). Given this scheme, the best per-

formance value that is achievable is 1.0. 

Table 3: Ranked list for F2 

F2 Rank Class

B 1 0 

A 2 1

C 3 1

D 4 0 

G 5 1 

E 6 0 

H 7 0 

F 8 0 

We may similarly compute the performances for all of the indi-

vidual features. For this simple example, F1–F4 all have perform-

ances of 2/3 and F5 has a performance of 0. Table 4 shows the 

performances of each of the original “unfused” features. In this 

overly simplified example, four of the features all have the same 

performance.
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Table 4: Performance values for original features

Feature 

Perform-

ance 

F1 0.67 

F2 0.67 

F3 0.67 

F4 0.67 

F5 0.00 

This method is also used to compute the performance of the com-

bined (i.e., fused) features. However, to do this we need to deter-

mine the rank of a fused feature, so we can sort the examples by 

this rank. We compute this using a rank combination function.

Our rank combination function averages the ranks of the features 

to be combined. This is done for each record. As an example, 

suppose we want to fuse features F1–F5 and create a new feature, 

F1F2F3F4F5, which we will call F6. Table 5 shows the rank val-

ues for F6 for all eight records. The value for F6 for record A is 

computed as: (Rank(F1) + Rank(F2) + Rank(F3) + Rank(F4) + 

Rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. We see that for this new 

feature, record “A” has the best (lowest) rank. Given these values, 

one can now compute the performance of the feature F6. Note that 

even though the values in Table 5 are not integers, we can still 

consider them ranks. In order to compute the performance of F6, 

we only need to be able to sort by these values. 

Table 5: Rank values for F6 (F1F2F3F4F5) 

F6  F6 

A 2.4 E 6.6

B 2.8 F 6.4

C 3.2 G 5.0

D 3.8 H 5.8

2.1.2 Combinatorial Fusion Strategies 
The previous section introduced the terminology and basic steps 

required by our combinatorial fusion algorithm, but did not dis-

cuss how we decide which features to fuse. We discuss that topic 

in this section. There are many possible strategies for choosing 

features to “fuse.” In this paper we consider combinatorial strate-

gies that look at all possible combinations. However, because this 

is generally not feasible, due to the number of features that would 

be introduced, we consider some more restrictive strategies. Let n

equal the number of numeric features available for combination. 

To look at all possible combinations would require that we try 

each single feature, all pairs of features, all triples, etc. The total 

number of combinations would therefore equal C(n,1) + C(n,2)

+ … C(n, n), which equals 2
n
 – 1. We refer to such a combinato-

rial fusion strategy as a fully-exhaustive fusion strategy. 

We consider more restrictive variants of the fully-exhaustive fu-

sion strategy because, depending on the value of n, this strategy 

may not be practical. The k-exhaustive fusion strategy will create 

all possible combinations using k of the n numeric features (k < n).

For example, a 6-exhaustive strategy for a data set with 20 nu-

meric features will select 6 numeric features and then fuse them in 

all possible ways. Doing so will reduce the number of feature 

combinations by a factor of 214. In our algorithm we choose the 

subset of k features based on the performance values for the fea-

tures, such as the ones in Table 4. Because it will not be expensive 

to include all of the original features, we also include the n – k

original features not used in the fusion process. The 6-exhaustive 

fusion strategy is one of the three strategies analyzed in this paper. 

The k-exhaustive fusion strategy trades off a reduced number of 

features for the ability to fully combine these features. In some 

cases it may be better to involve more features in the fusion proc-

ess, even if they cannot be fused in all possible ways. The k-fusion

strategy will use all n numeric features, but the length of the fused 

features is limited to length k.  Thus if we have a data set with 20 

numeric features and employ 2-fusion, all possible combinations 

of single features and pairs of features will be generated. This 

would yield C(20,1) + C(20,2) = 20 + 190 = 210 features. Simi-

larly, 3-fusion would consider C(20,1) + C(20, 2) + C(20, 3), or 

1140 feature combinations. 

Table 6 shows the number of features generated by the different 

fusion strategies. In all cases, as stated before, all original features 

are included (there are C(n,1) of these). Note that some cells are 

empty since k n. If k = n then the value computed is displayed in 

bold and corresponds to the fully-exhaustive strategy. Table 6 

demonstrates that, given a limit on the number of features we can 

evaluate, we have a choice of fusion strategies. For example, 

given ten numeric features, one can use all ten features and gener-

ate combinations of length four, which would generate 385 fea-

tures, or instead select the seven best ones and then fuse those in 

all possible ways (i.e., up to length 7), which would generate 

about 127 features (actually 130 since we would include the three 

original features which were excluded). 

Table 6: Combinatorial fusion table

k-fusion for values of k shown below Number 

Features
1 2 3 4 5 6 7 8 9 10 

1 1          

2 2 3         

3 3 6 7        

4 4 10 14 15       

5 5 15 25 30 31      

6 6 21 41 56 62 63     

7 7 28 63 98 119 126 127

8 8 36 92 162 218 246 254 255

9 9 45 129 255 381 465 501 510 511

10 10 55 175 385 637 847 967 1012 1022 1023

2.2 The Combinatorial Fusion Algorithm 
We now describe the algorithm for performing the combinatorial 

fusion. This algorithm is summarized in Table 7. We explain this 

algorithm by working through a complete example, based on the 

data set introduced in Table 1 of Section 2.1. 

For this example, we will use the 5-exhaustive strategy, so that we 

select the five best performing features and then fuse them in all 

possible ways. On line 1 of the algorithm in Table 7 we pass into 

the Comb-Fusion function the data, the features, a k value of 5 and 
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a value of True for the Exhaustive flag. As mentioned previously, 

the data and features are from Table 1. The next few steps were 

already described in Section 2.1.1. First we convert the scores to 

ranks (line 3). We then calculate the performance of each of the 

original (unfused) features, in the loop from lines 4-6. Then in 

lines 7-11 we determine which features are available for fusion. 

Since the Exhaustive flag is set, we restrict ourselves to the k best 

features (otherwise all features are available although they then 

may not be fused in all possible ways). 

Table 7: The feature-fusion algorithm 

1. Function Comb-Fusion (Data, Features, k, Exhaustive) 

2. {

3.    ConvertScoresToRanks(Data, Features); 

4.    for (f=1, f  length(Features) , f++){ 

5.           Perf[f]=CalculatePerformance(f); 

6.   } 

7.   if (Exhaustive == TRUE) { 

8.         FeaturesForFusion = best k features from Perf[]; 

9.   } else { 

10.        FeaturesForFusion = Features; 

11.   } 

12.   New = FuseFeatures(FeaturesForFusion, k, Exhaustive); 

13.   for (f=1, f  length(New) , f++){ 

14.         CalculateRank(f); 

15.         Perf2[f]=CalculatePerformance(f); 

16.   } 

17.    Sort(Perf2); 

18.    Candidates = Perf2.features; 

19.   // We now build up the final feature set 

20.   Keep = Features; // always use original features 

21.   partition(Data, *TrainValid, Test); 

22.    for (f in Candidates) 

23.   { 

24.         for (run=1; run  10, run++) 

25.        { 

26.             partition(TrainValid, *Training, *Validation); 

27.             classifier = build-classifier(Training, Keep); 

28.             PerfWithout[run] = evaluate(classifier, Validation); 

29.             cand = pop(Candidates); 

30.             classifier=build-classifier(Training, Keep  cand); 

31.              PerfWith[run] = evaluate(classifier, Validation); 

32.        } 

33.        if ( average(PerfWith[ ]) > average(PerfWithout[ ]) ) 

34.        { 

35.               pval = t-test(PerfWith[], PerfWithout[]); 

36.               if (pval  .10) { 

37.                   Keep = Keep  cand; 

38.               } 

39.        } 

40.   }  // end for (f in Candidates) 

41.   final-classifier = build-classifier(Training, Keep); 

42.   final-performance = evaluate(Test, Keep); 

43. } // end Function Comb-Fusion 

The actual generation of the fused features occurs on line 12. In 

this case, the five best features in FeaturesForFusion will be com-

bined in all possible ways (in this example there are only five 

features to begin with). Given our decision to always include the 

original features to the classifier, the original features need not be 

returned by FuseFeatures (they are handled later on line 20). 

Next, on lines 13-16 we calculate the rank for each fused feature 

and then calculate its performance. This is essentially the same 

steps that were done earlier for the original, unfused, features. We 

then sort the features by decreasing performance value (line 17) 

and then extract the features from this sorted list and save them 

(line 18) in Candidates, the ordered list of candidate fused fea-

tures. The results for our simple example are shown in Table 8. 

We show only the 14 best performing fused features. In this case 

Candidates would equal {F3F4, F1F2, F1F3, …}. 

Table 8: Performance values for 5-exhaustive strategy 

Priority Feature Perf. Priority Feature Perf. 

1 F3F4 1 8 F1F2F4 0.67 

2 F1F2 0.67 9 F1F3F4 0.67 

3 F1F3 0.67 10 F1F3F5 0.67 

4 F2F3 0.67 11 F2F3F4 0.67 

5 F2F4 0.67 12 F3F4F5 0.67 

6 F3F5 0.67 13 F1F2F3F4 0.67 

7 F1F2F3 0.67 14 F1F2F3F5 0.67 

We have now completed the first half of the algorithm. In the 

second half, starting at line 19, we decide which of the Candidate 

features to include in the final feature set. We begin by initializing 

Keep to the set of original features. We then partition the data 

(line 21) into one set to be used for training and validation and 

another for testing. Beginning on line 22 we iterate over all of the 

fused features in the Candidate set.

A key question is how we determine when to add a feature. Even 

though a feature has a good performance score, it may not be use-

ful. For example, the information encoded in the feature may be 

redundant with the features already included in the feature set. We 

adopt a pragmatic approach and only add a feature if it improves 

classifier performance on the validation set and the improvement 

is statistically significant. To determine this, within this main loop 

in the second half of the algorithm (lines 22 – 40) we execute ten 

runs (lines 24 – 32), repeatedly partitioning the training data into a 

training set and a validation set (line 26). If, averaged over the 10 

runs (line 33) the classifier generated with the candidate feature 

(line 30) outperforms the classifier generated without it (line 28), 

and the p-value returned by the t-test (line 35) is  .10 (line 36), 

then we add the feature to Keep (line 37). A p-value  .10 means 

that we are 90% confident that the observed improvement reflects 

a true improvement in performance. In steps 41 and 42 we build 

the final classifier and evaluate it on the test set. 

We should point out a few things. First, the actual implementation 

is more efficient (although slightly more difficult to describe). In 

the actual implementation we only need to build one classifier in 

the main loop, since the classifier from the previous iteration, and 

its performance, is still available. Similarly, we do not need to 

rebuild the classifier as indicated on line 41. The performance of 

the classifier can be measured using either AUC or accuracy, and 

we use both measures in our experiments. 
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Table 9 shows the behavior of our simple example as each feature 

is considered. We only show the performance for the first 3 fea-

tures. The last column indicates the feature being considered and a 

“+” indicates that it is added while the lack of this symbol indi-

cates that it is not added because the conditions on lines 33 and 36 

are not both satisfied. Each row corresponds to an iteration of the 

main loop starting at line 22 in the algorithm. The first row is 

based on the classifier built from the original feature set, contain-

ing features F1-F5. Note that the first and third features that are 

considered are added, because they show an improvement in AUC 

and the p-value is  .10. As we add features we also measure the 

performance of each classifier on the test set, although this is not 

used in any of the decision making. The AUC for the test set at the 

end is reported, however. If we stopped the algorithm after the 

three iterations, we can conclude that the performance improved 

from an AUC of .682 to .774. It is of course critical not to use the 

test set results to determine whether to add a feature.

Table 9: The execution of the algorithm on a simple example 

AUC Feature 

valid test 
p-value 

(+ means added)

0.670 0.682 -- {F1,F2,F3,F4,F5}

0.766 0.757 0.001 +F3F4

0.731   F1F2 

0.771 0.774 0.063 +F1F3

3 DESCRIPTION OF EXPERIMENTS 
In this section we provide the background necessary to understand 

our experiments. In Section 3.1 we describe the datasets employed 

in our empirical study and in Section 3.2 we describe the three 

learning methods that we utilize. Section 3.3 then describes our 

experimental methodology. 

3.1 Datasets 
The ten data sets used in our study are described in Table 10. The 

first field provides the data set name, the second the percentage of 

examples belonging to the minority class, the third specifies the 

final number of features and the last column lists the data set size. 

The data sets are ordered in terms of decreasing class imbalance. 

Table 10: The Data Sets

Dataset

Name

% Minority 

Class

Number 

Features 

Dataset

Size 

 protein+ 0.59 14 20,000 

 letter-a* 3.9 15 20,000 

 income*+ 5.9 12 10,000 

 stock*+ 9.9 27 7,112 

 hepatitis* 19.8 12 500 

 physics+ 24.9 8 20,000 

 german* 30.0 19 1,000 

 crx*+ 44.1 5 450 

 bands*+ 42.2 13 538 

 boa1+ 49.8 25 5,000 

The data sets come from a few sources. The hepatitis, bands, in-

come and letter-a data sets were obtained from the UCI machine 

learning repository [14] and the crx data set was provided in the 

Data directory that came with the C4.5 code. The boa1 data set 

was obtained from researchers at AT&T and has been used in 

previous published work. The physics and bio data sets are from 

the 2004 KDD CUP challenge.  The stock data set was provided 

by New York University’s Stern School of Business. 

In order to simplify the presentation and the analysis of our re-

sults, data sets with more than two classes were mapped to two-

class problems. This was accomplished by designating one of the 

original classes, typically the least frequently occurring class, as 

the minority class and then mapping the remaining classes into the 

majority class. The data sets that originally contained more than 

two classes are identified with an asterisk (*). The letter-a data set 

was generated from the letter-recognition data set by making the 

letter “a” the minority class. Because we are only employing fea-

ture fusion for the numeric features, we deleted any non-numeric 

features from the data sets. While this is not necessary, since our 

method could just ignore the non-numeric fields, we did this so 

that we could better determine the impact of the feature fusion 

method. The data sets that had any non-numeric features are iden-

tified with a “+”. 

3.2. Learning Methods 
All of the learning methods that we use in this paper come from 

the WEKA data mining software [12]. The three learning methods 

that we use are Naïve Bayes, decision trees and 1-nearest 

neighbor. The decision tree algorithm is called J48 in WEKA and 

is an implementation of the C4.5 algorithm.  The 1-nearest 

neighbor algorithm is referred to as IB1 in WEKA. 

3.3. Experimental Methodology 
The experiments in our study apply a combinatorial feature-fusion 

strategy to each of the ten data sets listed in Table 10 and then 

record the performance with and without the fusion strategy. This 

performance is measured in terms of the area under the ROC 

curve (AUC), because ROC analysis [3] is a more appropriate 

performance metric than accuracy when there is class imbalance.  

Nonetheless, we repeat some of our experiments with accuracy as 

the performance metric, since doing so it quite straightforward and 

accuracy is still a very commonly used performance metric. The 

three combinatorial fusion strategies that are evaluated are the 2-

fusion, 3-fusion and 6-exhaustive fusion strategies described in 

Section 2. In this study we utilize the three learning algorithms 

listed in Section 3.2 in order to see how the feature-fusion method 

benefits each algorithm. In the algorithm in Table 7 the data is 

partitioned such that 50% is used for training, 20% for validation, 

and 30% for testing. 

4. RESULTS 
In this section we describe our main results. Because we are inter-

ested in improving classifier performance on data sets with class 

imbalance, and because of the known deficiencies with accuracy 

as a performance metric [16], we use AUC as our main perform-

ance measure. These AUC results are summarized in Table 11. 

The results are presented for ten data sets using the Naïve Bayes, 

decision tree, and 1-NN learning methods. Three combinatorial 

fusion strategies are evaluated: 2-Fusion (2-F), 3-fusion (3-F) and 

6-Exhaustive (6-EX). The AUC results are presented first without 
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(w/o) and then with (w) the combinatorial fusion strategy. The 

“diff” column shows the absolute improvement in AUC resulting 

from the combinatorial fusion strategy, with negative values indi-

cating that combinatorial fusion degraded the performance. 

Table 11: AUC Improvement with Combinatorial Fusion

w/o w Diff w/o w Diff w/o w Diff

2-F .923 -.020 .752 .256 .663 .164

3-F .954 .010 .742 .247 .651 .152

6-EX .926 -.017 .759 .264 .663 .164

2-F .963 .000 .943 .021 .961 .024

3-F .960 -.003 .919 -.003 .937 .000

6-EX .962 -.001 .937 .014 .961 .024

2-F .901 .000 .736 .241 .612 .020

3-F .897 -.004 .734 .239 .621 .028

6-EX .900 -.001 .739 .245 .612 .020

2-F .762 .037 .755 .260 .575 .051

3-F .767 .043 .751 .255 .578 .054

6-EX .769 .044 .747 .252 .564 .040

2-F .869 .005 .755 .000 .803 -.016

3-F .868 .004 .759 .004 .826 .007

6-EX .864 .000 .760 .005 .821 .002

2-F .498 .000 .499 .000 .504 .000

3-F .506 .008 .499 .000 .495 -.008

6-EX .506 .008 .499 .000 .504 .000

2-F .751 .011 .609 .118 .607 -.001

3-F .723 -.017 .606 .115 .593 -.015

6-EX .736 -.004 .654 .162 .609 .000

2-F .762 .000 .646 .000 .653 .014

3-F .779 .017 .670 .024 .673 .034

6-EX .755 -.007 .722 .076 .667 .028

2-F .779 .029 .611 .108 .559 -.096

3-F .747 -.003 .603 .099 .644 -.012

6-EX .744 -.006 .580 .076 .655 .000

2-F .596 .024 .538 .041 .509 -.005

3-F .602 .031 .548 .050 .509 -.006

6-EX .589 .018 .553 .056 .509 -.005

physics .498 .499 .504

bio .943 .496 .499

income .901 .494 .593

boa1 .571 .497 .515

letter-a .963 .922 .937

bands .750 .504 .655

crx .762 .646 .639

.725 .496 .524

hepatitis .864 .755 .819

1-NN

german .740 .492 .609

Dataset Strat.

Bayes Decision Trees

stock

The results in Table 11 indicate that the combinatorial feature 

fusion method is effective. The results appear to be most positive 

for the decision tree learning method. The overall impact of the 

methods is shown in Table 12, which summarizes the results of 

the ten data sets. Table 12 shows the summarized results for each 

combinatorial fusion strategy and learning method. It displays the 

average absolute improvement in AUC as well as the win-lose-

draw (W-L-D) record over the 10 data sets. 

Table 12: Summarized AUC Results for Ten Data Set 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D

2-fusion 0.009 5-1-4 0.105 7-0-3 0.016 5-4-1

3-fusion 0.009 6-4-0 0.103 8-1-1 0.023 5-4-1

6-exhaustive 0.003 3-6-1 0.115 9-0-1 0.027 6-1-3

Bayes DT 1-NN

The results form both tables indicate that decision trees benefit 

most from combinatorial fusion, with the one-nearest neighbor 

learning method showing the second-best improvement. Because 

the maximum AUC value is 1.0, even an average improvement of 

.023 (for 1-NN using the 3-fusion strategy) is quite substantial. 

We believe that the decision tree algorithm improves the most 

because it is incapable of learning combinations of numeric fea-

tures, because it can only examine a single feature at a time 

(oblique decision trees are not subject to this limitation). That is, 

decision trees operate by making axis-parallel cuts in the “concept 

space” and because of this limitation, it cannot correctly learn a 

simple concept such as x + y = 1 (although it can approximate it). 

However, with our combinatorial feature fusion method, we 

would expect a traditional decision tree to easily learn such a con-

cept.

The results do not demonstrate that any of the three combinatorial 

feature-fusion strategies is a clear winner over the other two. The 

6-exhaustive strategy does perform the best for decision trees and 

one-nearest neighbor, but performs the worst for naïve Bayes. 

Since the 3-fusion strategy subsumes the 2-fusion strategy (i.e., it 

generates a superset of the features generated by the 2-fusion strat-

egy) it is worthwhile to compare these two strategies. Because the 

results are quite similar, the best we can say is that the results are 

comparable. Our individual results do show that with the 3-fusion 

method some 3-fused features are generated and used in the final 

feature set, so we can conclude that the strategies do differ in what 

features are used (the same is true of the 6-exhaustive strategy). 

The fact that the 2-fusion strategy performs competitively with the 

others may indicate that in practice most of the potential benefits 

that one can achieve with our combination operator can be 

achieved by combining only two features. 

We can analyze the results in Table 11 to determine if the combi-

natorial feature fusion method is most effective for data sets with 

the highest levels of class imbalance. The first four data sets listed 

in the table all have less than 10% of the data set belonging to the 

minority class (i.e., have a class ratio greater than 9:1). Table 13 

shows the average AUC performance over just these four data 

sets. 

Table 13: Summarized AUC Results for 4 Skewed Datasets 

Strategy AUC W-L-D AUC W-L-D AUC W-L-D

2-fusion 0.004 1-1-2 0.195 4-0-0 0.065 4-0-0

3-fusion 0.012 2-2-0 0.185 3-1-0 0.059 3-0-1

6-exhaustive 0.006 1-3-0 0.194 4-0-0 0.062 4-0-0

Bayes DT 1-NN

The results in Table 13, when compared to Table 12, show that the 

combinatorial fusion method is substantially more beneficial, 

when using the decision trees and one-nearest neighbor method, 

for the most skewed data sets (i.e., the ones with the most class 

imbalance). Between these two methods, the improvement aver-

ages about twice the improvement over the ten data sets. The 

Bayes method shows an improvement in AUC also, but given the 

win-loss-tie record this is less convincing. Because of the limited 

number of datasets analyzed, these results cannot be considered 

conclusive, but nonetheless are quite suggestive. There are two 

explanations for the more substantial improvement for the most 

highly skewed data sets. First, because the performance measure 

described in Section 2 is based on the correlation between the 

fused feature and the minority-class examples, the features that are 
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more likely to improve minority-class performance are considered 

first. This makes them more likely to be added, since adding other 

features first might obscure these improvements. Secondly, it is 

often quite difficult to identify “rare cases” and algorithms that 

look at multiple features in parallel are more likely to find the 

subtle classification rules that might otherwise get overlooked [19]. 

Although our primary interest is in improving classifier perform-

ance with respect to the area under the ROC curve, our method 

can be used to improve accuracy as well. We repeated a subset of 

our experiments, using accuracy instead of AUC to determine 

whether adding a fused feature improves the performance of the 

classifier with the required level of statistical confidence. Table 14 

provides the results when using the 2-fusion strategy. We did not 

repeat these experiments for the other two strategies because AUC 

is our primary measure of interest and because the three strategies 

appear to perform similarly. 

Table 14: Accuracy Results using 2-Fusion Strategy 

w/o w Diff w/o w Diff w/o w Diff

 bio 98.8 98.8 0.0 99.4 99.4 0.0 99.2 99.2 0.0

 letter-a 98.4 98.4 0.0 98.6 98.6 0.0 98.9 98.9 0.0

 income 92.0 92.0 0.0 94.5 94.5 0.0 92.4 92.4 0.0

 stock 80.4 80.4 0.0 90.3 90.3 0.0 86.3 86.3 0.0

 hepatitis 84.0 84.0 0.0 86.2 80.7 -5.6 89.3 89.3 0.0

 physics 68.9 75.3 6.5 75.1 75.2 0.1 62.6 75.0 12.4

 german 73.2 73.2 0.0 69.5 73.0 3.5 68.1 71.6 3.5

 crx 70.1 70.1 0.0 60.3 75.1 14.9 60.4 73.6 13.2

 bands 67.0 67.0 0.0 61.4 61.4 0.0 65.3 65.3 0.0

 boa1 55.0 57.0 2.0 51.0 56.9 6.0 52.6 57.5 5.0

1-NNDecision TreesBayes
Dataset

The results in Table 14 indicate that our combinatorial fusion 

method is also effective for accuracy. While most of the data sets 

show no improvement, only in one case did the combinatorial 

fusion strategy lead to a decrease in accuracy. In contrast, in ten 

cases there was an increase in accuracy. In virtually every case 

where the accuracy remains the same, the combinatorial fusion 

strategy did not add any fused features. Similar to what we saw 

for AUC, the naïve Bayes method shows the least improvement. 

5. RELATED WORK 
There has been a significant amount of work on feature min-

ing/feature construction and so in this section we only mention 

some representative work. One way to organize work in this area 

is by the operator used to combine the features. In our work, for 

example, numeric features are combined by mapping their feature 

values (i.e., scores) to ranks and then averaging the values of these 

ranks.

One approach is to assume that the features represent Boolean 

values and then use the standard logical operators (e.g., , ) to 

combine the features[2]. Other methods, such as the X-of-N 

method [21] differ in some ways but can nonetheless be used to 

implement most of the logical operators. These logic-based meth-

ods require that categorical features and numerical features first be 

mapped into Boolean values. This is not necessarily difficult, 

since data reduction algorithms already exist for this (e.g., C4.5 

[17] can generate binary splits for numerical features), but this 

step loses information and, especially for numerical features, may 

not be a natural choice. This mapping can also lead to other prob-

lems. For example, with decision trees, repeatedly partitioning a 

numeric feature into binary values can lead to data fragmentation, 

whereas our method actually reduces this problem by allowing 

one to combine multiple numeric features directly.   

Other methods are much more ambitious in the operators they 

implement. For example, some systems implement multiple 

mathematical operators, such as “+”, “-“, “ ”, and “ ”, and rela-

tional operators such as “ ” and “ ” [1, 15]. Because these sys-

tems provide a richer set of operators than we do, it is not feasible 

to try all possible combinations, such as our exhaustive fusion 

strategies. These methods rely on more complex, search-based, 

heuristic methods. Thus our method has the advantage of simplic-

ity. Again, a key difference is that our method combines ranks, 

whereas this other work combines the scores.  

It is informative to describe our work using a general framework 

for feature construction that has been proposed [13]. This frame-

work involves the following four steps: 1) detection of when fea-

ture construction is required, 2) selection of constructors, 3) gen-

eralization of the selected constructors, and 4) evaluation of the 

new features. The first step involves detecting when there is a 

need for feature construction. We use a “no detection” policy 

since we always perform feature construction. Other options 

would be to only construct features when the classifier that is 

initially produced fails to meet a pre-specified requirement (e.g., 

accuracy is too low). The next step involves selecting the con-

structors to use, which in our case is simple since we only have a 

single constructor (i.e., combination operator). We do not general-

ize during the feature construction process, so our work is not an 

example of constructive induction.  Finally, we evaluate our new 

features by tentatively adding them to the classifier one at a time, 

based on their ranked performance, but only keep the feature if we 

are statistically confident that it will improve classifier perform-

ance.

Feature selection [8], which involves determining which features 

are useful and should be selected, is often mentioned in the same 

context as feature construction. Although we did not discuss fea-

ture selection in this paper, we have used the techniques in this 

paper to implement feature selection and plan to investigate this 

topic in the future. In particular, the measure of feature perform-

ance that is introduced in this paper can be used to select the most 

useful features and to prune feature with low performance. 

6. CONCLUSION
This paper examined how a method from information fusion could 

be applied to feature construction. This method was described in 

detail and then three combinatorial fusion strategies were evalu-

ated on ten data sets and three learning methods.  This combinato-

rial feature-fusion method was applied to numeric features and our 

results were quite positive, especially for the data sets with the 

greatest class imbalance. When measuring AUC, the methods 

were of greatest benefit to the decision tree learning method, al-

though it also substantially improved the performance of the 1-

nearest neighbor method. Our results also indicate that this 

method is effective at improving accuracy.  
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The work described in this can be extended in many ways. While 

the ten data sets we analyzed is a reasonable number of data sets, 

it clearly would be a benefit to evaluate our methods on additional 

data sets, including several additional, highly imbalanced, data 

sets. It would also be interesting to evaluate additional combinato-

rial feature-fusion strategies, other than the three we evaluated in 

this paper. However, we suspect more complex fusion strategies 

will not yield substantial further improvements, so we do not view 

this as a critical limitation of our current work. 

We also think that our basic algorithm can be extended in a few 

ways. First, although we rank our features and feature combina-

tions and then evaluate their performance based on their correla-

tion with minority-class examples, these are only used to deter-

mine the order in which the fused features are considered for in-

clusion. We plan on evaluating heuristic methods, which would 

prune feature combinations that perform poorly. This would en-

able us to evaluate more complex fusion schemes with similar 

effort or to improve the computational performance of the algo-

rithm. In this same vein, we also wish to consider simplifying the 

method for deciding whether to add a feature. Currently we use a 

validation set and only add a feature if the improvement in per-

formance passes a statistical significance test. While there are 

benefits to this strategy, it also increases the computational re-

quirements of the algorithm. 

Finally, we would like to apply our combinatorial method to nu-

meric features using operators that do more than average the ranks 

of the features. While this would greatly expand the space of pos-

sible combinations, it could lead to further improvements. 
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ABSTRACT
Identifying new customers is a critical task for any sales-
oriented company. Of particular interest are companies that
sell to other businesses, for which there is a wealth of struc-
tured information available through financial and firmographic
databases. We demonstrate that the content of company
web sites can often be an even richer source of information
in identifying particular business alignments. We show how
supervised learning can be used to build effective predictive
models on unstructured web content as well as on structured
firmographic data. We also explore methods to leverage the
strengths of both sources by combining these data sources.
Extensive empirical evaluation on a real-world marketing
case study show promising results of our modeling efforts.

1. INTRODUCTION
Sales-oriented companies must continue to find new cus-
tomers for their products and service offerings. For com-
panies that sell to other businesses, this means identify-
ing new companies with potential interest in purchasing the
seller’s offerings. Aside from specific for-purchase marketing
databases, there are several sources of data relevant to this
task. These include

1. Extensive financial information for publicly-traded com-
panies (e.g. Standard and Poor’s [7])

2. Firmographic data (e.g. location, industry, estimated
company revenue and number of employees) for a large
number of companies (e.g. D&B [1])

3. News feeds (e.g. Reuters [5])

4. Content extracted from the websites of a universe of
potential customers.

Any of these sources of data can be joined with the seller’s
historical transactions as a basis for building probability-
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to-purchase models (e.g. [25]). For example, D&B firmo-
graphic information can be joined with past transactions to
build customer targeting models [18] that estimate purchase
probabilities based a labeled set of positive examples, i.e.
previous purchasers of a specific product. But there can be
instances where past transactional data are either unavail-
able or not immediately relevant to the specific task. For ex-
ample, suppose we are interested in a slightly different busi-
ness objective, namely identifying companies with whom we
might wish to form a business partnership. Such a partner-
ship could involve an agreement to sell each other’s products
and/or services. In this case, we may wish to find compa-
nies with a specific sales strategy that compliments our own
business objectives. While firmographic data like D&B can
be used to identify a broad pool of candidate companies, it
does not contain specific information on a company’s over-
all business alignment. It is clear that company websites are
much more likely to contain the relevant information.

To illustrate the issues, we consider the following specific ex-
ample. Let us assume we are interested in finding partners
to sell a specific financial offering. We believe that com-
panies interested in such an offering may also be interested
in purchasing consulting services around Sarbanes-Oxley [6]
compliance. One strategy to tap into this market quickly
would be to enter into a co-marketing agreement with a
company that sells Sarbanes-Oxley (SOX) consulting ser-
vices. However, if we do a web search for “Sarbanes Oxley”,
we will find a lot of useful information on this topic, but rel-
atively few companies that sell services related to it. Indeed,
our objective is to find not only companies that specialize in
SOX, but to find them within a specific firmographic win-
dow. We may wish to exclude both very small and very
large companies, and hence limit the search only to compa-
nies with annual revenue between $100M and $1B. We may
be interested only in a specific SIC [8] code covering Profes-
sional Services. This expanded search requires a fusion of
structured (firmographic) and unstructured data (web con-
tent).

This scenario introduces some very interesting machine learn-
ing issues in the emerging area of analyzing combined struc-
tured and unstructured data. It may be possible to have ex-
perts inspect websites selected via a firmographic filter, and
generate binary labels reflecting the degree of “fit” to the
partner qualifications. In this case, we can build supervised
models that learn these characteristics, and use the model to

14



score other companies within this firmographic window. In
the following section, we describe the data obtained in such
a labeling exercise. In Sections 3 and 4, we describe models
built using the web content and the firmographic data, re-
spectively. We are particularly interested here in the relative
predictive power obtained by combining these data sources
– Section 5 describes our current efforts in this area.

2. THE COMPANY IDENTIFICATION TASK
We have been able to develop a labeled data set for super-
vised learning via the process summarized in Figure 1. As
discussed in the previous section, the specific application is
to identify companies with whom we may wish to partner
in order to market a particular financial offering. The first
step is to develop a universe of potential companies, based
solely on firmographic data such as a company revenue and
SIC industry classification. The revenue window is set to
eliminate large companies since we are looking for mid-size
companies with whom to partner. Using the US D&B table
with approximately 15M company sites, this query yields a
D&B subset of approximately 2400 companies.

The next step is to obtain the URL of the website for each
company within this firmographic universe. Our D&B table
does not contain this information, so we resort to submitting
the company name to various search engines and processing
the returned results. While this process is quite reliable for
larger companies, it can return incorrect results for the set
of relatively small companies under consideration here. We
applied a set of heuristics to improve the accuracy of the
company-to-URL mapping.

The immediate challenge is to assign a binary label to each
company that reflects their perceived qualifications as a busi-
ness partner. These labels were generated by a team of
human experts with a detailed understanding of desirable
characteristics of a successful partner. Each website within
the 2400-company universe was inspected by this team, and
positive labels were assigned to companies that appeared
to be reasonable candidates, based solely on the experts’
judgment. Note that there are no specific terms that were
required to be on a site in order for it to be labeled as a pos-
itive. Rather, the experts would browse the site, and form
an opinion based on a broad sense of the potential match.
As a result of this exercise, 179 companies were labeled as
positives, with the balance (2262) taken as negatives.

Once the data are available, our next step is to map the task
to a machine learning problem. In essence, finding business
partners is similar to a retrieval task or recommendation
system, which can be treated as a ranking problem. How-
ever, since no reliable confidence score can be obtained for
each company (even by human experts), we simply view the
task as a classification problem with special properties, i.e
unbalanced data and features from multiple sources.

3. WEB CONTENT MODELS
There exist many information sources where one can acquire
the business profile of a company, such as Hoovers [4], Fac-
tiva [2], and Harte-Hanks [3]. However, with the increase of
valuable information on the world wide web, we can gather
a wealth of information just from the content of company
websites. The rich information on a company’s website often

Figure 1: Construction of the labeled data set.

describes the services they support or the products they sell,
as well as who their partners are. These are extremely valu-
able pieces of information that are difficult to acquire from
alternative structured sources. In addition, recent changes
in the strategies of a company are usually reflected imme-
diately on their websites, while it may take longer for their
entries to be updated in databases maintained by third par-
ties.

3.1 Data Preparation
To extract the web content from companies’ websites, we
first need to find the URLs of the target companies by query-
ing the company names on popular search engines, such as
Google or Yahoo!. This seemingly simple task turns out to
be rather challenging to automate due to the fact that

1. many of our targets are small or medium-sized com-
panies, and therefore their websites are not ranked at
the top in search results;

2. some companies share common words in their names
or even share the same name, which makes it difficult
to determine the correct URLs, even for humans;

3. some big companies have branches in multiple loca-
tions providing different business – in many cases, the
search engine will return the URL of their parent com-
pany or a wrong branch.
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Clearly, the task of automatically identifying URLs for a
company itself desires more careful examination. We devel-
oped several heuristics to aid in correctly resolving company
URLs. We skip the detailed discussion of heuristics here and
assume that we have the correct URLs for each company.

Next, for each company in the data set described in Sec-
tion 2, we crawl the company’s website up to a depth of 4
and recompile all the pages into one big file. We pre-process
the text by removing stop words, stemming the words into
inflected forms (e.g. from the plural form to the singular
form and from the past tense to the original form), and se-
lecting features using the χ2 scores, which is shown to be the
best feature-selection method in previous empirical studies
[35]. These processes result in a collection with a vocabulary
of around 6000 words, which we convert into vectors using
the bag-of-word representation with TF-IDF term weighting
[12].

3.2 Data Analysis
It is not hard to imagine that there can be some irrelevant
information on the company webpages which may affect our
modeling results, such as spam advertisements, slogans, con-
tact information, directions, etc.. After some examination,
we found that the feature selection algorithm based on χ2

tests is extremely helpful in reducing such noise in the data.
Below is a list of top-ranked words using χ2 scores:

sarban oxley FDICIA PCAOB outsourc quickbook CPA ERP

fraud whitepap firm CFO forens llp financ client payrol share-

hold consult COSO

These results are quite encouraging because all these terms
have been identified as positively relevant by marketing ex-
perts. For example, one type of potential IBM partners
are those companies that provide services and consulting
on the “Sarbanes-Oxley Act”. As a result, the terms such
as “PCAOB” and “FDICIA” are relevant because the first
refers to a private-sector, non-profit corporation, created by
the Sarbanes-Oxley Act, to oversee the auditors of public
companies and protect the interest of investigators, while
the second term represents the Federal Deposit Insurance
Corporation Improvement Act of 1991, which was passed
before the Sarbanes-Oxley Act during the savings and loan
crisis to strengthen the power of the Federal Deposit Insur-
ance Corporation.

3.3 Experimental Evaluation
Given the web content, we cast the task of customer iden-
tification into one of text classification, i.e., given a text
document representing a company, classify it as a positive
or negative example of a potential customer. We can now
use one of many text classification methods available to solve
this problem. In particular, we compare the following ap-
proaches:

1. SVM-light [17] — an efficient and scalable implementa-
tion of Support Vector Machines for text classification.

2. Näıve Bayes using a multinomial text model[19].

3. K-Nearest Neighbor (KNN) [13], with the number of
neighbors, k, set to 3.

We also ran versions of the above algorithms modified to deal
with the high imbalance between the positive and negative
class. SVM-light provides a straightforward mechanism for
dealing with class imbalance by specifying a cost factor by
which training errors on positive examples outweigh errors
on negative examples. We set this cost factor to 10, and
refer to this variant as SVM(c=10). As noted by Rennie et
al. [24] and Frank and Bouckaert [15] näıve Bayes trained
on imbalanced data produces predictions that are biased in
favor of large classes. To overcome this, we re-weighted the
instances in the training data so that a positive instance has
10 times the weight of a negative instance. We applied the
same approach to KNN, which does not affect the choice of
neighbors, but influences the relative contribution of positive
and negative neighbors in determining a label. We refer to
the re-balanced version of näıve Bayes and KNN as näıve
Bayes (c=10) and KNN(c=10) respectively.

We compared all methods using 10 fold cross-validation and
computed area under the ROC curve (AUC) as the perfor-
mance metric. Table 1 summarizes the results in terms of
AUC, and Figure 2 presents ROC curves comparing different
classifiers. For clarity, the figure only shows the classifiers
modified for dealing with imbalanced data.

The results show that accounting for the imbalance in data
leads to classifiers with better or comparable performance.
In particular, correcting for the skewed distributions in näıve
Bayes significantly improves its performance, leading to the
best classifier for this data. Given that random classification
results in an AUC of 0.5, and a perfect classifier results in an
AUC of 1, the näıve Bayes AUC score of 0.883 shows that
the model is doing extremely well at ordering the instances
in terms of likelihood of being a good customer. These re-
sults are very encouraging – in the following sections we
explore modeling alternative information sources as well as
the possibility of improving on the web content models by
incorporating information from these sources.

Table 1: Comparing web content models.

Classifier AUC

Naive Bayes 0.806
Naive Bayes(c=10) 0.883

SVM 0.796
SVM(c=10) 0.833
KNN 0.598
KNN(c=10) 0.597

4. FIRMOGRAPHICS MODELS
In the previous section we demonstrated how website con-
tent can be effectively used to identify companies that are
likely to align well with particular marketing objectives.
However, apart from content of company websites, we can
also acquire firmographic information about companies through
different sources. While web content can be effective in iden-
tifying specific sales strategies, firmographic data, such as
size and revenue, can be used to identify a broader pool of
candidates based on the viability of a sale or collaboration.
Typically, firmographics do not contain much specific in-
formation about a company’s detailed business alignments,
however they may still provide valuable information that
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Figure 2: ROC curves comparing web content mod-

els.

could be critical in determining potential customers or part-
ners. To verify this, we extracted firmographic data from
Dun & Bradstreet (D&B) [1] and IBM Marketing Intelli-
gence [28] which provides information on most businesses
in the US and around the world. This data includes infor-
mation such as:

1. Company size information: revenue and number of em-
ployees; along with information on dynamics of change
in these figures in recent years.

2. Various levels of industrial classification: industrial
sector, industry, sub-industry, etc.

3. Company location: city, state, country.

4. Company structure descriptors: legal status, location
in corporate hierarchy (headquarters/subsidiary), etc.

Each company in this data is described by 231 features. We
begin by eliminating features that are specific to a company,
such as DUNS numbers and names. For ease of modeling, we
also exclude categorical features that have too many distinct
values, such as zip codes and phone area codes. We remove
redundant features that are highly correlated with other fea-
tures, such as city name and city code. We also eliminate
features that are uncorrelated with the target class and are
also unlikely to have a causal link with the class label, such
as the indicator of a recent address change. Finally, we filter
out features that have too many missing values. After these
preprocessing steps we are left with 34 features, which are
listed in Table 2 in decreasing order of information gain.

We observe that NAICS and SIC codes rank highest on the
list of features – this is presumably because they provide the
most information regarding business alignments. It is inter-
esting to note that the size of company in terms of number
of employees appears to be more important than sales. Fur-
thermore, growth indicators, such as the increase in number
of employees and sales in recent years, are far more indica-
tive of a company’s classification than the absolute national
or global sales. This is consistent with the fact that for the

offering under consideration in this data, we are looking for
partners that are mid-sized business with the potential to
grow.

4.1 Experimental Evaluation
Using the firmographic features listed in Table 2, along with
the class labels as before, we compare the following three
modeling techniques:

1. J48 [30] — a Java implementation of the C4.5 decision
tree algorithm [23].

2. The näıve Bayes algorithm [20], using the Fayyad and
Irani approach to discretization [14] of continuous fea-
tures.

3. Boosted decision stumps, using AdaBoost [26] run
for 100 boosting iterations.

To deal with the high imbalance in classes, we re-balance the
training data by weighting positive instances 10 times higher
than negative instances. Without this re-weighting, decision
tree induction (J48) results in a trivial tree with a single leaf
node classifying all instances as negative. Figure 3 shows the
comparative performance of the different classifiers. The
results are summarized in Table 3 in terms of area under
the ROC curves. As before, all results were averaged using
10 fold cross-validation.

Boosted decision stumps emerge as being clearly the best
approach for this data. These models based solely on firmo-
graphics perform surprisingly well at identifying potential
customers. However, in absolute terms the firmographics
by themselves are not as effective as using the web content
(as can be seen by comparing Tables 1 and 3).

Firmographic data provides information that helps iden-
tify higher-level characteristics of potential customers, e.g.
mid-sized businesses that have been steadily growing. By
exploiting industry categorization, the firmographic mod-
els can also identify business alignments at a coarse level.
For example, the first decision stump in the AdaBoost

model learns to classify companies with a NAICS code of
541211 as a positive. This NAICS code corresponds to of-
fices of Certified Public Accountants, which comprises es-
tablishments of accountants that are certified to audit the
accounting records of public and private organizations and
to attest to compliance with generally accepted accounting
practices [9]. As described before, in order to market the
specific financial service offering for which our data set was
created, we are very interested in firms that provide such
accounting services. However, in order to be able to further
refine our search among all companies within these broad
industry classifications, it is crucial that we know the spe-
cific services they offer – this is the information we extract
from company websites, as done in Section 3.

5. COMBINING INFORMATION FROM MUL-
TIPLE SOURCES

In Sections 3 and 4 we evaluated models built using only
web content and firmographics, respectively. The fact that
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Table 2: Firmographic features used for modeling, ordered by decreasing information gain.

Feature Description

NAICS CD 6 digit No. American Industrial Classification Sys
SIC Standard Industrial Classification code
OFFICE SUPPLY RANK Based on wholesale buying index. Score 1-100
ST PROVINCE Name of state or province in which site is located
EMPL RANGE CD Establishment employee size code
EMPL Establishment employee size
PC ESTIMATED QTY Estimates number of PCs at a site
EMPL 5YR PCT Percent growth in employees (5 year)
CUST PROSPECT CD Customer or Prospect indicator
WEB PRESENCE CD Indicates probability of having a Web presence
SALES RNGE CD Indicates the sales volume range
EMPL 3YR PCT Percent growth in employees (3 year)
URL STATUS CD Indicates status of URL for business
NETWORK PC RNGE CD Estimated number of Nodes or Network connected PCs
STRUCTURE CD Code for type of business at location
SLE 3YR PCT Percent growth in sales (3 year)
TECH DEMAND CD Estimated demand for Technology and Office products
IT BUDGET CD A ranking of businesses by their likely IT spend
YEAR OWNER CHANGED Year new owner acquired firm
PTB UNIX SERVER CD Propensity to buy UNIX servers
YEAR STARTED Year the Company was Established
SUBSIDIARY CD Indicates if business is a subsidiary
PTB OTHR SERVER CD Propensity to buy other servers
WAN PRESENCE CD Estimated probability of presence of WAN
OFFICE SUPPLY TIER Ranking of potential to purchase office supplies
PTB WIN SERVER CD Propensity to buy Windows servers
PUBLIC COMPNY INDC Indicates if Company is publicly held
SMALL BUSINES INDC Indicates if enterprise is a small business
NTWK PRESENCE CD Likely presence of network indicator
WOMEN OWN INDC Indicates if business is controlled by women
GU SALES US CRCY Sales for Global Ultimate in whole US dollars
SLE 5YR PCT Percent growth in sales (5 year)
SALES US CURRENCY Sales expressed in whole U.S. dollars

Table 3: Comparing firmographics models.

Classifier AUC

AdaBoost 0.749

Naive Bayes 0.692
J48 0.566

it is possible to build effective customer-identification mod-
els using each source independently raises the question of
whether we can build an even better model by combin-
ing these information sources. Although web content is a
richer source of information for the task at hand, it is also
more susceptible to noise. Automatically mapping company
names to their correct URLs in itself is a non-trivial task,
and is not 100% accurate. Even with the correct URLs,
we end up with lot of noisy (irrelevant) information from
company websites such as advertisements, slogans, contact
information, etc. On the other hand, firmographic data is
more reliable since it is structured and comes directly from
database lookups. Hence, web-content and firmographics
can be viewed as complimentary sources of information, and

by combining them we may be able to leverage the strengths
of both sources.

Common approaches to combining information sources vary
from early fusion [27], which merges the feature sets ex-
tracted from different sources, to late fusion, which com-
bines the output of classifiers built on each features set sep-
arately [31]. Following these approaches we explore the
following fusion methods:

1. Boosting decision stumps applied to training instances
created by merging the web content and firmographic
feature sets, which we refer to as AdaBoost (early
fusion).

2. Vote-Avg: Build separate classifiers on the web and
firmographic features, and average the class probabil-
ity estimates output by both. We tried two variants
of this method using näıve Bayes and SVMs for the
web model. In both cases we use AdaBoost for the
firmographic models. We refer to the two variants
as Vote-Avg (Naive Bayes+AdaBoost) and Vote-Avg
(SVM+AdaBoost) respectively.
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Figure 3: ROC curves comparing firmographics

models.

3. Vote-Prod: Follow the same procedure as Vote-Avg,
except the class probability estimates produced by in-
dividual models are multiplied and renormalized, in-
stead of being averaged. Here again we used the same
base model combinations are in Vote-Avg, and refer
to them as Vote-Prod (Naive Bayes+AdaBoost) and
Vote-Prod (SVM+AdaBoost).

The methods described here can be viewed as weak fusion
approaches. Below we describe a strongly-coupled fusion ap-
proach, where the classifiers trained on separate information
sources can influence the inductions on each others.

5.1 Transductive Co-training
Given the properties of the data (i.e. there are few labeled
positive examples, and we have two sources of information
available, each of which provides redundant but complemen-
tary information), it is natural to apply the co-training al-
gorithm [11]. Originally co-training was developed for semi-
supervised learning, which makes use of the unlabeled exam-
ples with two distinct sets of features. Following the same
idea, we use co-training in the transductive setting, i.e., tak-
ing the test set into account during induction and trying to
minimize misclassifications of just those particular exam-
ples. The details of transductive co-training is shown in
Algorithm 1.

The basic assumption of the co-training algorithm is that
either set of the features should be sufficient for learning if
we had enough labeled data. In our application, this as-
sumption has been obviously violated since there is a lot of
noisy or irrelevant information in the web content, while the
D&B features do not provide enough information to satisfy
the condition. Therefore we do not expect dramatic per-
formance improvement compared with the classifiers using
individual sets of features.

As in the case with late fusion, we tried two variants of co-
training: näıve Bayes and SVMs for the web model, with
AdaBoost for the firmographic models. We refer to these
as Co-training (Naive Bayes+Adaboost) and Co-training
(SVM+Adaboost), respectively. We use p = 2 and n = 20

Algorithm 1 Transductive Co-training

Given:

L : a set of training examples
T : a set of testing examples
Imax: maximum iterations

1. Loop until T = ∅ or for Imax iterations

2. Use L to train a classifier h1 that uses only the
web content features

3. Use L to train a classifier h2 that uses only the
firmographic features

4. Allow h1 to label p most-confident positive and
n negative examples from T

5. Allow h2 to label p most-confident positive and
n negative examples from T

6. Add these self-labeled examples to L

in Algorithm 1, in keeping with the low ratio of positives
and negatives in the data.

5.2 Experimental Evaluation
The results of all the fusion approaches are summarized in
Table 4, and Figure 4 presents ROC curves of different com-
bination techniques. For the sake of clarity we only present
ROC curves for three approaches — one each demonstrating
early fusion, late fusion and transductive co-training.

Table 4: Comparing methods to combine multiple

information sources.
Classifier AUC

AdaBoost(early fusion) 0.867
Vote-Avg(Naive Bayes+AdaBoost) 0.883
Vote-Prod(Naive Bayes+AdaBoost) 0.887

Vote-Avg(SVM+AdaBoost) 0.842
Vote-Prod(SVM+AdaBoost) 0.843
Co-training(Naive Bayes+Adaboost) 0.874
Co-training(SVM+Adaboost) 0.828

Compared with previous approaches using SVMs for the web
model (AUC = 0.833, Table 1) and AdaBoost for the fir-
mographic model (AUC = 0.749, Table 3), both early fusion
using AdaBoost, as well as both variants of late fusion
through voting are successful in improving on the individ-
ual models. However, when we use näıve Bayes for the web
model (AUC = 0.883, Table 1), only voting with taking
products of probabilities (AUC = 0.887) performs better
than using only the web content. Furthermore, the added
benefit in performance is fairly small.

Taken independently, the web content and firmographic in-
formation both lead to useful models for our specific task.
However, it also appears that the predictive power realized
via the firmographic data can be achieved independently us-
ing only the web content. On the other hand, there are also
the cases where firmographics helps to correct the order-
ing of instances of the web models, hence giving rise to the
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Figure 4: ROC curves comparing combination tech-

niques.

increase, though small, in the area under the ROC curve.
Given the high AUC we obtain with the näıve Bayes models
on the web content, it is also possible that we are experi-
encing a ceiling effect, and there is little room for further
improvement.

The models built through co-training improve on the firmo-
graphic models, but still under-perform the näıve Bayes web
models. Blum and Mitchell [11] prove that co-training can
learn from unlabeled data starting with only weak classifiers.
However, their theoretical guarantees rely on two fundamen-
tal assumptions. The first assumption is that the distribu-
tion of instances is compatible with the target function, i.e.,
for most instances, the target functions over each feature set
predict the same label. In our domain, this means that the
class of a company should be identifiable using either the
web data or the firmographic data alone. This is clearly not
the case, especially since the firmographic data do not pro-
vide as much detail in terms of sales strategies of a company.
The second assumption is that the two feature sets are con-
ditionally independent of each other, given the class of the
instance. This implies that words on a companies web page
are not related to the industry classification, and other such
firmographic features. This assumption too seems unlikely
to hold in practice. Though co-training often works despite
the violation of its underlying assumptions [11, 21], it ap-
pears that, for this particular domain, it is not as effective,
at least in the transductive setting. Given a large pool of
unlabeled examples, which is the more common setting for
co-training, we may observe better performance.

6. RELATED WORK
In addition to our task in marketing intelligence, there have
been many applications in machine learning that share the
challenges of combining the information from multiple sources.
These include multimedia content analysis from images and
text, protein-protein interaction prediction using micro-array
data, function annotation as well as sequence information,
and sensor networks by combining the data from multiple
sensors.

Up to now, the strategies to make use of the information

from diverse sources can be summarized as two general ap-
proaches, i.e. early fusion, which merges the feature vectors
extracted from different data modalities, and late fusion,
which combines the output of classifiers built on each single
sources [16, 34, 31]. It remains an open question as to which
fusion strategy is more appropriate for a certain task, and
several comparison studies are discussed for applications in
different domains [27, 34]. One extension of the early fusion
approach is to derive the latent semantic representation of
the data by jointly modeling the low-level features from mul-
tiple sources. Possible approaches range from simple meth-
ods, such as principal component analysis (PCA), indepen-
dent component analysis (ICA), Fisher linear discriminant
(FLD) and kernel methods, to more sophisticated model-
ing using graphical models, such as Bayesian model for gene
function prediction [29], correspondence latent Dirichlet al-
location (Corr-LDA) [10] and dual-wing harmonium mod-
els [32] for multimedia applications. These methods have
been demonstrated to be more effective than naively join-
ing the low-level features into common feature space. On
the other hand, the algorithms in the late fusion approach
vary from the equal-weight combination of the sub-classifiers
or sub-models, to varied weight with weights learned from
cross-validation, and to more adaptive methods with weights
depending on the specific testing example [33, 22].

7. CONCLUSION
This paper presents the task of customer identification for
companies that sell to other businesses. We formulate this
task as a supervised learning problem, and present a case
study on an expert-created data set for identifying compa-
nies with whom we may wish to partner in order to market
a particular financial offering. We analyze the web pages of
candidate companies and find that they provide a rich source
of information. We demonstrate how we can build highly ef-
fective customer-identification models using only this freely
available unstructured web content. We also show that, al-
ternatively, we can build models for the same task using data
from more structured firmographic information sources. Us-
ing firmographics alone can lead to good models, based on
coarse-grained characteristics such as industry classifications
and dynamics of revenue and employee sizes. However, web
content models are more effective because of the richer infor-
mation available in terms of a company’s services, products
and sales strategies. Finally, we have explored several ap-
proaches to combining the unstructured web content with
the structured firmographics data. The results show that
by voting classifiers built on the two sources separately, we
can get an improvement, albeit small, in the model perfor-
mance. More sophisticated feature-fusion approaches, such
as dual-wing harmonium models [32] may yield better re-
sults and provide an avenue for future work.
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ABSTRACT
Discovery of association rules from large transaction databases is 
a rewarding but challenging data mining endeavor due to the 
difficulty in distinguishing obvious rules (i.e., rules that are 
known to the domain experts) from unexpected ones. In this 
paper, we present a methodology for augmenting background 
information from an authoritative source on the World Wide Web 
to the subjective evaluation of association rules. Specifically, we 
consider the problem of mining association rules in the medical 
domain, where background information automatically acquired 
from the MEDLINE database of biomedical citations is used to 
evaluate the quality of association rules extracted from an 
electronic medical records (EMR) database. We investigate two 
approaches for utilizing the rule statistics information obtained 
from MEDLINE. The first approach detects obvious rules by 
identifying those with high support or high confidence in the 
MEDLINE database. The second approach uses the Minimum 
Discriminative Information (MDI) principle to calibrate the rule 
confidence, taking into account the reliability of each information 
source (EMR and MEDLINE). 

Keywords
Association Rules, Rule Evaluation, Maximum Entropy. 

1. INTRODUCTION 
The problem of mining and aggregating information from 
heterogeneous sources has attracted considerable attention among 
data mining researchers in recent years. The impetus behind such 
research is the availability of multiple information sources that 
can be utilized to enrich the quality of decision making. Mining 
information from the multiple sources is indeed a very challenging 
task since each source can have its own structure and quality of 
information. While there have been considerable efforts devoted 
toward the problem of synthesizing locally extracted patterns into 
global patterns, research on enhancing the quality of extracted 

patterns by incorporating background information from other 
external sources is still lacking.

Discovery of association rules [1] from large databases has 
been the subject of extensive research for many years. Association 
rules not only provide a descriptive explanation of the 
relationships present in data, they can also be used to build 
classification [7] and regression models [13]. Despite their 
usefulness, one of the main practical challenges in association rule 
mining is how to distinguish interesting rules from spurious ones. 
Although there have been numerous methods developed for 
evaluating the statistical significance of association rules 
[17,10,4,20,5], these methods are often insufficient to isolate rules 
that are subjectively interesting [16] from those that are obvious 
to the domain experts. 

In this work, we focus on the problem of evaluating the 
subjective interestingness of association rules by integrating 
background information from external sources. More specifically, 
we apply standard mining algorithms such as Apriori [1] to 
extract statistically significant association rules from a given 
database and then automatically gather the relevant domain 
information to help in the interpretation and assessment of the 
extracted rules. Acquiring the necessary background information 
from domain experts is often a laborious task. The acquired 
information is also limited in amount and tends to be static. To 
overcome these difficulties, we present a methodology for 
incorporating background information from an authoritative 
information source on the World Wide Web to enhance the 
subjective evaluation of association rules. We illustrate the 
applicability of our proposed methodology in the area of medical 
informatics, where association rules are first extracted from an 
electronic medical records (EMR) database and then augmented 
with information obtained from the PubMed search engine [23], 
which is a Web service provided by the National Library of 
Medicine (NLM) to query the MEDLINE database of biomedical 
citations.  

We investigate two approaches for utilizing the rule statistics 
information obtained from MEDLINE. First, we demonstrate how 
the support information from MEDLINE can be used to
discriminate obvious rules from unexpected ones. This approach 
is based on the premise that obvious rules are expected to have 
higher support or higher confidence in the MEDLINE database 
than unexpected ones. Second, we present an approach for 
combining rule confidence information from EMR database with 
that from the MEDLINE database using the minimum 
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discriminative information (MDI) principle [24]. The MDI 
principle, which is a variant of the maximum entropy (ME) 
principle but applicable to more general probability distributions, 
facilitates the probabilistic learning of a calibration function that 
interpolates the rule confidence obtained from different sources. 
We demonstrate that the MDI principle not only provides a 
principled way for calibrating the rule confidence, it can also be 
tuned according to the reliability of each information source 
(EMR and MEDLINE). 

The remainder of this paper is organized as follows. Section 
2 presents related work in association rule mining and use of 
background knowledge in data mining. Section 3 describes the 
MDI principle. Section 4 presents our proposed methodology for 
incorporating background knowledge from MEDLINE database 
into association rule evaluation. Section 5 presents the 
experimental results and Section 6 concludes the paper. 

2. RELATED WORK 
Ever since the problem was first formulated by Agrawal et al. [1], 
numerous algorithms have been developed for the efficient mining 
of association rules from large databases [1]. The scalability and 
efficiency of current state-of-the-art algorithms have enabled users 
to apply association rule mining at very low support thresholds to 
discover interesting rules. The drawback, however, is the large 
number of extracted rules that must be further validated and 
interpreted by analysts.  

Considerable efforts have also been devoted into the 
development of objective and subjective interestingness measures 
for association rules. A survey of objective interestingness 
measures are given in  Hilderman et al. [5] and Tan et al. [17]. 
Statistical issues on rule evaluation (incuding Simpson’s paradox 
and multiple comparison tests) were investigated by Megiddo and 
Srikant [10], Webb [20] and Freitas [4]. Silberschatz and Tuzhilin 
[16] proposed a framework for analyzing the subjective 
interestingness of association patterns based on how unexpected 
and actionable are the discovered rules. Their approach however 
did not consider issues such as how to acquire the relevant 
domain knowledge for rule evaluation. Jaroszewisz and Simovici 
[6] have applied the Maximum Entropy approach to prune 
redundant association rules, in which a rule is considered 
redundant if its confidence is close to the confidence for one of its 
subrules. Unlike our work, they did not consider the issue of 
incorporating background knowledge from external sources to 
improve rule assessment and interpretation.  

Previous studies have also considered the use of background 
knowledge to enhance the performance of other data mining 
algorithms such as clustering and classification. For example, in 
[18] Tiffin et al. attempted to find disease causing genes by 
integrating text mining on MEDLINE database with data mining 
using the EVOC ontology. The background knowledge encoded 
in gene ontology is then used to improve the quality of clustering 
results. In [8] Liu et al. considered the problem of clustering 
genes with similar expression profiles. They evaluated their 
clusters by mapping them to the gene ontology categories and 
comparing the results to that produced by a hypergeometric 
probability distribution to measure whether a cluster enriched 
with genes from a particular category is significantly better than 
that expected by random chance.  

The MDI principle and its special case, the maximum
entropy principle, have been widely used in the information 
retrieval and natural language processing literature. Pietra et al. 
[14] have applied the MDI principle to estimate an n-gram 
language model that satisfies a set of constraints derived from the 
training documents. Ratnaparkhi [15] have employed the 
maximum entropy principle to the part-of-speech tagging 
problem. On the other hand, Mannila et al. [9] have applied the 
maximum entropy principle to synthesize global models from 
frequent itemsets and sequential patterns for query selectivity and 
protein sequence modeling applications.  

Our work builds upon earlier work by Zhu and Rosenfeld 
[22], who have applied the MDI principle to estimate trigram 
language models using frequency information obtained from the 
World Wide Web. Unlike their work, however, we have used the 
MDI principle as a means for calibrating the rule confidence in 
order to distinguish obvious from unexpected association rules.  

3. PRELIMINARIES 
   Consider a database D = {t1, t2, …, tN} consisting of N binary 
records (transactions). Let I = {i1, i2, …, id} denote a set of d items 
from which the transactions are formed, i.e., ∀i: ti ⊆ I.  

3.1 Itemsets and Association Rules 
In association rule terminology, any non-empty subset of items is 
called an itemset. An itemset X is associated with a support count,
which is defined as: D|tt | X  |{tg(X) iii ∈∀⊆= . The 

larger its support count, the more frequent the itemset X appears 
in the database. The support of an itemset X, denoted as sX, is 
defined as the fraction of transactions in D that contain X: 

|| D

g
s X

X = (1) 

An itemset is said to be frequent if its support is greater than or 
equal to a minimum support threshold (minsup).  

An association rule is an implication expression of the form  

X → Y, where X and Y are itemsets. The support of the rule, 
denoted as sX→Y, is given by the support of the corresponding 
itemset X ∪ Y, i.e., 

YXYX ss ∪→ =  The confidence of the rule, 

denoted as cX→Y, determines how likely items in the set Y appear 
in transactions that contain all the items in X. In other words,  

X

YX
yX s

s
c ∪

→ = (2) 

Formally, confidence is the maximum likelihood estimate for the 
conditional probability P(Y | X) while support is the maximum 
likelihood estimate for the join probability.  

As an example, given an EMR database, I may correspond to 
the set of diseases, symptoms, and patient complaints while the 
transactions may refer to each patient’s visit to the healthcare 
provider. Table 1 illustrates three examples of association rules 
extracted from our EMR database. 
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Table 1: Sample association rules from EMR database

{pneumonia, pain}→ {pyelonephritis} 

{ear pain, nasal congestion} → {cough}  

{proteinuria, renal disease} → { hypertension} 

In principle, the number of association rules extracted from a 
given database can be very large. Since not every rule is 
interesting, the objective of association rule mining is to 
automatically discover rules that have support ≥ minsup and 
confidence ≥ minconf. However, as noted in the Introduction, 
rules with high support and high confidence might not be 
subjectively interesting because they are obvious to the domain 
experts. Domain information is therefore needed to distinguish 
obvious rules from unexpected ones. 

3.2 Minimum Discriminative Information 
In this paper, we apply the minimum discriminative information 
(MDI) principle to combine probability information obtained 
from the EMR database with that from the MEDLINE database of 
biomedical citations. To illustrate the idea, let P and Pt be a pair 
of probability models defined on some event space R (which 
might correspond to the set of all possible rules).  

Our goal is to learn a probability model P(r) that fits the 
training model Pt(r). Mathematically, the problem is equivalent to 
finding a model that minimizes the Kullback-Leibler divergence 
measure defined below:  

D p p p r
p r

p rt
tr

( , ) ( ) log(
( )

( )
)= ∑ (3) 

Note that, in the special case, when Pt is a uniform distribution, 
minimizing Equation (3) is equivalent to maximizing the entropy 
of P(r). In the MDI approach, the probability model P(r) must 
also satisfy the following set of equality constraints: 

p r f r si i
r R

( ) ( ) =
∈

∑ (4) 

where si is a constraint specified on the expected value of a feature 
fi defined on the event space R. It can be shown that the 
probability model that minimizes Equation (2) subject to the 
equality constraints in (4) has the following exponential form: 

P r
Z r

p r f rt i i
i

* ( )
( )

( ) exp( ( ))= ∑
1

λ (5) 

where λis are the Lagrange multipliers of the constrained 
optimization problem and can be interpreted as the weights of 
each feature fi. We will explain how the MDI principle is used to 
calibrate rule confidence obtained from the EMR data and the 
MEDLINE database in the next section. 

4. METHODOLOGY 
This section presents the overall methodology of our proposed 
approach. We first briefly explain the procedure for generating 
association rules from the EMR database. We then describe the 
procedure for incorporating background information from the 

MEDLINE database into the evaluation and interpretation of 
association rules.  

4.1  Association Rule Generation 
Association rule mining algorithms are designed to automatically 
discover rules that pass the minimum support and minimum 
confidence thresholds specified by the users. To do this, the 
following two-step procedure is often employed by most of the 
current algorithms: 

1. Frequent itemset generation. The objective of this step 
is to automatically extract itemsets that successfully pass 
the minsup threshold (i.e., the frequent itemsets). 

2. Rule generation. The objective of this step is to 
automatically generate rules with confidence ≥ minconf
from the frequent itemsets. 

For the first step, we extracted the frequent itemsets using the 
PG-Miner algorithm [11]. PG-Miner uses a prefix graph structure 
to efficiently compress the transaction database and then employ 
additional pruning strategies from network flow theory to reduce 
the computational complexity of frequent itemset generation. 
Once the itemsets have been generated, rules are extracted by 
partitioning each itemset into two parts—one that forms the left 
hand side of the rule, while the remaining items form the right 
hand side.  

In principle there are 2k – 2 possible rules that can be 
generated from a frequent itemset of length k. For efficient 
computation, the following rule pruning strategy is used. Given an 
itemset X, let Y1  and Y2 be subsets of X. If the confidence of the 
rule Y1 → X – Y1 is less than the minconf threshold, then the 
confidence of the rule Y2 → X – Y2 is guaranteed to fail the 
threshold whenever Y2 ⊂ Y1. For example, if the rule {unary, 
nocturia } → {kidney} has low confidence, then we can ignore 
the rule {unary} → {kidney, nocturia} since its confidence is also 
guaranteed to be low. 

4.2 Incorporating Background Knowledge 
into Rule Evaluation and Interpretation 
Let R = {r1, r2, …, rk} be a collection of k association rules 
generated from the EMR database D, where each rule ri ∈ R
satisfies the minsup and minconf thresholds. Given rule X → y, let 

( yXyX cs →→ , ) denote its support and confidence computed from 

the EMR data whereas ( yXyX cs →→
ˆ,ˆ ) are the corresponding 

support and confidence obtained from the MEDLINE database. In 
this section, we present two approaches for utilizing the 
information from MEDLINE in the evaluation of association 
rules. 

4.1.1 Thresholding Approach 
Our first approach is based on the following assumption regarding 
the support (or confidence) of a rule obtained from an 
authoritative source such as MEDLINE—that the higher the 
support (or confidence) is, the more obvious the rule is. For 
example, since the relationship between nasal congestion and 
cough is fairly obvious, we expect their joint or conditional 
probability estimate to be relatively high in the MEDLINE 
literature. On the other hand, unexpected rules (either non-
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obvious or spurious) are expected to have considerably lower 
support (and confidence) in the literature. 

As a result, we may adopt the following thresholding strategy 
to distinguish between obvious and unexpected rules using the 
support (or confidence) values obtained from MEDLINE. Given a 

rule r: X → y, if yXs →
ˆ > τs (or yXc →

ˆ  > τc), then the rule is 

considered obvious. Otherwise the rule is classified as 
unexpected. In practice, the thresholds τs and τc can either be 
determined by the domain experts or by examining the 
distribution of support and confidence values obtained from 
MEDLINE (e.g., using mean or median). For our experiments, we 
investigated with all possible thresholds and plot the resulting 
ROC (receiver operating characteristic) curve by comparing the 
judgments provided by our domain expert against the rule 
classification produced by the thresholding approach.  

4.2.1 MDI Principle 
It is often useful to treat the EMR and MEDLINE databases as 
two alternative information sources for evaluating association 
rules. In this situation, we need to develop an approach for 
combining the rule statistics information from both sources. Given 
an association rule X → Y, let Pt(Y | X) be the confidence of the 
rule obtained from the EMR data whereas Pw(Y | X) be the 
confidence obtained from MEDLINE. Our objective here is to 
learn a calibration function P*(Y | X) that interpolates the 
confidence values obtained from both information sources. To 
accomplish this, we will employ the Minimum Discriminative 
Information (MDI) principle described in Section 3.

4.1.1.1 Formulation 
In Section 3.1, we describe the exponential model obtained when 
minimizing the Kullback-Liebler divergence between two 
probability models, subject to a given set of linear equality 
constraints. We now explain how the approach can be used for 
combining confidence estimates from two sources of information: 
the EMR and the MEDLINE databases. For brevity, we consider 
only rules that contain only one item on its right-hand side, i.e., 
rules of the form X → {y}, where y ∈ I. To further simplify the 
notation, we denote the 1-itemset {y} as y in the remainder of this 
paper.  

Let R = {X → y | sX→y ≥ τ  and cX→y ≥ τ } be the set of rules 
extracted from the EMR database D. We denote antecedent(R) to 
be the set of all itemsets appearing on the left-hand side of the 
rules, i.e., antecedent(R) = {X | X → y ∈ R}. Furthermore, let V = 
{i ∈ I | si  ≥ minsup} denote the set of all frequent items in the 
EMR data.  

We construct a set of binary features F = {fU→v | U → v ∈ R}
based on all the rules extracted in R. The value of each binary 
feature fU → v ∈ F when applied to a rule r: X → y is formally 
defined as follows: 

⎩
⎨
⎧ ==

=→ otherwise0

and  if1
),(

yvXU
yXf vU (6) 

These binary features are used to construct a database of binary 
transactions (D’), where each transaction corresponds to a rule in 
R and the “items” correspond to all the features in F. Since the 

rules are unique, each of them triggers exactly one feature and 
each feature is triggered only once. 

We are now ready to explain how the MDI principle 
described in Section 3.1 can be adapted to the confidence 
calibration problem. Specifically, our goal is to learn an 
aggregated probability model P*(y|X) that minimizes the 
following conditional Kullback Leibler divergence: 
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subject to the following constraints: 
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,
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Note that sU→v denote the support of the feature in D’ (i.e., sU→v = 
1/|D’|). Using the Lagrange multiplier method, the objective 
function to be minimized can now be written as follows: 
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where we have used the subscript i to denote all the features in F. 
Taking the derivative of Equation (9) with respect to P(y|X) yields 
the following conditional probability model: 
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where Z(X) is a normalization factor and the λ’s are the model 
parameters. Note the equivalence between Equations (5) and (10). 
To compute Z(X), we need to obtain the confidence estimate from 
EMR data, Pt(y|X), for all possible rules X → y, where X ∈

antecedent(R) and y ∈ V. In turn, this requires us to have the 
support for all the rules X → y, including the ones that may be 
infrequent. Therefore, in order to address this problem, we 
approximate the confidence Pt(y|X) by minsup/sX whenever X → y  
is infrequent.  

4.1.1.2 Parameter Estimation 
Let Λ = {λ1, λ2, …, λd} denote the set of parameters to be 
estimated. Our objective is to learn the parameter set Λ using 
information obtained from the MEDLINE database. Given a rule 
r: X → y, let ĝX�,y and ĉX�,y be the corresponding rule support 
count and confidence, respectively, obtained from the MEDLINE 
database.  

Following the approach used by Zhu and Rosenfeld [22], the 
likelihood function of the rule set with respect to the MEDLINE 
support counts can be written as follows:  

∏
∈→

→=Λ
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g yXXyPL
)(

ˆ
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 Therefore, the log likelihood function to be maximized can be 
written as follows:  

∑ ∑
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Taking the derivative of Equation (12) with respect to λU→v yields: 
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Based on the binary feature definition given in Equation (6), the 
first term in Equation (14) reduces to: 
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while the second term reduces to: 
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Setting Equation (14) to zero and using the simplified expressions 
given in Equations (15) and (16) lead to: 

∑ →→ =
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Since the second term on the right hand side no longer depends on 
y, it can be factored out. Rearranging the preceding equation 
yields: 
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which means that, using the likelihood function given in Equation 
(11), the estimated confidence of the rule X → y is exactly the 
same as the confidence obtained from MEDLINE database, i.e., 
P*(y| X) = ĉX�Y = Pw(y | X). Next, we describe how to modify the 
likelihood function in Equation (11) so that it takes into account 
the confidence from both MEDLINE and EMR databases.

Zhu and Rosenfeld [22] have proposed adding a Gaussian 
prior term, not only to prevent P* from overfitting the confidence 
estimates Pw from the MEDLINE database, but also to provide a 
systematic way for P* to also incorporate the confidence values in 
Pt. Using the maximum a posteriori (MAP) approach, the 
likelihood function in (11) is modified to: 
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where the parameters in Λ are assumed to have a Gaussian prior 
with zero mean and the same variance σ2:  
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This leads to the following objective function to be optimized: 
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We may use the bound maximization approach [2], which is 
a variant of the improved iterative scaling algorithm developed by 
Berger and Della Pietra et al. [2], to estimate the model 
parameters that maximize the objective function in (21). The idea 
behind this approach is to incrementally learn the update vector ∆
in such a way that guarantees improvement in the likelihood 
function, i.e., L(Λ+∆) ≥ L(Λ). It can be shown that the solution to 
the bound maximization problem can be written in the following 
way:  
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which yields the update formula of δ. Equation (22) can be solved 
using Newton’s method or any numerical optimization algorithms.  

Table 2 summarizes the key steps of our proposed 
methodology. 

Table 2. Proposed Methodology 

Input: Rule set R = {X → y}, with confidence Pt(y | X) = cx→y

Output: Set of parameters, Λ = {λU1 → v1,  λU2 → v2, …} 

Procedure:  
1. Initialize the parameter set Λ. 
2. For each rule X→ y,  

a. Retrieve support count from MEDLINE, ĝX→y

b. ∀(X→y)∈R: compute P*(y|X) using Λ, cX→y, and 
ĝX→y. 

3. Repeat 
a. Compute δX→y by solving Equation (22) 
b. Update λX→y  ← λX→y + δX→y

c. ∀(X→y)∈R: compute P*(y|X) using Λ, cx→Y, and 
ĝx→Y. 

until convergence 

5. EXPERIMENTAL EVALUATION 
This section demonstrates the experimental results we have 
obtained when applying our methodology to the MQIC (Medical 
Quality Improvement Consortium) EMR database. The data has 
been deidentified by the GE Healthcare Data Consortium. The 
original database contains 5,939,734 clinical visit records of 
427,214 patients during the period of 2001-2005. After 
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preprocessing, i.e. removing visit records that contain only items 
corresponding to medication refills, the remaining number of 
transactions is 3,115,630. As previously noted, the background 
information was acquired using the PubMed search interface 
developed by the National Library of Medicine.  

We first extracted the association rules with support more 
than .00015% and confidence more than 65% using PGMiner and 
Apriori rule generation algorithm. For brevity, we concentrate 
only on rules with a single item on the right-hand side. There were 
113 such rules that pass the support and confidence requirements 
in the training data. For evaluation purposes, we have asked our 
domain expert to classify the rules according to their expectations. 
Specifically, a rule is classified into two categories: obvious or 
unexpected (previously unknown or potentially spurious). Based 
on the classification provided by the expert, we then evaluate the 
different approaches based on their accuracy and ROC (receiver 
operating characteristic) curve.  

5.1 Evaluation using Thresholding Approach 
This section presents our experimental results using the support 
and confidence thresholding approaches described in Section 
4.2.1.  

5.1.1 Thresholding on Support  
For each association rule X → y, we query the Pubmed Web 
service to find the number of abstracts that contain the concepts X
and y. This frequency corresponds to the support count ĝi

described in Section 4.2.2.2 We consider such support count as 
the expected support of the rule.  

We argue that if the expected support is reasonably high, 
(higher than a specified threshold τ) then the extracted rule should 
be obvious because the relationship between X and y is quite 
prevalent in the literature. On the other hand, if the expected 
support of the rule is less than τ, the rule is unexpected because X
and y are rarely observed together in literature.   

In our experiment, we vary the threshold from the minimum 
value of ĝi to its maximum value. At each threshold, we compute 
its true positive rate and false positive rate by comparing the 
model’s predictions against the classification provided by the 
domain expert. Figure 1 illustrates the ROC curve for using 
support from MEDLINE database in comparison to the support 
from EMR database. As can be seen, the area under ROC curve 
for MEDLINE database is significantly higher than that from the 
EMR database. This suggests that it would be useful to augment 
the background knowledge from MEDLINE database to improve 
rule assessment.  

To further illustrate the predictions made by using support 
from MEDLINE database, Table 3 illustrates the confusion matrix 
obtained when τ is chosen to be the median value of the expected 
support for all the rules. Since the median value was 13, any rule 
that has an expected support greater than or equals to 13 is 
considered obvious, while the rest are declared as unexpected 
rules. Notice that this method could distinguish 47 of 57 rules 
classified as obvious by our domain expert. The accuracy of this 
approach is 74.3%. 

Figure 1: ROC curve for support thresholding. 

Swelling → leg edema is an example of an obvious rule 
supported in the literature, where the support in MEDLINE 
database is 1506, which is considerably higher than the threshold 
τ. Examples of other obvious rules classified correctly include 
{obesity, hyperglycemia} →{hypercholesterolemia}, {hematuria, 
urinary incontinence} → {nocturia}.  

An example of an association rule classified as unexpected 
both by the domain expert and the support thresholding approach 
is {obesity, Grave's disease} → {hypertension}. The support 
count of the rule in MEDLINE database is 2, which is 
substantially less than the threshold (τ = 13). 

Notice that there were 19 rules declared as obvious by the 
thresholding approach but marked as unexpected. One possible 
explanation for the false alarm is that the expected support 
computed from MEDLINE may not be indicative of causal 
relations between two concepts. 

Table 3: Confusion Matrix for pruning rules based on their 
support in MEDLINE database with  τ = 13. 

    Predicted 

    Obvious Unexpected 

Obvious 47 10 
Actual 

Unexpected 19 37 

               

For example, the rule osteomalacia � osteomyelitis is 
classified as unexpected by the domain expert because there is no 
known causal relation between the two diseases. However, since 
they are both diseases related to the bone (osteomyelitis is an 
acute bone infection while osteomalacia is the softening of the 
bones caused by the deficiency of vitamin D), they often appear 
together in the literature as examples of possible diagnosis for a 
bone-related medical condition.  

In addition, ten of the rules were declared as unexpected 
based on the threshold τ but were marked as obvious because 
some relationships are so obvious that they were hardly 
mentioned together in the literature (e.g., urinary frequency 
slowing → nocturia).  
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5.1.2 Thresholding on Confidence 
In this experiment we compare the confidence values obtained 
from MEDLINE against those obtained from the EMR database. 
The results reported here are for rules with two items on its left 
hand side (73 rules in total). Given an association rule X → y, we 
perform a Web query on PubMed to retrieve the frequency 
information about the number of abstracts containing X as well as 
those containing both X and y. We then vary the confidence 
threshold from the minimum value observed for Pw to its 
maximum value and plot its ROC curve. The result is shown in 
Figure 2. For comparison purposes, we have also plotted the 
corresponding ROC curve for Pt, which is the confidence value 
computed from the EMR database. 

Figure 2: ROC curve for confidence thresholding. 

Tables 4 and 5 show the confusion matrices obtained when 
using the mean value of the conditional probabilities as our 
threshold for obvious rules. As can be seen, the accuracy for Pw

(60%) is higher than that for Pt (59%), which agrees with the 
previous observation for thresholding based on support.  

Table 4: Confusion matrix for Pw

    Predicted 

    Obvious Unexpected 

Obvious 22 24 
Actual 

Unexpected 5 22 

       

When comparing the results of both models (Pt and Pw) we 
observed that 13 of the obvious rules found by Pt were 
misclassified as unexpected by Pw. Similarly, 11 of the rules 
classified by Pw as obvious were misclassified as invalid by Pt. 
The result is summarized in Table 6. 

Table 5: Confusion matrix for Pt

    Predicted 

    Obvious Unexpected 

Obvious 24 22 
Actual 

Unexpected 8 19 

This result suggests that it may be useful to combine the 
classifications made by Pt with those made by Pw. We examine 
the probability combination approach using MDI principle in the 
next section. 

Table 6: Comparison between predictions by Pw and Pt

  

Pt=0  

Pw =1 

Pt =1  

Pw =0 

Pt =1 

Pw =1 

Pt =0 

Pw =0 

Actual=1 11 13 11 11 

Actual=0 1 4 4 18 

5.3 Combining Probabilities using the MDI 
Principle 
 This section describes the results of our experiments using the 
MDI principle.  

Figure 3 shows the probabilities obtained for the 3 models (Pt, Pw, 
and P*) for all 73 rules of length 3 extracted by our association 
rule mining algorithm. The top curve corresponds to confidence 
values for Pt while the curve at the bottom corresponds to the 
confidence values for Pw. This suggest that MEDLINE literature 
tends to underestimate the magnitude of the confidence, but still, 
as shown in the previous section, it provides a much better 
indicator for obvious rules than Pt. 

In principle, depending on the hyperparameter σ, P* can be 
tuned to either fit more closely to Pt or Pw. Figure 4 shows how 
the ROC curve for P* changes for σ = 0.0001, 1, and 100. Notice 
that the curve approaches Pt when σ goes to zero. On the other 
hand, in the asymptotic limit when σ goes to infinity, the ROC 
curve gets closer to Pw. These limits can be theoretically verified 
by referring back to Equations (10) and (22). 

Figure 4: ROC curves for different values of σσσσ. 
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Figure 3: P*, Pt, Pw curves 

Finally, we show the confusion matrix obtained when using 
the mean value of P* as the threshold. We obtained an accuracy 
of 66% and a precision of 81% and recall of 62 %. 

                       Table 7: Confusion Matrix for P* 

    Predicted 

    Obvious Unexpected 

Obvious 29 17 
Actual 

Unexpected 7 20 

We further compared the rules that were predicted to be valid by 
P* and missed by both Pt and Pw. For example we found that 6 
rules were captured and correctly predicted to be valid by P* (TP) 
and missed by Pt and Pw , while 5 rules were missed by only Pt

and 2 rules were missed by Pw but captured by P* and Pt.. Again 
this implies that that the interpolated model could be a good 
choice between the two extremes.  

6. CONCLUSION 
Evaluating the subjective interestingness of association rules is a 
challenging task due to the difficulty in acquiring and 
incorporating the background information needed to determine 
whether a rule is obvious or unexpected. This paper presents a 
principled way for utilizing background information acquired 
from an authoritative source on the World Wide Web to evaluate 
the quality of association rules. We present two approaches for 
utilizing the rule statistics information from the authoritative 
source. The first approach detects the obvious rules using a 
support or confidence thresholding strategy. The second approach 
employs the Minimum Discriminant Information (MDI) principle 
to combine the rule confidence estimates obtained from the two 
different sources. The MDI principle allows us to calibrate the 
confidence estimate according to the reliability of the information 
sources. 

For future work, we will extend the methodology to handle 
confidence estimates from more than two information sources. We 
also plan to investigate other types of constraints that can be 
incorporated into the MDI framework. For example, the equality 
constraints in the MDI framework may seem too strict for some 

domains. Therefore, it would be useful to modify the formulation 
to handle inequality constraints. 
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ABSTRACT
The diversity of information collected in bioinformatics and
other application areas makes it increasingly important to
develop techniques for associating data of different types.
An algorithm is introduced for finding patterns involving
item and vector data. The presence of an item defines a
subset of vectors that may or may not show unexpected
density fluctuations. We test for fluctuations by studying
density histograms. Vector-item patterns are considered sig-
nificant if their density histogram significantly differs from
what is expected for random subsets of transactions. We
evaluate our algorithm on yeast cell cycle gene expression
data in combination with domain annotations from the In-
terpro database and on time series subsequence data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—Pattern Analysis

General Terms
Algorithms, Experimentation, Performance

Keywords
Pattern mining, Vector data, Pattern significance

1. INTRODUCTION
For many years, disk space has grown exponentially at rates
higher than Moore’s law for the number of microprocessors
on a chip. A consequence is not only that larger tables
are stored, but also that the diversity of data associated
with any one entity has increased. In bioinformatics the
increased storage capacity has been matched with develop-
ments in high-throughput experimentation. It is typical that
any one protein is not only characterized by its sequence
and derived sequence signatures, but also by results from
high-throughput experimentation, text from scientific pub-
lications related to the protein, and other types of data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMIS ‘07, August 12, 2007, San Jose, CA, USA.
Copyright 2007 ACM 978-1-59593-840-4. . .$5.00.

Many algorithms for finding frequent or characteristic pat-
terns have been developed for item data [4, 5, 19], contin-
uous data [10], and combinations thereof [32, 28, 12]. The
assumption behind such algorithms is that each of the con-
tinuous attributes represents a separate fact that may inde-
pendently be related to any combination of the categorical
attributes. This assumption, however, is not always valid.
Multiple continuous attributes often represent a coherent
concept that may or may not be related to items in the
database. Gene expression experiments may be performed
as time course experiments, in which different attributes cor-
respond to the same overall experimental condition and dif-
fer only in the time that has passed since the beginning of
the experiment. Feature vectors in image analysis and word
vectors in text mining, are also examples of continuous data
for which similarity is normally determined from a combi-
nation of many or all of the attributes.

Figure 1 illustrates the problem. Each of the circles rep-
resents an object or transaction. The spatial position of
the object corresponds to a vector attribute, that is — in
this example — two-dimensional. In general, a vector at-
tribute is composed of D continuous attributes that are as-
sumed to form a vector space. In Figure 1, circles that are
solid black represent objects, for which a particular item is
present. Only a single item is represented in this image, but
the process can be applied to many items. In the left panel
the solid black circles are close together. For each of the
solid circles all of the other circles can be considered ”close”
according to the closeness criteria we develop in Section 3.4.
The histogram under the left panel reflects the observation
that there are five objects that have the item of interest,
each of which has six neighbors that have the item. The
right panel shows objects with the same vector data as the
left panel, but the item data are associated with different ob-
jects. Although the vector data are identical, the item data
look far more distributed, and the histogram shows that rel-
evant objects only have two to four neighbors. The setting
on the left side illustrates what we consider a vector-item
pattern.

A natural test as to whether the histograms that represent
the data are exceptional is based on random permutations.
If a random selection of an equal number data points leads to
a similar histogram, then the selection criterion / item is not
related to the vector data. We will show in Section 3.5 that
the expected distribution of points can also be evaluated
analytically.
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Figure 1: Sketch of a vector-item pattern between a

2-dimensional vector and one item. Records are rep-

resented by circles. The vector data determine the

positions of the circles in the plane; existence of the

item is represented as solid black filling. Bottom:

Histograms summarize the distribution of neighbors

with the item. Left: Records that have the item are

close (vector-item pattern noticeable). Right: Same

vector data as left but item data are distributed such

that no vector-item pattern is noticeable.

So far, biologists who do time-course experiments are faced
with cumbersome gene lists that are difficult to interpret.
They may notice that several of the genes that are similarly
expressed also have certain interesting domains or functional
annotations. Such reasoning corresponds to a two-step pro-
cess, in which the expression data is first analyzed with tra-
ditional techniques and relationships with domain or func-
tional data are studied as a separate step. We use this hypo-
thetical two-step process for comparison purposes in Section
4. Our approach removes the artificial separation of the two
steps and directly returns the domain or functional informa-
tion.

In our algorithm, the vector data are normalized based on
rank order. We then use the existence of a categorical at-
tribute value as filter to derive subsets. For each of those
subsets we create a density histogram that summarizes the
number of neighbors to each point. A point is considered a
neighbor if the number of dimensions in which it is within a
predefined range exceeds a predefined threshold. We study
the choice of range and threshold parameter extensively. We
show that our algorithm is both effective and efficient for an
example data set consisting of Interpro domain information
[14], and gene expression data from cell-cycle experiments
[31] for all yeast genes.

2. RELATED WORK
Much work has been done on clustering gene expression
data to find the genes that show a similar differential ex-
pression pattern under the given conditions [20, 16, 6, 22,

29, 13]. While this work does not directly relate genes to
domain or functional information, it is worth noting that
functional information is sometimes used to improve cluster-
ing results [21, 23]. Simultaneous identification of functional
groups and the genes that belong to them has been achieved
through biclustering techniques [11]. Such approaches as-
sume that the vector data show multiple groups, which is
not assumed in our approach. The significance of clustering
results has been studied in the context of validation of clus-
tering approaches [34], and functional information has been
considered in this context [8]. Expression patterns have also
been used to identify differentially expressed genes in time
course experiments [15, 17, 7, 31].

It has frequently been observed that the Euclidean distance
and other Lp norms are problematic in high dimensions [2],
and new distance measures have been developed [1] that
only consider a subset of dimensions over which points are
close. We use a similar concept of requiring a fraction of
dimensions to be within a given range. We show that such
a distance measure can be interpreted as a subspace-based
evaluation. In contrast to conventional subspace clustering
based on axis-parallel projections [3], our distance measure
evaluates similarity in any of the projections. More impor-
tantly our algorithm searches for subsets of the data that
show inhomogeneities rather than looking for clusters in the
full set of points.

The normalization in this paper is related to quantile nor-
malization [9] in that the quantile of a point determines
its normalized value. In our normalization we consider a
constant distribution as reference distribution. Such a nor-
malization results in distances that are closely related to the
mass-distance discussed in [35].

3. ALGORITHM
3.1 Vector and Item Data
We consider D continuous attributes, xi ∈ R, 0 ≤ i < D,
that are known to be related based on background knowl-
edge, as one “vector” attribute x with domain dom(x) =
R

D. The set of occurring data points (extant domain) is
V ⊂ R

D. In principle, a data set can have arbitrarily many
vector attributes. Each of the vector attributes is consid-
ered separately in the pattern mining step. Note that the
continuous attributes that form vector attribute x do not
have to come from the same source. Different combinations
of attributes can, furthermore, be considered separately. In
the evaluation, we determine patterns involving four sets of
experiments as separate vector attributes and also search for
patterns involving the full set of all continuous attributes.

Similar to the original formalism of Agrawal et al. [4] we

consider item data as Boolean attributes B(i), 0 ≤ i < M ,
that represent the presence of item i, with M distinct items
occurring in the database. Conjunctions of the Boolean item
attributes could be considered and, among item data, the
usual downward closure statement based on support remains
valid. However, the significance measure of vector-item pat-
terns does not satisfy the downward closure property. For
the evaluation in Section 4 we limit our discussion to pat-
terns that involve individual item and vector attributes and,
thereby, avoid using a support threshold beyond the require-
ments of the statistical analysis.
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A data set with a single vector attribute is defined through
the relation R(V, B(1) . . . B(M)). Generalization to multiple
vector attributes is straightforward.

3.2 Outline of the Algorithm
To find patterns among vector and item data we perform
the following steps

Normalization Vector Data are normalized such that they
homogeneously fill a given interval in each individual
dimension. Details of the normalization are given in
Section 3.3

Density Histogram Computation For each item, a den-
sity histogram analogous to the bottom part of Figure
1 is calculated. Density histograms are at the center
of the algorithm and are discussed in Section 3.4.

Computation of Expected Histogram For each item, sig-
nificance is determined in comparison with the ex-
pected histogram. The expected histogram can either
be calculated based on theoretical considerations or
through random sampling. Both approaches are dis-
cussed in Section 3.5.

Determining Significance Once the observed and expected
histograms are known, the significance is determined
using a χ2 test. Those domains that are significant at
the 5% level are returned as having a strong pattern
with the vector data under consideration.

Considering Multiple Vector Data Sets The process can
be repeated for different vector data sets.

3.3 Normalization
The basic idea for normalizing attributes such that they are
evenly distributed in each dimension is to convert to rank
order and scale the result accordingly. One may consider
the following definition

x′
i =

1

N

∫ xi−ε

−∞

N∑
j=1

δ(x − xj)dx (1)

where δ(x) is the Dirac delta function and ε > 0 is a number
smaller than all differences between attribute values. Note,
however, that this transformation maps equal values into
equal values. That means that some attribute values may
occur multiple times, and the modeling through a constant
distribution is less accurate.

This problem is more serious than it may initially appear:
In practice, gene expression data are not available with ar-
bitrary precision, and the same holds for most other types
of data that are commonly called “continuous”. The data
set we used for the evaluation only lists two digits after the
decimal point. Considering that the data set has over 7000
records, some values occur more than 100 times. We cannot
uniquely decide on a rank order among these, nor do we ex-
pect that the experimental precision is high enough to make
such a rank order meaningful. However, assigning the same
normalized value multiple times results in a poor fit with
the model of a constant distribution. In practice, we assign
a random ordering to the records. This is not expected to
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Figure 2: Histograms for a real domain from the
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genes (red) with the same number of elements.

increase the inherent error since experiments are typically
designed such that the resolution of the output values is
higher than the precision of the experiment.

3.4 Density Histograms
The goal of the density histogram computation is to sum-
marize the distribution of data points with respect to the
item of interest. Each Boolean attribute B(i) defines a sub-
set of the vector data. For each of these subsets the density
is summarized. The sub-relation R(i) defined by item B(i)

is given through the selection (σ)

R(i) = σB(i) (R) (2)

and the corresponding set of points is given through a pro-
jection (π) to vector attribute V

V (i) = πV (R(i)). (3)

For each V (i), we summarize the density distribution through
a histogram. We assume that a neighbor selector function c
has been defined that has the following property

c(x,y) =

{
1 if y is to be considered a neighbor of x

0 else

(4)

For the density definition of conventional density-based clus-
tering with a uniform kernel, the neighbor selector would be

cuniform(x,y) =

{
1 if |x − y| < d/2

0 else
(5)

where d is the diameter of the hypersphere that defines a
neighborhood. Note that c is of type integer and does not
satisfy the normalization conditions of a kernel function.

Given c(x,y), a density histogram of V can be defined such
that each x, for which the sum of neighbors is equal to k,
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contributes 1 to hk

hk =
∑
x∈V

δk,s(x) ∀k

with s(x) =
∑
y∈V

c(x,y), (6)

where δi,j is the Kronecker delta, which is 1 when i = j
and 0 otherwise. Figure 2 shows the histogram for a real
domain (black) and for an average over random subsets of
transactions (red).

In this paper, we use a neighbor selector for which we only
require a fixed fraction of dimensions to match rather than
the uniform one of equation (5). We consider two vectors as
similar if the number of dimensions in which they are similar
exceeds a threshold tD, with D being the total number of
dimensions and t ∈]0, 1].

csubspace(x,y) =

{
1 if

∑
i c1d(xi, yi) ≥ tD

0 else,
(7)

where c1d(xi, yi) is a one-dimensional neighbor selector. Note
that for t = 1 this definition requires values in each dimen-
sion to satisfy c1d(xi, yi) = 1. For c1d(xi, yi) = |xi − yi| <
r/2 this corresponds to defining distances on the basis of the
MAX metric, i.e. the distance is determined by the maxi-
mum of distances in individual dimensions. In practice, we
found it useful to limit t to t ∈ [0.2, 0.8].

The neighbor selector of equation (7) can also be interpreted
as being subspace-based. Requiring that a point be close in a
fraction of t dimensions is equivalent to saying that the point
should be within any one of the axis-parallel projections
of a hypercube that satisfy the requirements of the one-
dimensional selector c1d(xi, yi) and the maximum number
of dimensions over which projections have been performed
(1 − t)D.
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g
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Figure 4: Illustration of the volume that defines the

neighborhood of an example point in three dimen-

sions, with range r = 0.5. Threshold t could be any-

where in the interval ]1/3, 2/3] to yield this image.

Figure 3 illustrates the subspaces for two dimensions in
which a minimum of 1 dimension is required to match, cor-
responding to a t in the interval ]0, 0.5]. In the light shaded
areas only one of the dimensions respectively corresponds to
regions within the range of the data point x.

It is important for our concept that neighbor distributions
of randomly distributed points only depend on the number
of points and not on the position of the central point with
respect to the normalization volume. For that reason we
have to ensure that the volume for which csubspace(x,y) = 1
does not depend on x. We do so by shifting this volume such
that it does not extend beyond the boundaries of the volume
defined by the normalization. The dashed lines in Figure 3
illustrate an area that is defined by [x1 − 0.5, x1 + 0.5] in
two dimensions. Note how this area exceeds the boundaries
of the square with side length 1 over which the normalized
data extend. The shaded area illustrates the shifted area,
which is entirely enclosed in the square. In general, the one-
dimensional neighborhood selector c1d(xi, yi) is defined as

c1d(xi, yi) =

⎧⎪⎨⎪⎩
1 if (yi > min( 1

2
− r, xi − r

2
))

∧(yi < max(− 1

2
+ r, xi + r

2
))

0 else

(8)

This definition is not symmetric in x and y, i.e. point y

may be within range of point x without point x being within
range of point y. We can use such a measure since we are
only interested in the statistical properties of sets of points,
and do not make statements about individual points. Figure
4 shows the subspace setup in 3 dimensions. An example
volume with r = 0.5 and t = 0.5 is highlighted. In three
dimensions, t = 0.5 means that a data point must be within
the specified range for at least 2 dimensions.
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3.5 Determining Significance
We search for vector-item patterns by comparing observed
histograms with their expected counterparts. Hence, we
must first determine the expected distribution for the given
number of transactions. In principle, a theoretical derivation
can be used for this purpose. We first consider the probabil-
ity of a data point being within the given range for exactly
one axis parallel projection of the D-dimensional space. Let
us assume that the projected space is d-dimensional. The
probability of a point being within range r of the total in-
terval [−0.5, 0.5] for any one dimension is p = r. The proba-
bility of being within range r for d dimensions is p = rd. We
assume that the point is not within range for the remaining
D − d dimensions. The probability of being in precisely the
subspace under consideration is

pone subspace = rd(1 − r)D−d (9)

The number of subspaces with d dimensions is D!/d!(D−d)!.
Hence, the probability of finding a point within any subspace
of at least d = �tD dimensions, where “�” is the ceiling
operator, is given by the cumulative binomial probability
density function

p =

D∑
i=d

(
D

i

)
ri(1 − r)D−i (10)

= binocdf(D − d, D, 1 − r)

where Matlab notation was used in the second line.

Given this probability p, we can calculate the expected dis-
tribution for the density histogram h. This distribution de-
pends on the number of transactions Ni that are selected by
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Figure 5: P-Value for all Interpro domains compar-

ing with a binomial distribution (rightward) and an

experimentally determined comparison distribution

(upward).

the item attribute of interest bi:

hk = Ni

(
Ni

k

)
pk(1 − p)Ni−k (11)

Although equations (10) and (11) are both governed by un-
derlying binomial distributions, they represent entirely dif-
ferent properties of the system. Equation (10) makes a state-
ment about one point relative to another point. The prob-
ability of the point being within the neighborhood of the
other is given by a binomial distribution, because the D
dimensions of the difference vector are considered to be in-
dependent. The point is only required to be within range
for d out of a total of D dimensions. Equation (11) makes a
statement about all points in one vector subset Vi. We eval-
uate the neighborhoods for each one of the points as center.
For each center, we know that any one other point is in a
neighborhood with probability p. The probability that k
points out of the total of Ni points are within the neigh-
borhood is given by a binomial distribution. We sample the
distribution by picking every point as center once, hence the
prefactor Ni.

We compare the observed and expected distribution using a
standard χ2 goodness-of-fit test. Bins at both ends of the
distribution are merged until the expected number is at least
5. If intermediate bins have an expected number smaller
than 5 then pairs of bins are merged until no more bins
have an expected number < 5 (one recommended strategy
according to [26]). A vector-item pattern is considered sig-
nificant if the χ2 goodness-of-fit test yields a p-Value < 0.05.

In practice, we derive the expected distribution by averag-
ing over a large number of randomly picked subsets (in the
evaluation we use 50). This step ensures that the expected
distribution appropriately reflects the real distribution even
when the distribution of the complete data set deviates from
the fully random model. Such deviations can occur since we
can only fix the distribution of individual dimensions. Cor-
relations among attributes can potentially still lead to in-
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and t (threshold) criteria for D=20.

homogeneous distributions in multi-dimensional subspaces
and the full space. The data set we use also suffers from
many missing values. In Figure 5 an averaged distribution
is plotted against the theoretical binomial distribution. For
this plot, imputation was used and missing values were re-
placed by zeros before normalization. It can be seen that,
although the fit is not perfect, p-Values based on both types
of evaluation are closely related.

The complete algorithm can be seen as Algorithm 1. An iter-
ation is performed over all items and, for each item, densities
are evaluated at the location of each point that has the given
item. “findPts” selects those vectors for which the item is
present, and “randSubset” selects a random subset of the
same number of points. “NumberOfNeighbors” function is
given by a sum over equation (7)

dens(x) =
∑

y∈pts

csubspace(x,y) (12)

A faster version of the algorithm would use the equation 11
to determine the comparison distribution, but in this paper
we opted for accuracy of the result.

3.6 Parameter Choices
Our algorithm allows, in principle, choice of the two param-
eters, r (range) and t (threshold). Fortunately, one of the
parameters can be chosen based on fundamental considera-
tions alone: Our algorithm is expected to be most sensitive
to local density fluctuations if the probability that enters
into equation (11) itself is sensitive to fluctuations. In the
random model with uniform distribution, p depends on in-
put parameters t and r as shown in Figure 6 for D = 20.
The slope of the distribution is largest for rD = d, which
can be seen as follows: The maximum of the slope of a
cumulative density function is found at the maximum of
the corresponding probability density function, which is at
D−d = (1−r)D, or d = rD for the distribution in equation
(10). Since all our data sets have D > 10, we ignore the
ceiling operator in d = �tD and choose r = t for all of our
experiments, regardless of whether tD is an integer. The
choice of the remaining parameter r = t is somewhat data

Table 1: Expression Data Sets

Name Abbr. No. of Att. No. of Genes

Alpha Alp 22 6177

Cdc15 C15 24 5995

Cdc28 C28 17 6147

Elu Elu 14 6075

— All 77 6178

set dependent. We evaluate different choices and find that
typically r = t = 0.5 leads to the most stable results.

4. EXPERIMENTAL EVALUATION
The algorithm is implemented in MATLAB, allowing us to
access many of the statistics functions directly as part of
the Statistics Toolbox. For simplicity, we use a bitvector
representation for items, since vectors can be handled much
more easily in MATLAB than sets. We did not encounter
memory limitations for the data sets we considered.

4.1 Evaluation on Gene Expression Data
In our first evaluation we use gene expression data sets from
cell cycle experiments on yeast [31] as vector data, which
are available at [30]. Table 1 summarizes the properties of
the four data sets from separate experiments.

Item data come from the Interpro database, in which in-
formation on protein domains, motifs, and other kinds of
sequence signatures is collected and combined [27]. For sim-
plicity, we refer to all sequence signatures as domains. Yeast
domains are available at [14]. We limit our study those do-
mains for which significance can be evaluated without vio-
lating the constraint of having at least 5 instances in at least
2 bins, limiting the set to 329 domains.

We evaluate effectiveness by applying the algorithm sepa-
rately to the four data sets corresponding to different ex-
periments. For each data set, we determine the domains
that are significantly related to the vector data at the 5%
level. We then compare the two sets using a χ2-test on the
contingency table of the results. We use a χ2-test with Yates
correction for all our tests on contingency tables to account
for possibly small cell values [33].

As an example, the results for the Alpha data set and the
Cdc15 data set have the following contingency table:

C15 C15 tot

Alp 106 61 167

Alp 54 108 162

tot 160 169 329

The contingency table shows that for almost two thirds of
the predictions there is agreement between both data sets.
This is a reasonably good result, considering, that the ex-
periments were performed independently. The p-value for
this contingency table is 4.52E-8, indicating that it would
be highly unlikely to get such an overlap accidentally. Ta-
ble 2 summarizes the mutual overlap and p-values for all
data sets we considered, using r = 0.5 as range. The com-

36



Table 2: Results for r = 0.5
Sp All Alp C15 C28 Elu

54 41 34 38 40 34 Sp

219 138 133 146 128 All

All 0.11 167 106 124 100 Alp

Alp 0.05 5E-10 160 114 104 C15

C15 5E-4 8E-10 5E-8 193 109 C28

C28 0.01 5E-5 7E-9 8E-6 159 Elu

Elu 0.02 3E-7 3E-5 5E-9 5E-4

bination of all data sets, resulting in a single data set with
77 columns (“All”) is also shown. The diagonal represents
the number of domains found as significant for each of the
techniques. The upper triangular matrix shows the overlap
between any two of the experiments. Set below is a lower
triangular matrix that gives the p-value of the contingency
table corresponding to the two data sets. P-values that are
below the 5% significance level are rendered in bold face.

Table 2 furthermore shows a comparison with a traditional
type of analysis. For this comparison we created contingency
tables of genes that have a particular domain compared with
genes that have been identified as cell cycle genes in [31].
Significance is determined using a χ2 test with Yates correc-
tion. 54 domains are significant in this analysis. Note that
the total number of domains that are considered significant
is larger for our own evaluation, which identified up to 219
domains as significant.

We now look at an example domain in more detail. The do-
main G3DSA:2.130.10.90, which was used as an example in
Figure 2, occurs 117 times in the yeast data set. Comparing
the occurrence of this domain with the Spellman subset, we
get the following contingency table:

G3DSA G3DSA tot

Spellman 9 790 799

Spellman 108 5271 5379

tot 117 6061 6178

The p-value based on χ2-test with Yates correction is 0.071,
which is not considered significant, and the number of oc-
currences of domain G3DSA:1.25.40.20 in the genes from
the Spellman set (9 times) is actually smaller than would be
expected by chance (15.1 times). In our own analysis, us-
ing the combined data set, this domain has p-value that is
below the smallest double precision value in MATLAB and
is hence considered significant, which is in accordance with
the impression gained from Figure 2.

The overall consistency among our results gives a strong
indication that our algorithm is able to extract reliable ex-
pression - domain patterns. Table 2 shows that the rela-
tionship between results from our algorithm is consistently
significant, even when expression data are from independent
experiments. Overlap is particularly high for comparisons
with the full data set. Naturally, any individual data set is
dependent of the full data set. The high overlap in results
is noteworthy rather because it shows that our algorithm
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on time series data. Sensitivity refers to the rate

of recognizing labels that are associated with time

series subsequences. Specificity denotes the rate,

with which labels that are attached to random data

are identified as insignificant.

performs as well or better for 77-dimensional vector data as
for the sets with fewer attributes.

4.2 Evaluation on Time Series Data
The algorithm is also tested on time series subsequence data.
For this evaluation, subsequences from a particular time se-
ries are associated with one item: the label of the time series
from which they originate. The significance of the pattern
time series label ⇐⇒ subsequence vector is tested. This
problem can be assumed to be difficult since clusters of time
series subsequences are notorious for being independent from
the time series that was used for clustering [25].

For this evaluation, 7 data sets from the UCR time series
repository [24] are used and one independently collected one:
The Ecg series (MIT-BIH Arrhythmia Database: mitdb100)
originates from PhysioBank [18]. Descriptions of the data
sets from [24] are distributed with the data. Subsequences
are extracted using a sliding window approach, and differ-
ences between successive data points are considered as the
dimensions of the vector space. Windows of length 17 are
used resulting in a 16-dimensional vector space. 1000 data
points are collected from each time series and a randomly
selected subset of 100 is used in the evaluation. The data are
combined with the full set of points that can be extracted
from the UCR random walk time series (65520 points). For
comparison purposes, 7 labels are given to samples of 100
randomly picked points from the random walk time series.

A true positive result indicates a label that is associated with
a non-random time series and is identified as significant at
the 5% level. If a label is considered insignificant although
it belongs to a non-random set, the result is treated as a
false negative. A label that is associated with random data
and is considered (in)significant at the 5% level is a false
positive (true negative). Figure 7 shows the sensitivity (true
positives / all positives) and specificity (true negatives /
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all negatives) for 50 runs of the data set described in the
previous paragraph. It can be seen that the sensitivity is
consistently above 0.78. The specificity is greater than 0.8
for range values of 0.5 or less. It appears that for larger range
values the result becomes unreliable, possibly due to the
overall fluctuations in the data set. Given the challenging
nature of time series subsequence data the result can be
considered very promising.

4.3 Performance
The algorithm scales linearly with the number of domains.
Scaling as a function of domain size is quadratic for large
domains, since we construct Ni histograms, each of which
represents Ni points. In our data sets most domains are so
small that linear contributions related to the χ2 test play
an important role. Figure 8 shows the runtime per domain
for the gene expression data set plotted as a function of the
number of instances in the domain, Ni. It can be seen that
the initial slope is less than 2 indicating that the relationship
is not quite quadratic. For larger domain size, the slope in-
creases to a value close to 2. Overall, performance was not
a major concern to us since individual runs for the com-
plete set of domains and the entire yeast genome only took
minutes, despite the computation-intensive choice of deriv-
ing the comparison histogram through averaging rather than
through equation (11).

We have not yet tested the algorithm on combinations of do-
mains. The density-histogram-based significance measure
does not satisfy downward closure. Hence, a satisfactory
performance of an itemset-based evaluation would have to be
achieved through setting a support threshold. We are cur-
rently working on techniques for vector-item-patterns that
are better suited to patterns involving itemsets and multiple
vectors.

5. CONCLUSIONS
We have presented an algorithm for data mining of vector-
item patterns based on density histograms. Subsets of the
vector data, which are defined by the item data are the basis
for the histograms. A density measure is used that consid-
ers subspaces. Histograms based on the observed densities
at data points are compared with their expected counter-
parts. A normalization is chosen such that the expected
density histograms approximately follow a binomial distri-
bution. Effectiveness and efficiency of our algorithm have
been demonstrated using cell-cycle gene expression data and
Interpro domain annotations as well as time series subse-
quence data. We have shown that our algorithm produces
results that are consistent among independent experimental
data. Comparison with a conventional technique shows that
overlap is significant for one of our data sets. For time series
subsequence data we were able to show quantitatively that
labels associated with non-random data can be recognized
with sensitivity and specificity greater than 0.8. This work
introduces a new approach toward relating continuous vec-
tor data and item data that is potentially valuable in many
application areas.
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ABSTRACT
In recent years, Bayesian network (BN) has become success-
ful tool for analyzing model structures in real-life domains.
We present an efficient approach to produce a more accu-
rate Bayesian network from limited datasets. Our approach
incorporates ensemble learning into BN learning algorithms.
Based on the Markov condition of BN learning, our ensem-
ble based BN learning approach proposes a novel sampling
technique and components integration technique. The ex-
perimental results reveal that our ensemble based BN learn-
ing approach can achieve an improved result compared with
individual BN learning approach in terms of accuracy on
limited datasets.

Categories and Subject Descriptors
H.4 [Knowledge discovery and data mining]: Miscella-
neous

General Terms
Knowledge

Keywords
Bayesian network, Ensemble method, Sampling, Integrating

1. INTRODUCTION
Bagging [5] is one of the most popular methods of ensemble
learning. Bagging method uses Efron’s bootstrap sampling
[4]. On each run, Bagging method presents the component
learner with a training dataset that consists of a sample of
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m cases drawn randomly with replacement from the orig-
inal training dataset of m cases.[5] Bootstrap sampling is
a powerful tool for estimating various properties of a given
statistic in statistics. It quickly gained popularity in model
selection. When learning the structure of a graphical model
from limited datasets, such as the gene-expression datasets,
Bagging method has been applied to explore model struc-
tures.[6],[7],[8],[12],[3]

However, Bagging method has some disadvantages over BN
learning. This is because bootstrap sampling method in-
volves a few problems (an overview in [4]). For example,
as described by Steck and Jaakkola in [12], the bootstrap
method produces the spurious dependences problem which
can cause the graphical models learned from the datasets
be biased towards complex models, especially from limited
datasets. As a result, many extra edges may be present in
the learned model structures, and the confidence in the pres-
ence of the extra edges may be overestimated. Furthermore,
even if the results of Bagging method are asymptotically
converge to the true BN by sampling several hundreds of
times in some cases, some convergent conditions (discussed
in [6]) for the true distribution are needed. These conditions
may be unsatisfied in some other cases.

In this paper, we propose a novel sampling method called
Root Nodes based Sampling (RNS) method and components
integration method. Since the distributions over the sam-
pling datasets obtained using RNS method and the true BN
satisfy the Markov condition [11], RNS method reduces the
structural inconsistencies between the Bayesian networks
learned from the sampling datasets and the true BN. Fur-
thermore, RNS method does not need any convergent condi-
tion in the true distribution. In addition, our components in-
tegration method futher improves the accuracy in Bayesian
network induction on limited datasets.

The rest of this paper is organized as follows. In Section 2,
we propose the process of our ensemble based BN learning
approach. We present the details of our sampling technique
and components integration technique in sections 3 and 4. In
section 5, experimental results are compared and analyzed.
Finally, we conclude our work in section 6.

2. ENSEMBLE BN LEARNING OVERVIEW
Ensemble methods are the learning algorithms that a com-
ponent learner is trained multiple times for the same task,
and these trained outcomes (components) are combined for
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dealing with future instances.[5]

Given the original training dataset D, our ensemble based
BN learning approach applies sampling technique to gen-
erate several sampling datasets Di. Then, the component
learner learns a component (BN) BNi from each sampling
dataset Di. Finally, using components integration tech-
nique, these learned components are combined into a more
accurate BN.

3. ROOT NODES BASED SAMPLING
Constructing a good ensemble for BN learning involves hold-
ing the accuracy and increasing the diversity among the
component learners. The idea behind RNS method is based
on the following 2 facts:

1. The distributions over the sampling datasets obtained
using RNS method and the true BN satisfy the Markov
condition which determines a set of independence re-
lations. So, RNS method can avoid the generation
of extra edges in the learned components (Bayesian
networks), and thus improves the accuracy for compo-
nents (BNs) learning (compare with Bagging method).

2. The joint marginal probability distributions of the com-
bination of some nodes vary with the different sampled
sub-datasets. So, RNS method can increase the diver-
sity for components learning. Combined with integra-
tion method, this can alleviate the unreliability of the
CI measures and the score functions during learning
components from limited datasets.

The detail of RNS method is shown in Fig.1.

1) Search root nodes Hi (i=1,...,L) from the original training dataset D ; 

2) Compute the marginal probability tables P(Hi), 1 i L of each found 
root node; 

3) Construct the marginal probability tables P(Hi, Hj ), 1 i, j L for pairs of 
the found root nodes, where P(Hi, Hj)=P(Hi)P(Hj);

4) For every marginal probability table P(Hi, Hj) , 1 i, j L

For every possible value (hi, hj) of the root nodes pair {Hi, Hj}, (hi,
hj) (Hi, Hj)

Select the cases which satisfy the condition {Hi hi Hj hj} from 

the original training dataset D to form the sub-dataset { }i i j jH h H h
Ds ;

Combine the original training dataset D and the sub-dataset 

{ }i i j jH h H h
Ds  into the sampling dataset { }i i j jH h H h

D ;

EndFor 

Obtain the group Gr(Hi, Hj) consisting of the sampling datasets 

{ }i i j jH h H h
D , where (hi, hj) (Hi, Hj);

EndFor

5) Return the groups Gr(Hi, Hj), 1 i, j L of the sampling datasets. 

Figure 1: Root nodes based sampling method

Firstly, assume that the algorithm found some root nodes in
step 1 and computed the marginal probability tables of the
found root nodes. Then, the marginal probability tables of
all the pairs of the found root nodes are constructed in step
3. In step 4, RNS method firstly sub-samples the original
training dataset D by limitting the values of the pair of the

found root nodes {Hi, Hj} to {Hi �= hi ∧ Hj �= hj} and ob-
tains the sub-dataset Ds{Hi �=hi∧Hj �=hj}. Then, the original
training dataset D and the sub-dataset Ds{Hi �=hi∧Hj �=hj}

are combined into the sampling dataset D{Hi �=hi∧Hj �=hj}.
RNS method repeats the 2 statements in step 4 for each
vaule {hi, hj} of each pair {Hi, Hj} of the found root nodes
and obtains all the sampling datasets. RNS method groups
the sampling datasets into the groups Gr(Hi, Hj),1 ≤ i, j ≤
L according to the pair {Hi, Hj},1 ≤ i, j ≤ L of the found
roots. Finally, RNS method returns these groups of sam-
pling dataset.

3.1 Correctness
Assume that the original training dataset D is data faithful
to the true BN G.[11] Assume that the root nodes found by
RNS method are the root nodes in the true BN G.

Proposition 1. If we learn a BN from the sampling dataset
obtained from the original training dataset D using Root
Nodes based Sampling method, then we can get all the Markov
independences implied by the true Bayesian network G.

Proof. Assume that the nodes A and B are root nodes
in G. The range of values for A is {a1, . . . , ama}. The
range of values for B is {b1, . . . , bmb

}. The sampling dataset
D{A �=a1∧B �=b1} is obtained from D using RNS method. The
node E is a non-parent and non-descendant node of C in
the true Bayesian network G. ΠC is the parents set of C

in the true BN G. There exists the Markov independence
Ind(C, E | ΠC) in the true BN G.

Assume that P denotes the distribution faithful to the true
BN and P ′ denotes the distribution over the sampling dataset
D{A �=a1∧B �=b1}.

We take 3 cases to consider whether there exists Ind(C, E |
ΠC) in P ′ over the sampling dataset D{A �=a1∧B �=b1}.

1. In the case that ΠC contains the root nodes A and
B. Assume that ΠC = {A, B, H}. We know that
Ind(C, E | {A, B, H}) in the true BN. H is a parent
node of C.

From the sampling dataset D{A �=a1∧B �=b1}, we can in-
fer the formula:

When (A �= a1) and (B �= b1),

P
′(c | E = e, H = h, A = a, B = b) = N

′
cehab/N

′
ehab

= 2Ncehab/2Nehab = P
′(c | h, a, b)

When (A = a1) and (B = b1),

P
′(c | E = e, H = h, A = a1, B = b1)

= N
′
ceha1b1/N

′
eha1b1

= Nceha1b1/Neha1b1 = P
′(c | h, a1, b1)

According to the definition of conditional independence
[11], we can infer that there exists Ind(C, E | A, B, H)
in the distribution P ′.

2. In the case that ΠC contains one of the two root nodes
A and B. Assume that ΠC = {A, H}. We know that
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Ind(C, E | {A, H}) in the true BN. H is a parent node
of C.

From the sampling dataset D{A �=a1∧B �=b1}, we can in-
fer the formula:

When (A �= a1),

P
′(c | E = e, H = h, A = a) = N

′
ceha/N

′
eha

=
∑

b

N
′
cehab/

∑
b

N
′
ehab =

∑
b

Ncehab/
∑

b

Nehab

When (A = a1),

P
′(c | E = e, H = h, A = a) = N

′
ceha/N

′
eha

=
Nceha1b1 +

∑
b �=b1

2Nceha1b

Neha1b1 +
∑

b �=b1
2Neha1b

According to the following formula: P (c | E = e, H =
h, A = a, B = b) = Ncehab/Nehab = P (c | h, a), we can
infer that P ′(c | E = e, H = h, A = a) = P (c | H =
h, A = a).

Using the above method, we can also infer that P ′(c |
H = h, A = a) = P (c | H = h, A = a).

So, we infer that P ′(c | E = e, H = h, A = a) = P ′(c |
H = h, A = a).

According to the definition of conditional independence,
we can infer that there exists Ind(C, E | A, H) in the
distribution P ′.

3. In the case that ΠC contains none of the two root
nodes A and B. Assume that ΠC = {H}. We know
that Ind(C, E | H) in the true BN. H is a parent node
of C.

From the sampling dataset D{A �=a1∧B �=b1}, we can in-
fer the formula:

P
′(c | E = e, H = h) = N

′
ceh/N

′
eh

=

∑
a�=a1∧b �=b1

2Ncehab + Nceha1b1∑
a�=a1∧b �=b1

2Nehab + Neha1b1

According to the following formula: P (c | E = e, H =
h, A = a, B = b) = Ncehab/Nehab = P (c | h), we can
infer that P ′(c | E = e, H = h) = P (c | H = h).

Using the above method, we can also infer that P ′(c |
H = h) = P (c | H = h).

So, we infer that P ′(c | E = e, H = h) = P ′(c | H =
h).

According to the definition of conditional independence,
we can infer that there exists Ind(C, E | H) in the dis-
tribution P ′.

According to the cases 1, 2 and 3, we infer that Proposition
1 is correct.

3.2 Root Nodes Search Method
The idea behind our root nodes search method is based on
the following rules.

Rule 1. If Ind(X, Z | NULL) and Dep(X, Z | Y ), then
we can add a head-to-head pattern among X,Y and Z, that
is X �−→ Y and Z �−→ Y .

Rule 2. Given Ind(X, Z | NULL), Dep(X, Y | NULL),
Dep(Y, Z | NULL), X �−→ Y −Z, if Ind(X, Z | Y ), then we
can direct the edge Y −Z to be Y → Z, that is X �−→ Y → Z.

The search method is shown in Fig.2. Note: A maximal
clique is the clique which is not contained by any other
clique. δ denotes the upper bound on the number of nodes
in a group of cliques.

1) Compute order-0 CI tests for each pair of the nodes and build the 
undirected graph UG0, where if Dep(X,Y |NULL), then there exists 
an edge X—Y in UG0;

2) Compute order-1 CI tests for any three nodes X, Y and Z that in UG0,
X—Y, Y—Z, and X and Z are not directly connected, and apply 
Rules 1 and 2 to direct the edges X—Y and Y—Z in UG0;

3) Find the maximal cliques {C1,...,Ck} consisting of the nodes which 
have no inarcs in UG0;

4) Divide the maximal cliques into groups {GrC1,...,GrCt} consisting of 
the maximal cliques each of which has common nodes with at least 
one other clique in the same group; 

5) Order the groups of cliques {GrC1,...,GrCt} by the number of nodes 
in ascendant order and prune the groups GrC j of cliques where  
|| GrC j|| > ;

6) For each group GrC i of cliques, use the exhaustive search & score 
method over the original training dataset to learn the root node in 
the group of cliques; 

7) Detect and delete pseudo root nodes. 

Figure 2: Root nodes search method

Assume that the original training dataset is data faithful to
the true BN.[11] We consider the following two possibilities
for the node X which is not root node in the true BN.

1. There exist two or more root nodes that have directed
paths to node X in the true BN.

Assume there are two root nodes R1 and R2 that have
directed paths to X in the true BN. After step 2 in
Fig.2, there are 3 possible cases shown in Fig.3 for X

in UG0.

Case 1(in UG0) Case 2(in UG0) Case 3(in UG0)

R1 R2

X

R1 R2

M1

X

M2

R1 R2

X

M

Figure 3: 3 cases for X in UG0 after step 2

Therefore, we see that there must be at least one di-
rected edge to X in UG0 after step 2 in Fig.2. When
there are three or more root nodes R1 and R2 that
have directed paths to X in the true BN, we can also
infer that there must be at least one directed edge to
X in UG0 after step 2 in Fig.2.

2. There exists only one root node R0 that has directed
paths R0 �−→ X to node X in the true BN.

After step 3 in Fig.2, we find a few maximal cliques
each of which contains at most one root node and the
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non-root nodes that has directed paths to them from
one and only one root node in the true BN. X must
be contained in some maximal cliques after step 3.

In step 4 in Fig.2, the cliques that has common nodes
with at least one other clique in the same group are
divided into a group. We know that each non-root
node in a clique has and only has one root node that
has directed paths to it in the true BN. So, each group
of cliques only contains one root node and each root
node only exists in one group of cliques. Therefore, if
the original training dataset is data faithful to the true
BN, then we can find all the root nodes in the true BN
after step 6 in Fig.2.

However, the faithfulness assumption often can not be sat-
isfied on limited datasets. Some results after step 6 in Fig.2
may be not root nodes in the true BN, which are called
“pseudo root node”. These exceptions often occur when
there are many nodes in a group of cliques.

We take 2 steps to solve the pseudo root nodes problem. The
first step is to limit the number of nodes in a group of cliques
(see step 5 in Fig.2). We discard the groups of cliques in
which the number of nodes are larger than a given threshold
δ. The step makes exhaustive search practically feasible and
greatly enhance the accuracy of our search method. The
other step is to detect pseudo root nodes and delete them
(step 7 in Fig.2). The detection for pseudo root nodes is
based on the fact that the ancestors of a node in a group of
cliques must be in the same group of cliques. So, we applies
the following rule to detect the pseudo root nodes.

Assume that GrCi is a group of cliques. X, Y, R ∈ GrCi. R

is the root node found after step 6 in Fig.2.

Rule 3. If ∃S, S ⊂ GrCi, R /∈ S, Ind(X, Y | S) and
Dep(X, Y | S, R), then the found root node R is pseudo root
node.

Even if our method finally learned a tiny number of pseudo
root nodes from small training datasets, we can prove that
if RNS method is used by the pseudo root node, it does not
change the Markov independences of other nodes implied
by the true BN, except for its ancestor nodes. This is one
cause that we limit the number of nodes in a group of cliques.
Moreover, Our intergroup integration method discussed in
Section 4.2 further eliminated the effect of the pseudo root
nodes problem. Finally, our search method does not have to
find all the root nodes in the true BN, it is enough to find
several root nodes in the true BN for our ensemble based
BN learning in terms of accuracy.

4. BNS INTEGRATION METHOD
Components Integration is the last step of our ensemble
based BN learning algorithm. Our integration method in-
cludes 2 parts: integrating the components (BNs) learned
from the sampling datasets in the same group; integrating
the intergroup undirected networks generated in the first
part.

Assume that we obtained m groups Gri(i = 1, . . . , m) of

sampling datasets using RNS method on the original train-
ing dataset D and each group Gri(i = 1, . . . , m) contains Li

sampling datasets.

Assume that we learned m groups GBNi(i = 1, . . . , m) of
components (BNs) using selected BN learner. Each group
GBNi consists of the Li BNs {BNi1, . . . , BNiLi

} learned
from the Li sampling datasets in the group Gri using se-
lected BN learner.

4.1 Intragroup BNs Integration
According to Proposition 1, we see that each Bayesian net-
work learned from the sampling datasets obtained using
RNS method contains all the Markov independences im-
plied by the true BN, which avoids the advent of extra
edges in the learned BNs. Moreover, almost each edge in
the true BN can be included in most of the BNs of a group
GBNi(i = 1, . . . , m). So, after the intragroup BNs integra-
tion, we can get an undirected network which nearly includes
all the edges in the true BN. The process is shown in Fig.4.

/* Create the undirected networks UGi (i=1,...,m) */ 

For each group GBNi (i=1,...,m)

1. For each edge e  which directed arc is in the BNs 

1, ,
ii iL

BN BN , compute occurrence rate bs( e ) ;  

2. Prune the edges whose probabilities are less than 1/2 ;  

3. Obtain a undirected network UGi in which every edge e

has a probability table gi( e );

Figure 4: Intragroup BNs integration method

For any edge ẽ which directed arc e is in the BNs BNi1, . . .,
BNiLi

, consider the quantity

bs(ẽ) =
1

Li

Li∑
j=1

1 (e← ∈ BNij‖e
→ ∈ BNij) .

In the undirected network UGi, every edge ẽ has a proba-
bility table gi(ẽ) which represents the probabilities gi(e) of

directed arcs e ∈ {e←, e→}: gi(e) = 1

Li

Li∑
j=1

1 (e ∈ BNij) , e ∈

{e←, e→}.

Note: the values of function 1(. . . ) are 1(TRUE)=1 and
1(FALSE)=0.

4.2 Intergroup UNs Integration
After the intragroup BNs integration, we obtained m undi-
rected networks (UNs) UGi(i = 1, . . . , m) which approx-
imate the true BN in the form of undirected network to
maximal extent.

As discussed in the above subsection, most of the edges in
the true BN can be included in most of the undirected net-
works. So, our intergroup integration approach firstly uses
the majority voting to obtain the most probable edges which
exist in the true BN and generate the final undirected net-
work UG. Then, our approach directs the edges in UG and
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obtain an initial result Bayesian network. Finally, we insert
the rest edges in the learned UNs according to the maximal
score principle and the acyclic property of BN and get the
result BN. The process is shown in Fig.5.

/* Create the undirected network UG */ 

1) For each undirected edge e  in UGi (i=1,...,m), compute 
occurrence rate us( e );

2) Create a undirected network UG consisting of the undirected 
edges, which occurrence rate us( e ) are no less than 1/2, in 
the UGi (i=1,...,m);

/* Direct the UG to get the initial BN*/

3) Compute the probability pw(e) of each possible directed arc 
e which undirected edge is in the UG;

4) Direct the edges in the UG using causality inference rules or 
the probability pw(e) to obtain an initial BN G;

/* Insert the rest arcs */ 

5) For the possible directed arcs {e} which undirected edges 
{ e } are not in UG, but in UGi (i=1,...,m), apply greedy
search & Bayesian score function and the acyclic property 
of BN to insert into the Bayesian network G;

6) Return the result Bayesian network G

Figure 5: Intergroup UNs integration method

The occurrence rate us(ẽ) of each undirected edge ẽ in the

UGi(i = 1, . . . , m) is the quantity, us(ẽ) = 1

m

m∑
i=1

1 (ẽ ∈ UGi).

Directing edges is conducted according to causality rules[11]
by identifying V-structures, i.e., non-adjacent parents hav-
ing a common child, directing the relevant edges, and ap-
plying additional rules to further direct edges until no more
edges can be directed. For the rest undirected edges in UG,

we consider the quantity pw(e) = 1

m

m∑
i=1

gi(e)1 (ẽ ∈ UGi),

e ∈ {e←, e→}. If pw(e←) > pw(e→), then it is more proba-
ble that e← exists in the true BN than e→ does, and then
we direct ẽ to be e←. Vice versa.

On limited datasets, it is possible that a small number of
edges in the true BN are only included in a small number of
UNs learned in the first part of our integration method. So,
we take greedy search & Bayesian score method to insert
the rest edges in the UNs into the initial Bayesian network
and obtain the result Bayesian network.

5. EXPERIMENTAL RESULTS
BN learner is an individual BN learning algorithm and a
building block of ensemble based BN learning. Normally,
it needs to be efficient computationally. Therefore, we se-
lected OR algorithm [10] and TPDA algorithm [2] as our
BN learners.

We implemented OR algorithm [10], OR-BSV algorithm,
OR-RNS algorithm, TPDA algorithm [2], TPDA-BSV algo-
rithm, and TPDA-RNS algorithm.

OR-BSV and TPDA-BSV algorithms use Bagging method
and the simple voting integration method, where m boot-

strap sampling datasets D1, . . . , Dm are generated from the
original training dataset D and a component (BN) BNi is
obtained from each Di, an integrated result BN BNr is built
from BN1, . . . , BNm. The structure of BNr is determined
through majority voting, where an edge exists if and only if
such an edge exists in majority BNs.[1]

Tests were run on a PC with Pentium4 1.5GHz and 1GB
RAM. The operating system was Windows 2000. 3 Bayesian
networks (Alarm, Barley, Hailf(inder)) were used. Table 1
shows the characteristics of these networks. The charac-
teristics include the number of nodes, the number of arcs,
the number of root nodes, the upper bound on the par-
ents/children number of a node (Max In/Out-degree), and
the minimal/maximal number of node values(Domain Range).

Table 1: Bayesian Networks

BN Nodes Arcs Roots Max In/ Domain
Num Num Num Out-Degree Range

Alarm 37 46 12 4/5 2-4
Barley 48 84 10 4/5 2-67
Hailf 56 66 17 4/16 2-11

We performed experiments on the training datasets with
200, 500, 1000 instances. For each network and sample size,
we sampled 10 original training datasets. We applied boot-
strap sampling with 200 times in OR-BSV and TPDA-BSV
algorithms. Let δ = 5 in Fig.2.

For each network and sample size, we recorded the average
results of the number of the true root nodes and the number
of the pseudo root nodes found by our root nodes search
method from the original training datasets. From the results
in Tables 2-4, we can see that our root nodes search method
is very efficient on all the original training datasets. ’Posi-
RNs’ denotes the number of true root nodes learned by our
search method. ’Pseudo-RNs’ denotes the number of pseudo
root nodes learned by our search method.

Table 2: Alarm Net
SIZE Posi- Pseudo-

RNs RNs
200 7 1
500 9 1
1000 10 0

Table 3: Barley Net

SIZE Posi- Pseudo-
RNs RNs

200 6 2
500 7 1
1000 8 1

Table 4: Hailf Net
SIZE Posi-RNs Pseudo-RNs
200 11 0
500 14 0
1000 15 0

We compared the accuracy of Bayesian networks learned by
these algorithms according to the average BDeu score. The
BDeu score corresponds to the posteriori probability of the
structure learned.[9] The BDeu scores in our experiments
were calculated on a seperate testing dataset sampled from
the true BN containing 20000 instances. For each network
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Table 5: Average BDeu(Alarm-OR)

SIZE OR OR-BSV OR-RNS
200 -17.38±0.91 -16.77±2.13 -15.96±1.49
500 -15.10±0.22 -14.93±0.95 -14.17±0.55
1000 -14.82±0.16 -14.61±0.39 -13.75±0.23

Table 6: Average BDeu(Barley-OR)

SIZE OR OR-BSV OR-RNS
200 -87.51±3.45 -86.92±6.86 -85.61±5.13
500 -82.35±2.14 -81.74±4.26 -79.93±3.08
1000 -78.97±1.93 -78.26±3.38 -77.03±2.42

Table 7: Average BDeu(Hailf-OR)

SIZE OR OR-BSV OR-RNS
200 -76.14±2.69 -75.83±5.64 -74.77±3.79
500 -73.98±1.38 -73.23±2.82 -72.35±2.31
1000 -73.21±0.96 -73.07±1.65 -71.91±1.35

Table 8: Average BDeu(Alarm-TPDA)

SIZE TPDA TPDA-BSV TPDA-RNS
200 -22.47±2.78 -21.91±5.96 -20.81±3.79
500 -18.10±1.53 -17.52±3.03 -16.90±2.01
1000 -15.43±0.98 -15.00±1.73 -14.52±1.38

Table 9: Average BDeu(Barley-TPDA)

SIZE TPDA TPDA-BSV TPDA-RNS
200 -100.92±6.29 -107.57±12.37 -104.87±7.91
500 -103.79±5.38 -107.92±11.92 -107.89±6.83
1000 -111.07±4.69 -106.55±10.95 -106.96±6.14

Table 10: Average BDeu(Hailf-TPDA)

SIZE TPDA TPDA-BSV TPDA-RNS
200 -103.13±4.91 -102.17±8.16 -99.72±6.16
500 -101.38±4.27 -99.69±6.74 -98.39±5.38
1000 -97.38±3.30 -96.51±5.57 -95.61±4.27

and sample size, we recorded the average result and standard
deviation of the BDeu scores of the BNs learned from the
original training datasets by these algorithms. Tables 5-10
report the results.

There are several noticeable trends in the average results.
Firstly, as expected, as the number of instances grow, the
quality of learned Bayesian network improves, except to
TPDA, TPDA-BSV and TPDA-RNS for Barley network.
It is due to that constraint-based method is unstable for
small datasets (200,500). At the same time, we can see that
TPDA-BSV and TPDA-RNS algorithm improve the stabil-
ity of TPDA. Secondly, RNS based BN learning algorithms
OR-RNS and TPDA-RNS are almost better than or at least
equal to the individual BN learning algorithms in terms of
accuracy on limited datasets. Thirdly, in most cases, RNS
based BN learning algorithms have better performance than
Bagging based BN learning algorithms.

From the results of standard deviation, we can see the fol-
lowing trends. Firstly, as the number of instances grow,
the variability among the BNs learned from the original
training datasets reduces for all the 4 networks and all the
6 algorithms. Secondly, Bagging based BN learning algo-
rithms produced much larger standard deviation on small
datasets(200, 500) because the spurious dependences prob-
lem of bootstrap methods discussed in section 1. However,
RNS based BN learning algorithms produced less standard
deviation, especially on small datasets(200, 500). So, this
confirms that RNS method alleviates the spurious depen-
dences problem of bootstrap methods on small datasets to
some extent. In the context of model selection, this also
makes us limit the range of approximately true BNs more
definitely on small datasets.

6. CONCLUSION
In this paper, we proposed a novel sampling technique and
components integration technique to incorporate ensemble
based learning into BN learning on limited datasets. Our re-
sults are encouraging in that they indicate that our ensemble
based BN learning algorithms achieved more accurate BNs
than individual BN learning algorithms on limited datasets.
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ABSTRACT
The current time series data mining methods generally as-
sume that the series have equal dimensionality, equal length
time intervals, and extend over equal length time periods.
However,these assumptions are not valid for many real data
sets involving multiple data sources. We propose a mining
framework to gather high quality information from hetero-
geneous and multi-dimensional time series data and apply it
to two important classes of biomedical data mining applica-
tions: Clinical Trials and Microarray Gene Expressions. The
framework has two steps: (1) Significant and homogeneous
subsets of data (e.g., data generated by similar sources) are
selected and analyzed using the mining algorithm of interest,
(2) The information gathered in the first step is combined
by identifying common (or distinctive) patterns. We demon-
strate this framework in the Clinical Trials application by
clustering the time series of blood ingredients, analytes, of
each patient as the first step. The common patterns across
the clusters are then identified as highly correlated analyte
groups. The patterns can also be utilized to identify a global
panel of analytes, which is shown to contain are presenta-
tive from each biological group. In the Microarray applica-
tion, the time series of gene expression from heterogeneous
sources of microarray data and mining results of different
distance metrics are grouped,and the common patterns over
these clusters are mined to extract strong rules for gene ex-
pression. The quality of the results is shown to improve with
the number of data sets and/or metrics used for mining.

Introduction
With the increasing availability of low cost, high through-
put methods introduced by the advancing technology in bio-
sciences and the sharing of the data resulting from such
experiments on ubiquitous high-bandwidth networks, we’re
facing an abundance of data. This is an immense oppor-
tunity for speeding up advancement of biosciences; however
it also presents us with equally immense challenges such as
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high-dimensionality, heterogeneity, non-uniformity, insuffi-
cient length, unequal interval sizes, variable sampling rates,
different lengths, differing calibrations and sensitivity, and
noise levels of data sources as depicted on Figure 1 on the
next page.

The current time series data mining methods generally as-
sume that the series are sufficiently long, have equal length
time intervals, and/or extend over equal length time periods.
However, these assumptions are not valid for many real data
sets, like biomedical databases. Hence, these data sets can
not be mined globally. In case the data is grouped by the
source, the data of each source is homogenous (Figure 2).
The current approaches can then be applied on each data
source separately. But, there will be as many result sets
as number of data sources. So, the mining results gathered
from each source should then be combined.

We develop a two step mining framework, Information min-
ing (depicted in Figure 2), to gather high quality information
from heterogeneous and high-dimensional time series data.
In the first step, significant and homogeneous subsets of data
(e.g., data generated by similar sources) are selected and an-
alyzed using the mining algorithm of interest. In the second
step, the information gathered in the first step is combined
by identifying common (or distinctive) patterns over the re-
sults of mining of the subsets. Two datasets are identified for
the example run shown in Figure 2. In Step 1, the attributes
of each subset are clustered separately. The resulting clus-
terings are {{u, x}, {w, y}} for dataset 1 and {{w, y}, {v,
x}} for the second dataset. In Step 2 frequently occurring
clusters in Step 1 are extracted. In this case, the framework
returns {w, y} set as it appears in both clusterings.

In the Information Mining (IM) Framework, alternative DM
techniques can also be utilized in Step 1 such as decluster-
ing [1] and outlier detection algorithms [2]. The information
sought in Step 2 can also differ; such as finding rarely occur-
ring clusters rather than frequently occurring clusters. In
the next section, we will examine two case studies that we
applied information mining; clinical trials and microarray
datasets.
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Figure 1: Heterogeneous data that is not compatible

with conventional data mining techniques
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Figure 2: The two steps of information mining de-

picted on a hypothetical example run.

Case Study 1: Clinical Trials Data
A clinical trial [3] is a research study to answer specific
questions about vaccines or new therapies. Clinical trials
are used to determine whether new drugs or treatments are
both safe and effective. In these trials, patients are assigned
a treatment or a placebo and measurements for certain ana-
lytes (blood ingredients) are taken at intervals. These mea-
surements can be represented as a time series for each ana-
lyte.

Hepatotoxicity (liver damage) is a common problem in drug
treatment trials but is observed only indirectly through bio
markers measured in the blood. This creates the need to
infer an individual’s unobserved liver function dynamically
using blood tests and other patient baseline characteristics.
Each phase of Clinical Trials is very expensive for the com-
panies. If a severe side effect of a drug is not detected in
clinical trials it costs significantly more to the company. We
have developed methodologies that enable the estimation of
the effect of drugs on hepatotoxicity, and thus determine
early on whether new drugs should not be pursued into the
next phase.

For step 1, we utilize K-Medoid [4] algorithm to cluster an-
alytes. For each patient, the pairs of analytes that come
together in the same cluster are saved as the output of the
first step. The output can be considered as a transaction
data (e.g., market basket data [5]) that includes informa-

tion about which sets of analytes appear together. In other
words, each cluster is mapped to a single transaction con-
taining analytes.

For step 2, a frequent item set mining algorithm [5] is run
to find strongly related analyte groups, most of which are
shown to have high biological correlation. Frequent item
sets are defined as the sets of items that co-occurred often
enough to pass a given threshold, the support limit. We
apply a second level of pruning and select a set of item sets
using the confidence values of their corresponding associa-
tion rules. Confidence for an association rule X ⇒ Y is the
ratio of the number of transactions that contain X

�
Y to

the number of transactions that contain X [5]. In our con-
text, the confidence for an association between a set and its
subset is described as (number of times members of set co-
occurred in the same cluster)/ (number of times members
of the subset co-occurred in the same cluster). So, while
finding a group; not only the total number of co-occurrences
of the group members is compared with a threshold (sup-
port limit), but also the ratio between this total to that of
each one-item-less subset is compared with another thresh-
old (confidence limit). A group is announced if it can pass
both tests.

The result of the framework with the above setting is the
frequently co-occurring clusters of analytes. As validated
by our experts (Refs. [6] for more details), these clusters
represent different groups of biological panels. The cluster-
ings and the corresponding panels are given in the below
table.

Group Name Group Analytes
Transporter Hemoglobin, Hematocrit, RBC Count

Acute Infection WBC Count, Neutrophils(%),
Neutrophils (abs)

Serum Protein Total Protein, Albumin, Globulin,
Calcium

Liver SGOT(AST), SGOT(ALT), LDH

Appearing in the same cluster is the complement of not be-
ing in the same cluster. By the same token, if the algorithm
can determine which analytes occurred in the same cluster
more than the Support Limit, it can also determine which
of them did not come together more than a new support
limit(the difference between the number of patients (data
sources) and the Support Limit). By using this approach
for Step 2, a global panel of analytes that best represents
the overall information in the data is effectively identified.
It reduced the number of analytes from 43 to 8 (or less).
One of the resulting global panels of size 8 is:

Hematocrit, Neutrophils(%), Total Bilirubin, Globulin, SGOT
(AST), BUN, Creatinine, and Phosphorus.

This panel includes a member from each biological group in
the data. A possible extension to the above is to identify a
minimal set of analytes needed to monitor for a specific pur-
pose (e.g., efficacy or safety). This would reduce the costs
in clinical trials and both before and after market analyses
of the drugs.
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Case Study 2: Time-Series Gene Expression Data
As more laboratories acquire microarray technologies, a large
amount of gene expression data becomes available for cross-
validation information from different sources. Researchers
can detect individual genes with similar behaviors across
a varied set of environmental conditions or tissue types, or
groups of genes that have similar patterns of behavior across
some set of conditions or time points in a time-series. To
achieve this goal, one needs to mine multiple gene expression
data sets involving time-series with potential differences in
lengths and interval sizes. The proposed framework can be
applied to integrate results of multiple datasets as well as
various mining techniques for the same data set.

Clustering has been so far the fundamental way of mining
microarray data [7, 8, 9]. As in other data mining tasks,
selecting the appropriate distance function to measure the
similarities/dissimilarites between genes is essential. Each
function has its own strengths and drawbacks, and is de-
signed to capture a particular kind of relationship. It is
clear that any single clustering method with any single dis-
tance metric would not be enough to capture all types of
relationships.

Mining multiple gene expression data sets involves time-
series with potential differences in lengths and interval sizes.
The data is heterogeneous, and the sensitivity of the exper-
iments varies with the source [10]. A global mining of data
would cause inaccuracies even with an extensive preprocess-
ing. We utilize the Information Mining Framework to find
the coregulated genes of a queried gene in this heterogeneous
data from various datasets and/or with respect to four dis-
tance functions: Correlation Coefficient [11], Longest Com-
mon Subsequence Similarity (LCSS) [12], Dynamic Time
Warping(DTW) [13], and Qualitative [14].

For Step 1, we develop Strong Group Algorithm (SGA)
where genes are grouped around the query gene and ranked
into shells that correspond to different levels of similarity. It
utilizes a similarity threshold to find all the members of the
related gene group where each has a closer pairwise distance
than the threshold to each other.

In a microarray dataset, genes are directly or indirectly
related to each other since they represent inter-connected
events in the cell. As a result genes profiles are expected
to appear as closer points in value space. However, discrim-
inating genes accurately, and not eliminating close points
adequately is a challenge. A careless query can result in
more than the desired number of genes in the result set.
Hence, strong relationships has been explored to make this
process worthy. A gene has many relationships. Hence, to
preserve strong relationships, a gene is allowed to occur in
more than one cluster.

In SGA, each gene is considered as the center of a cluster,
and all genes within a similarity threshold, Υ, are pulled into
this cluster. Each gene behaves as the owner of a cluster;
hence at the beginning we have as many clusters as number
of genes. Further, each cluster is pruned with respect to
the same threshold, , Υ, separately as follows. First, the
genes in a cluster are sorted according to their distances to

the owner gene. Then one by one in ascending order of the
distance, their membership to the group is reconsidered. For
each gene in the cluster, if it is within the threshold of all
unpruned members closer to the owner gene of the current
group then it is not pruned, otherwise it is pruned. So at
the end of this step we have as many clusters as number of
genes. Clusters for two different genes can be equal to each
other, hence, identical clusters are eliminated, keeping only
one.

For Step 2, we implement set operations where the informa-
tion mined with different metrics or from different sources
are integrated. This makes the capture of specific relation-
ships such as shifts, negative correlations, etc. feasible. For
example, if the researcher is interested in the genes that are
related with a phase difference (i.e. time-shift), these kind
of relationships are best captured by LCSS, Qualitative, and
DTW. So, the relationships can be captured by getting the
difference from the intersection of the resulting sets of these
three metrics to the resulting set of correlation coefficient.

We demonstrate our framework on 80 time-series datasets
of yeast (Saccharomyces cerevisiae) from Stanford Microar-
ray Database [15]. In order to evaluate the relationships
within the groupings, we have utilized a recently produced
pairwise relational list on yeast by Troyanskaya et al [16].
We have selected 127 genes with the highest reported bio-
logical relationships in that list and compared them through
80 time series at hand with 4 different metrics and 8 differ-
ent thresholds. We generated 2560 different result sets. As
these genes are expected to be close to each other, it is a
challenge to return results that contain a low ratio of false
positives (FPs), i.e. to return a set of related genes mixed
with few unrelated genes. This challenge is addressed by our
SGA algorithm. The recall on these results were increasing
by the increase in the number of datasets analyzed and the
number of metrics being used.

We combined the resulting sets from multiple datasets for a
metric, and a similarity threshold value pair by finding the
relationships appearing frequently in the 80 datasets. As a
result of combining the sets for different datasets, we have
a result set for each threshold value and metric pair. When
results of four metrics were combined by the intersection
operation, the precision of the results has improved from
0.67, which is the highest value achieved by a single metric
(Correlation Coefficient), to 0.78 for a similarity threshold of
0.85. Figure 3 presents the effect of intersecting the metrics.

Figure 4 presents the effect of uniting the metrics for the
same similarity threshold, i.e. 0.85. Within each dataset
number of known relationships as well as unknown relation-
ships existed and as we increased the number of metrics the
number of relationships captured increased as well.

We have also compared the rate of already discovered rela-
tionships to the rate of false discoveries. Our analysis showed
that when the metrics were used more restrictively the ra-
tio between true(TDR1) and false(FDR 2) discoveries were

1TDR: When a relationship was known we have considered
it as a true discovery
2FDR: When a relationship was not known we have consid-
ered it as a false discovery
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changing in favor of true discoveries. As Figure 5 indicates
when a dataset is evaluated with higher thresholds the true
discovery rate over false discovery rate increases.

Conclusion
We presented our framework, Information Mining, to ex-
tract consensus results from multiple sources, and showed
its effectiveness in two important classes of biomedical data
sets: Clinical Trials and Microarray data. Both applications
share the commonality of having heterogeneous and high di-
mensional time sequences where the current data mining ap-
proaches fail to work. These applications share another sim-
ilarity of having significant groups of homogeneous subsets.
We proposed a two-step process to mine the data and refine
the information to generate high quality results. The process
is also applicable for merging results of various instances of
a mining algorithm with different parameters, such as clus-
tering with multiple metrics. The results on both datasets
show that mining homogeneous subsets followed by integrat-
ing their results leads to improvement of the accuracy of the
results.
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Our results from Clinical Trials data have verified two bio-
logical panels (of blood analytes) already well-known in the
medical field. Besides the well-known groups, we also have
identified biological groups that are not commonly used.
Our colleagues involved in this industry-sponsored project
have already been using the results of the proposed tech-
nique. The statisticians used the global panel of analytes
in developing accurate data distribution tests (such as mul-
tivariate normality) for high dimensional clinical trial data
sets. The mathematicians involved in the project used the
results in modelling the behavior of the human body in re-
sponse to drug treatments. We expect several other uses
of these results by researchers in pharmacology, biomedicine
and biology.

We show the effectiveness of merging results from multiple
metrics in addition to data from multiple sources, through
applying our framework to Microarray data. It is clearly
demonstrated that each metric has its own strengths and
weaknesses which are clear when the metrics are applied
individually. Combining results of them through set oper-
ations leads the investigators to answers of more specific
questions with higher accuracy.
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ABSTRACT

Much of the data about free, libre, and open source (FLOSS)
software development comes from studies of code forges or code
repositories used for managing projects. This paper presents a
method for integrating data about open source projects by way of
matching projects (entities) across multiple code forges. After a

review of the relevant literature, a few of the methods are chosen
and applied to the FLOSS domain, including a comparison of
some simple scoring systems for pairwise project matches.
Finally, the paper describes limitations of this approach and
recommendations for future work.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – product metrics,

complexity metrics.

H.2.8 [Database Management]: Database Applications – data

mining.

General Terms
Measurement, Algorithms.

Keywords
Open source software, data mining, software engineering data,
entity matching.

1. INTRODUCTION
Free, libre or open source software (FLOSS) development teams
often use centralized code forges, or repositories, to help manage
their project code, to provide a place for users to find the product,
and to organize the development team. Although many FLOSS
projects host their own code repository and tools, many projects

use the tools hosted at a third-party web site (such as Sourceforge,
ObjectWeb, or Rubyforge). These code forges provide basic
project/team management tools, as well as hosted space for the
source code downloads, a version control system, bug tracking
software, and email mailing lists. There are also directories of
FLOSS software (such as Freshmeat and the Free Software
Foundation directory) that try to gather into one convenient place
material about projects interesting to a particular community.

Much open source software engineering research has been

focused on gathering metrics from code repositories. Many
aspects of the repository-based software development process
have been studied in depth, and repository data collection is
important for these studies (see [3] for background). The
FLOSSmole project [6] was created to consolidate metadata and
analyses from some of these repositories and directories into a
centralized collaboratory for use by researchers in industry and
academia. As of this writing, FLOSSmole includes data and

analyses from Sourceforge, Freshmeat, Rubyforge, ObjectWeb,
and the Free Software Foundation (FSF) directory of free
software. One of the challenges mentioned in [3] in creating this
kind of collaboratory is in integrating the data from these various
sources. It seems reasonable that a project might be listed on
several directories and have a listing on a code forge. However,
sometimes a project will be listed in multiple forges too, usually
because the project has migrated from one forge to another over
time, or because the project wishes to "grab" the unique

namespace for its project on a certain forge so it will register at
that forge without an intention to ever actually use that space.

In any case, when integrating project data from multiple sources,
we must first identify which project pairs are matches. In other
words, we want to find out which projects are listed on multiple
forges. For example, is the octopus project on ObjectWeb the
same as the octopus project on Sourceforge or the project also
called octopus on Freshmeat? If we can devise a scoring system

for determining whether a project pair is a match, then can we
automate the matching process?

The focus of this paper is entity matching (and duplicate
identification) for this kind of data integration, as applied to the
domain of FLOSS projects. Section 2 outlines some terminology
from the study of data integration problems and gives a
background of entity matching algorithms. Section 3 describes the
FLOSS domain in terms of entities and duplicates. Section 4 gives

an example of applying some of the algorithms for entity
matching to this domain. Section 5 outlines limitations of this
work and gives recommendations for future study.

2. ABOUT ENTITY MATCHING
The act of integrating multiple data sets and finding the resulting
duplicate records ("matches") is nearly as old as database
processing itself. In practice and in the literature, this set of
processes is known by many names: merge/purge, object

identification, object matching, object consolidation, record
linkage, entity matching, entity resolution, reference
reconciliation, duplicate identification, and name disambiguation.
The term entity matching will be used in this paper.
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Within the larger activity of data integration, the act of matching
entities is not to be confused with the act of schema reconciliation.
Schema reconciliation refers to the act of matching up columns or
views in different data sources, and using data or metadata to
make the match. For a trivial example, suppose a field in Table A

is called url but it is called home_page in Table B. To resolve
these schemas, the analyst could create a global schema or view
that encapsulates both underlying schemas. This task can be done
manually, or can be automated through various machine learning
techniques [2,5,8]. Schema reconciliation and entity matching are
related, but not identical, tasks of data integration. Most often the
schema reconciliation will happen first, followed by the "merge"
task, and finally by the eventual "purge" of duplicate data.

2.1 Agree/Disagree and Frequency-Based

Matching
The simplest and oldest form of entity matching is the
agree/disagree method: take two data sets A and B and compare
them pairwise for matches based on one or more attributes. The
pairs will either agree or disagree on zero or more of the
attributes, and thus a weight for the match can be determined.

In trying to improve agree/disagree entity matching, [7] uses

frequencies of values to determine the probability of a match (see
[10] for another brief explanation of this work). Newcombe in
[10] asserts two premises: (a) that matches are easier and more
accurate when particular values in the fields are considered (as
opposed to only considering all pairwise matches between two
data sets on a common field), and (b) that two rare values are
more easily and accurately matched than two common values. The
example given in the Winkler paper is to compare the process of

matching the following: two records listing the name Zbigniew
Zabrinsky, two records listing the name James Smith, and any two
records with first and last names. The two records for Zbigniew
Zabrinsky are likely to be more easily and accurately matched
than James Smith due to the rarity of the field values. The author
also writes that, on a practical note, first and last name values
alone are usually not very good for performing matches of human
beings. He suggests first that other attributes such as address, date

of birth, etc. should be considered in order to reduce false
positives, and also that more sophisticated techniques for string
comparison should be implemented.

2.2 Disjoint Sets
In [5], the authors consider the problem of how to match 'person'
records using disjoint attributes and a 'typical person' profile. For
instance, the example given in the paper is that the two records
{Mike Smith, age 9} and {Mike Smith, salary $200,000} are not
likely to be the same person based on a profile indicating that a
typical person with an annual salary of $200k is older than 9
years. The authors compare their system to a traditional

agree/disagree system of matching, and show that disjoint
attributes can be effective if paired with shared attributes.

3. ENTITY MATCHING METHODS FOR

FLOSS DATA
This portion of the paper describes the way each of these entity
matching methods can be applied to integrate disparate sets of
projects aggregated in the FLOSSmole collaboratory [6].
FLOSSmole is a research collaboratory for open source data. The
project contains raw data and analyses from six of the available
source code forges, and contains data from as far back as 2003.

The FLOSSmole data is collected in two ways: through donations
either given by people who run the forges or by researchers, and
through automatic spidering of the code forge web sites. After the
data is donated or collected, it is cleaned and aggregated. Finally
the data is provided in various raw and summary formats for use
by the general public under an open source license.

By way of introduction to the FLOSSmole data, Table 1 shows a

partial list of the project attributes available for each of the
repositories/forges in FLOSSmole at the time of this writing.
These project attributes are the most likely candidates for the job
of matching projects. (There are dozens of other attributes about
each project in FLOSSmole, such as registration date or project
status or number of downloads, but these are not likely to be
helpful in matching projects across repositories.)

Table 1. Project metadata: relevant attributes for matching

projects, (FLOSSmole, Dec, 2006)

Forge

Sourceforge, Freshmeat, Rubyforge,

Objectweb, Free Software Fndn.

Attribute

SF FM RF OW FSF

Short Name
(unixname)

X X X X X

Long Name X X X X X

Description X X X X X

URL X X X X X

License Type(s) X X X X X

Programming
Language(s)

X X X X X

Operating System(s) X X X X

Topic(s) X X X X

Intended Audience(s) X X X X

User Interface(s) X X X

Environment(s) X X

Developer(s) X X X X X

Most of these attributes shown in Table 1 are self-explanatory.
However, some confusion can arise when differentiating between
the short name and the long name for a project. The short name is
usually an internal-to-the-repository name that is given to the
project at the time of its creation. Some repositories use this as a
sort of primary key for the project in its database. The long name
of a project is the more descriptive name for a project. It can

change over time, it can include spaces and special formatting
characters, and it typically more descriptive than the short name.
Values for all of the attributes shown in the list in Table 1 are
chosen by the project administrators, and except for short name
and long name, they can all be NULL. License type, operating
system, topic, audience, interface, and environment can have
multiple values.

The next three sections describe a few of the obvious choices for
attributes from this list that can be used to establish matches
between projects. One choice from Table 1 that may initially look
promising is "List of Developers". Since this attribute is actually a

list of developers who work on each project, what better way to
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differentiate or match two projects? (If the list of developers is the
same for the two projects, then the two are a match.) The problem
with this is that developers are entities themselves, and matching
developers between repositories requires an entirely separate list
of attributes (developer name, developer email, developer skills,

role on project, etc). In addition, developer information is often
intentionally obfuscated by the developer themselves, and in some
cases by the forge maintainers. Finally, as the authors in [9]
described, there could be significant privacy implications to using
developer data without the express consent of the developers
themselves.

Section 5 discusses broadening project entity matching to include
developers, but the remainder of this paper will exclude
developers as entities and will retain the focus on project
matching only.

3.1 Matching by URLs

Matching projects by URL has two possible: projects listed on
different forges might both display the same external URL, or
projects on one forge might actually list the project site on a
competing forge as the home page of record. The diagram shown
in Figure 1 depicts each forge/directory in FLOSSmole and how
many of its projects list another forge as the actual hosting home
page. For example, in the diagram, the topmost arrow shows 11
projects on the FSF that actually have Rubyforge listed as the

home page. The arrow notation is used to show a direction of the
relationship (e.g. 10,044 Freshmeat projects show a home page on
Sourceforge, but only 4 Sourceforge projects list a Freshmeat
home page). Pairs of forges with no URLs in common are not
shown. (No Rubyforge projects list ObjectWeb URLs, and vice
versa. Also, as is befitting its status as a directory and not a
repository, the FSF directory is not listed as the home page of any
projects from the other repositories, so these empty relationships

are not shown in the diagram.)

Figure 1: Number of projects at each repository that list a

home page at another repository

3.2 Matching by Project Names
Figure 2 shows the number of short project names shared in
common between each pair of projects. For instance, starfish is a
project listed on both Sourceforge and Rubyforge. On Rubyforge,
it is described as a "tool to make programming ridiculously easy",
but on Sourceforge the starfish project is described as a password
management application. There are 470 projects with shared

names on Rubyforge and Sourceforge. A similar problem exists

between the project names on Sourceforge and ObjectWeb. For
example, the project called octopus exists on both these forges
and appears to be a completely different application: on
Sourceforge this is an Eclipse plug-in, but on ObjectWeb octopus

is an ETL data warehousing tool. Of the 125 applications (total)

listed on ObjectWeb, 41 have names that are shared with a
Sourceforge project. The Sourceforge project may (as in the case
of lemonldap) or may not (as in the case of octopus) be the same
project. On Freshmeat, there also is a project called octopus, but
this one is a financial trading application.

Most forges require projects to have a unique name (sometimes
called the "unixname") within that forge. For example, once a
project called starfish has been added to Sourceforge, another one

cannot be added with the same short unixname. However,
multiple projects can have the same "display name"; Sourceforge
projects starfish and xstarfish both have the display name of
"starfish". On Sourceforge, 44,112 (39%) of projects have
unixnames that are different from their display names (December
2006 FLOSSmole data). Note that the FSF directory has only a
requirement for case-sensitive uniqueness in project names. The
FSF lists project pages for both ANT (telephony application) and

ant (build tool). There are 54 such ambiguously named projects
listed on FSF.

Figure 2: Number of projects at each repository that share an

identical short project name

3.3 Matching by Other Attributes
It may be possible to determine the accuracy of each matched pair
further by attempting to match the project owner or developer
names, emails, or usernames as in [9]. Or, it may be possible to
find a matched pair through the textual description of the project,

or through the project license type, the programming language(s),
operating system(s), or other metadata about the project. Each of
these possible match fields requires that the project administrator
has accurately filled in the metadata for his/her project. If the
administrator never bothered to fill in the programming language
for the project on one or both of the sites where the project is
listed, then it will not be possible to disambiguate by finding a
match on this item.

Table 2 summarizes a few of the most common attribute statistics
for Sourceforge projects. It is also interesting to discover that of
those 74% of projects that list a license type, over half use the
Gnu General Public License (GPL).
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Table 2: Numbers of Sourceforge projects with and without

certain attribute data, (FLOSSmole, Dec, 2006)

Project Attribute Projects listing at
least one

Projects listing
none

Programming
Language

82,969 (73%) 29,946 (27%)

License Type 84,102 (74%) 28,813 (26%)

Operating System 78,334 (69%) 34,581 (31%)

3.4 Advanced Methods
In our attempt to match FLOSSmole projects by common URLs,
names, or any other combination of attributes, we are still
performing basic agree/disagree entity matching. Our brief review
of the database literature on entity matching indicates that these
methods do work for some cases, but can be optimized and
improved. This section discusses the improvements we added, and
Section 4 will explain the results of our application.

3.4.1 Frequency-Based Matching and String Metrics
The first improvement made to the agree/disagree entity matching

is to consider how to apply a form of frequency matching on the
name field. Recall that [10] explains that rare names (Zbigniew
Zabrinsky) are more easily matched than common names (James
Smith). "Rare" and "common" are determined by an already-
existing set of names and their general frequency rankings in the
population. In the case of FLOSS projects, there is no such
ranking for software project names, but a corollary might be that
projects with dictionary words for names (e.g. the octopus and

starfish examples) are more likely to be non-matches than projects
with unusual, non-dictionary names (e.g. sqlite-ruby or
lemonldap). Because there is also a difference between the unique
unixname and the non-unique display name for each project, we
ask: which of these fields should be used to consider the
frequency match? In Section 4, we answer with "both", and we
experiment with scoring these matches differently.

Another improvement we considered was to look at string metrics

for determining whether two projects were matches. Regular
expressions can be used to compare strings in a simple fashion,
while Hamming distances and Levenshtein distances [1] are more
complex algorithms used to compare the similiarity of two strings.
With Levenshtein distances, the higher the calculated distance
value, the less similar the strings are. Distance is calculated based
on the number of deleted, inserted, or swapped characters it takes
to turn one string into another.

3.4.2 Disjoint Sets
The next improvement we considered was to use the notion of a
disjoint set, as in 2.2. by listing which attribute values would
likely never coexist. Initial ideas included the following possible

disjoint sets: {op_sys=linux, prog_lang=asp}, {date_regist<2001,
prog_lang=C#}. Not only are these rules fairly weak insofar as
there are plenty of examples of projects that would violate them
for various reasons, but unlike the age/salary information in the
example case in 2.2, the number of records in FLOSSmole which
match these disjoint sets is likely to be quite small. We conclude
that in the FLOSS domain, it is more likely to be the case that
matches can be found through simpler methods than disjoint sets.

This is due to three factors: the low number of valid disjoint set
rules we would be able to construct, the difficulty of applying

disjoint set rules to our data when so many of the pairs are
missing metadata on which these disjoint sets would be based, and
the low number of duplicates that would not be identified by
other, simpler methods.

Table 3: Trial One Sample Scoring Table

Modifier

Home Page URLs match +3.00

Short names match +2.00

--if yes, is short name in the dictionary -1.00

--if not, does Partial Name match? +0.50

-- if partial name matches, is partial name in
dictionary?

-0.25

Textual descriptions tokens match, per token
match

+0.10

Long names match +0.50

Programming language matches, per token
match

+0.50

License matches, per token match +0.50

Other project metadata matches, per token
match

+0.50

4. APPLICATION
To apply entity matching methods to project data in FLOSSmole,
we assumed a set of heuristics and associated weights for
calculating whether the items in a pair are a match (Table 3). In
Trial One, match modifiers were initially based on an intuitive
sense of which matching criteria were important. In Trials Two,
Three, and Four, we attempted various alternative scoring
systems, and there is a description of these in Section 4.1.2. We
are keenly aware of the limitations of this method; in the future
(see also Section 5), we may wish to expand our methodology a

bit by using statistical or information theoretical models for a
more effective scoring system.

Table 4: Sample scores for matching project pairs, Trial One

Pair
ID

Project Name Src.A Project Name Src.B Score

1 phpmyadmin SF 8001

(phpmyadmin)

FM 6.9

2 octopus SF octopus OW 1.0

3 octopus-ge SF octopus OW 2.6

4 16120
(octopus)

FM octopus OW 1.5

5 13902 (ant) FM 152 (ant) FSF 4.1

6 sqlite-ruby SF sqlite-ruby RF 6.9

4.1.1 Example
A short example of a table designed to hold the FLOSSmole pairs
with their matching scores across multiple repositories might look
like Table 4. Higher scores mean the pair is more likely to be a
match, but it will be up to an individual analyst to decide where to
"draw the line" for what score indicates a match. The highest
score is around 8; the lowest score is 0. As shown in the table, the
highest score could be higher if more attributes were added.

Attributes included are programming language, operating system,
and license because these are the fields whose values were most
available and easiest to standardize over a variety of repositories.
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(Table 1 showed that attributes like "environment", "interface", or
"topic" are harder to standardize.)

Pair 1 shows Sourceforge project phpmyadmin matching an
identically-named Freshmeat project. These projects share a short
name (with low frequency count when compared to a dictionary

word: +2), long name (+.5), URL (+3), and license type (+.5).
Several key tokens are the same in each description (+.9: The
matching tokens are 'MySQL', 'PHP', 'Web', 'administration,'
'alter', 'drop', 'database', 'delete', 'SQL').

Pair 2 shows Sourceforge project octopus with ObjectWeb project
octopus. The short project names match (+2), but urls are
different. The long project names are also different ('Octopus' and
'Enhydra Octopus'). Additionally, because the Sourceforge project

octopus does not list any project metadata, it can't be matched
very well with the ObjectWeb project of the same name using
these additional attributes. Finally, these two entities share the
dictionary word name 'octopus' (-1).

Pair 3 shows the project octopus-ge on Sourceforge and project
octopus on ObjectWeb. These projects share a beginning partial
string match, octopus* (+1), but that string is a dictionary word (-
.5). They share one programming languages (+.5), a license type

(+.5), and one operating system (+.5). The textual description of
the projects increases the score, since both use the token strings
'Enhydra Octopus', 'extraction', 'transformation', 'load*', 'ETL', and
'XML' (+.6). However, a closer read of the textual description
field by a human being reveals that the Sourceforge project is
actually a graphical editor for the ObjectWeb project. They are
related projects, but not the same project. The combination of no
URL score and low scores for the textual matches has (accurately)

kept this project from a high score.

Pair 4 shows the attempted match between that same octopus

project at ObjectWeb but now paired with the octopus project at
Freshmeat. The projects have the same short name (+2 for
similarity, -1 for dictionary), but different URLs, totally different
textual descriptions, and share only the license type in common
(GPL, +.5). Indeed, manual checking of this result shows that
these two projects are not related.

Pair 5 shows the Freshmeat project ant matching with the Free

Software Foundation project ant as follows: short name (+2), url
(+3). However, the display names for this project are different
('ant' on FSF and 'apache ant' on FM). In addition, the common
dictionary name 'ant' lowers the score somewhat (-1). Note that
while there is only one significant matching token in the textual
description (the word "Java", +.1), the entire first sentence of the
two projects is identical. This indicates a strong need to refactor
the scoring algorithm for textual descriptions.

Pair 6 shows that SQLite-ruby projects listed nearly identical
information on both Sourceforge and Rubyforge. They share: the
project home page (+3), short name (+2), the display name (+.5),
one programming language (+.5), the operating system (+.5), and
4 significant text tokens (+.4), yielding a total score of 6.9.

4.1.2 Comparison and Evaluation
The problems with the Trial One scoring system seem obvious:
first, calculating probably-insignificant token matching on
completely unrelated projects takes up an enormous amount of

processing time, and second, there is no "memory" for matching
likelihoods based on the calculations that have already taken
place. Trials Two, Three, and Four attempt to solve some of these

problems. Tables 5 and 6 show the scoring systems used for these
additional trials.

Table 5: Trial Two Sample Scoring Table

Modifier

Home Page URLs match +3.00

Short names match +2.00

--if yes, is short name in the dictionary? -1.00

Long names match +0.50

Programming language matches, per token
match, but only if score > 0

+0.50

License matches, per token match, but only if
score > 0

+0.50

In Trial Two, we made two changes. First, we simply reduced the
number of small-scoring attributes, while leaving the most
decisive attributes in the scoring system. This was decidedly faster
for processing, and eliminated some of the irrelevant "false
positives" generated by cumulative low scores. We also
introduced the notion of phased scoring by major and minor

attributes. The remaining token match attributes (programming
languages and licenses) were only scored if the project pair
already had some sort of positive correlation from one of the other
three major attributes (URL, short name, or long name). This
seemed to solve the problem of trivial token matching, and solved
some of the problems of processing time.

In Trial Three, we decided to explore solutions for the speed-of-
processing issues caused by our massive Cartesian product
generation (all projects in one forge times all projects in another
forge). To do this, we considered what we know about how
disjoint sets work (Section 2.2 and 3.4.2). We decided to invert

our program logic a bit: instead of building up a huge list of
projects and comparing all projects in forge A against all projects
in forge B, we instead attempt to identify likely sets immediately
(or eliminate disjoint sets immediately) and thus we can discount

projects that are unlikely to be related. This will serve to reduce
the size of the sets being compared. For example, we built a list of
projects that used Java on forge A and another list of projects that
use Java on forge B, then only compare these projects along the
other attributes. This method didn't actually reduce the number of

comparisons, since every project had one or more programming
languages, but it did serve to reduce the size of the in-memory
hashes being built.

In Trial Four we wanted to improve the accuracy of our partial
name matches. We decided to use Levenshtein distances to
measure the similarity between two tokens, such as between two
short names. (In Trial One we had used simple regular expression-
based partial string matches, so for example, starfish and xstarfish

would match but andychat and andyschat45 would not match.)
Levenshtein distances are calculated for each string pair based on
the smallest number of characters that must be deleted, replaced,

or inserted to make one string into another string. In our case, we
choose to set an arbitrary threshold for similarity at 25%. The
Levenshtein distance between andychat and andyschat45 is 3 (or
25% of the longest string), which is (barely) enough to warrant
token matching in programming languages and license types
according to our threshold of 25% or less.
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Table 6: Trial Four Sample Scoring Table

Modifier

Top of chart same as for Trial Two: URLs, Names…

If score = 0, measure Levenshtein distance
between names, giving 0.5 if <25% difference

+0.25

Programming language matches, per token
match, but only if score > 0

+0.50

License matches, per token match, but only if
score > 0

+0.50

5. LIMITATIONS AND FUTURE WORK
Based on the experiments described in Section 4, entity matching
is an interesting exercise, but is certainly problematic. One of the
most obvious problems is that the scoring modifiers given in
Tables 3, 5, and 6 are completely arbitrary and based on trial and
error and an intuitive sense of the data. In the case of Trial One,
there is a distinct possibility that a pair of projects could achieve a

score of 4.0 by having a partial non-dictionary name match (+.5),
five attributes in common (+2.5), and a handful of well-chosen
tokens in the textual description (+.5), and yet these projects could
be completely unrelated. Tweaking the scores to reduce false
positives and false negatives in this way is tedious and inefficient.

In the subsequent trials, we attempted to reduce processing time
and false positives/false negatives, but there are many other routes
we could have taken to accomplish this. For instance, in the case

of token matching, we look at the case of ant, for which there
were very few singularly meaningful tokens in the textual
descriptions, but the description as a whole matched perfectly.
The use of dictionary word definitions for frequency matching
may need to be refactored also. The ant match lost points because
of this. We also recognize that open source developers and
projects are a decidedly global population, and more languages
than just English are used, so perhaps English dictionary matching

is an arbitrary solution. Would other dictionaries be effective?
Should non-dictionary strings that are also common in software
development ("lib", "db", "php") be added to the dictionary?

Next, what about multi-way matches? We have given little
attention to the problem (as presented in [6]) of how to merge
multiple confidence scores after they've been created. Consider a
project such as sqlite-ruby that appears on Sourceforge,
Rubyforge, Freshmeat, and the FSF directory. What is the

appropriate way to integrate its multiple scores? Sqlite-ruby is
likely to have high scores on all 6 pair combinations, so a simple
average might work, but what about a project like ant whose
scores may vary more?

Section 3 mentioned the possibility of matching projects based on
the lists of developers on each project. Before doing this, it would
be necessary to use similar entity matching methods to actually
match developer entities as well. As is described in [9], matching
developers also leads to a few additional complexities: "real"

emails are most often not available for public lists of developers
on code repositories, name matching with developers could be
even more complex than matching on names for projects because
of similarities in names and spellings, and of course, developer
privacy is always a concern when integrating personal data points.

One final recommendation for future work is to remember some
of the work being done on sites like Krugle, Swik, and the
Galactic Project Registry to standardize the notion of a project
name. Krugle is a source code search engine that actually uses
some FLOSSmole data to populate its list of projects. Swik is a

wiki of information about individual open source projects; it gets
some of its initial information from FLOSSmole as well. The
Galactic Project Registry is attempting to put together a plan for
being "the One True Known Up-To-Date Source" for project
names and DOAP (description of a project) information on each
project. Each of these projects probably would benefit from this
work in entity matching and duplicate identification across
repositories, and perhaps they can contribute to the conversation

about the best way to achieve this goal.
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