The following BASIC code generates 10,000 values of a random variable X and calculates the sample average, the sample variance, and the fraction of sample values that lie in the interval (a, b]. Adapt this simulation program (you may use BASIC or any other language) to:

1. Calculate the values needed to fill in the table for $E(X), V(X)$ and $P(a<X \leq b)$, where a and b are specified in Homework 0. Show all theoretical calculations.
2. For each case, on a separate page, draw the graph of the theoretical distribution function $F_{x}(t)$, fill in the table describing $F_{x}(t)$, and plot the simulation values given in the table on the same graph as the theoretical distribution function.
```
100 FOR i = 1 TO 10000
generate X
200 S1 = S1 + X
300 S2 = S2 + X^2
4 0 0 ~ I F ~ ( X ~ > ~ a ) ~ A N D ~ ( X ~ < = ~ b ) ~ T H E N ~ c ~ = ~ c ~ + ~ 1 ~
500 NEXT i
600 PRINT S1/10000, S2/10000 -(S1/10000)^2, c/10000
```

		$E(X)$		$V(X)$		$P(a<X \leq b)$	
Case	X	theory	simulation	theory	simulation	theory	simulation
1	$X \sim U(0,1)$						
2	$f_{x}(t)= \begin{cases}0 & (t<0) \\ 2 e^{-2 t} & (t \geq 0)\end{cases}$						
3	$P(X=1 / 2)=1$						
4	$\begin{aligned} & P(X=0.4)=0.8 \\ & P(X=0.9)=0.2 \\ & \hline \end{aligned}$						

Distribution Function $F_{x}(t)$

	1		2		3		4	
t	theory	simulation	theory	simulation	theory	simulation	theory	simulation
-0.25								
0.00								
0.25								
0.50								
0.75								
1.00								
1.25								
1.50								

