STA 4821

The following BASIC code generates 10,000 values of a random variable X and calculates the sample average, the sample variance, and the fraction of sample values that lie in the interval (a, b]. Adapt this simulation program (you may use BASIC or any other language) to:

- 1. Calculate the values needed to fill in the table for E(X), V(X) and $P(a < X \le b)$, where *a* and *b* are specified in Homework 0. Show all theoretical calculations.
- 2. For each case, on a separate page, draw the graph of the theoretical distribution function $F_x(t)$, fill in the table describing $F_x(t)$, and plot the simulation values given in the table on the same graph as the theoretical distribution function.

```
100 FOR i = 1 TO 10000
generate X
200 S1 = S1 + X
300 S2 = S2 + X^2
400 IF (X > a) AND (X <= b) THEN c = c + 1
500 NEXT i
600 PRINT S1/10000, S2/10000 -(S1/10000)^2, c/10000</pre>
```

		E(X)		V(X)		$P(a < X \le b)$	
Case	X	theory	simulation	theory	simulation	theory	simulation
1	$X \sim U(0,1)$						
2	$f_x(t) = \begin{cases} 0 & (t < 0) \\ 2e^{-2t} & (t \ge 0) \end{cases}$						
3	P(X=1/2) = 1						
4	P(X = 0.4) = 0.8 P(X = 0.9) = 0.2						

Distribution Function $F_x(t)$

	1		2		3		4	
t	theory	simulation	theory	simulation	theory	simulation	theory	simulation
-0.25								
0.00								
0.25								
0.50								
0.75								
1.00								
1.25								
1.50								