The following BASIC code generates 10,000 values of a random variable X and calculates the sample average, the sample variance, and the fraction of sample values that lie in the interval ($a, b]$. Adapt this simulation program to:

1. Calculate the values needed to fill in the table for $E(X), V(X)$ and $P(a<X \leq b)$, where $a=0.9$ and $b=1.8$. Show all theoretical calculations.
2. For each case, on a separate page, draw the graph of the theoretical distribution function $F_{x}(t)$, fill in the table describing $F_{x}(t)$, and plot the simulation values given in the table on the same graph as the theoretical distribution function.
```
RANDOMIZE
100 INPUT a,b
200 FOR i = 1 TO 10000
generate X
300 S1 = S1 + X
400 S2 = S2 + X^2
500 IF (X > a) AND (X <= b) THEN c = c + 1
600 NEXT i
700 PRINT S1/10000, S2/10000 -(S1/10000)^2, c/10000
```

$E(X)$							
Case	X	theory	simulation	theory	simulation	theory	simulation
1	$X \sim U(0,1)$						
2	$X \sim \exp (2)$						
3	$P(X=1 / 2)=1$						
4	$P(X=0.3)=0.8$ $P(X=1.3)=0.2$						

Distribution Function $F_{x}(t)$

	1		2		3		4		
t	theory	simulation	theory	simulation	theory	simulation	theory	simulation	
-0.25									
0.00									
0.25									
0.50									
0.75									
1.00									
1.25									
1.50									

