The following BASIC code generates 10,000 values of a random variable Y, which is the sum $X 1+X 2$. In each case, assume that $X 1$ and $X 2$ are independent realizations of the same random variable X. The program calculates the sample average, the sample variance, and the fraction of sample values Y that lie in the interval ($a, b]$.
Adapt this simulation program (you may use BASIC or any other language) to calculate the values required to fill in the table for $E(Y), V(Y)$, and $P(a<Y \leq b)$, where a and b are specified in Homework 0. In each case, show all theoretical calculations for $E(Y), V(Y)$, and $P(a<Y \leq b)$.

```
100 FOR I = 1 TO 10000
generate X1 and X2
150 Y = X1 + X2
200 S1 = S1 + Y
300 S2 = S2 + Y^2
4 0 0 ~ I F ~ ( Y ~ > ~ a ) ~ A N D ~ ( Y ~ < = ~ b ) ~ T H E N ~ C ~ = ~ C ~ + ~ 1 ~
500 NEXT I
600 PRINT S1/10000, S2/10000-(S1/10000)^2, C/10000
```

		$E(Y)$		$V(Y)$		$P(a<Y \leq b)$	
Case	X	theory	simulation	theory	simulation	theory	simulation
1	$X \sim U(0,1)$						
2	$f_{x}(t)= \begin{cases}0 & (t<0) \\ 2 e^{-2 t} & (t \geq 0)\end{cases}$						
3	$f_{x}(t)= \begin{cases}0 & (t<0) \\ 2 t & (0 \leq t \leq 1) \\ 0 & (t>1)\end{cases}$						
4	$\begin{aligned} & P(X=0.4)=0.8 \\ & P(X=0.9)=0.2 \end{aligned}$						

