STA 4821

The following BASIC code simulates the single-server queue with FIFO service. It generates the interarrival times and the service times for 100,000 customers; and it produces estimates of the server utilization, the fraction of customers who must wait in the queue, and the average waiting time.

```
100 FOR i = 1 TO 100000

110 IA = (generate interarrival time)

120 T = T + IA

130 W = W + X - IA

140 IF W < 0 THEN W = 0

150 IF W > 0 THEN c = c + 1

160 SW = SW + W

170 X = (generate service time)

180 SX = SX + X

190 NEXT i

200 PRINT SX/T, c/100000, SW/100000
```

Adapt the program and run it (using the language of your choice) for four different service-time distributions:

(1) exponential service times, with mean service time *E*(*X*) = 0.5
 (2) constant service time, *X* = 0.5
 (3) *X* ~ *U*(0,1)
 (4) *P*(*X*=1/3) = 0.9, *P*(*X*=2)= 0.1

Assume that the interarrival times are exponentially distributed with mean value 0.625 (that is, Poisson arrivals with rate $\lambda = 1.6$). Fill in the table. For case (1), draw the graph of the theoretical distribution function of waiting times, $F_w(t)$; and, on the same axes plot the simulation estimates at the values of *t* as *t* goes from -1 to 12 in increments of 1, and fill in the corresponding table.

<u>Theory for the M/G/1 queue</u>: If λ is the arrival rate and *X* is the service time, then the *server utilization* is given by

$$\rho = \begin{cases} \lambda E(X) & \text{if } \lambda E(X) < 1\\ 1 & \text{if } \lambda E(X) \ge 1 \end{cases}$$

The probability that a customer must wait in the queue is

$$P(W > 0) = \rho,$$

and the mean waiting time is given by the famous Pollaczek-Khintchine formula,

$$E(W) = \frac{\rho}{1-\rho} \cdot \frac{E(X)}{2} \cdot \left(1 + \frac{V(X)}{E^2(X)}\right).$$

In addition, if the service times are exponentially distributed, and the service is FIFO, then

$$F_{w}(t) = \begin{cases} 0 & (t < 0) \\ 1 - \rho e^{-(1-\rho)\frac{t}{E(X)}} & (t \ge 0) \end{cases}$$

There is no simple formula for $F_w(t)$ when the service times are not exponentially distributed. (Therefore, simulation is an important tool for the analysis of queues whose service times have any arbitrary specified distribution of service times; and the theoretical results for the special case of exponential service times are important because they can be used to check the logic and accuracy of the simulation.)

	ρ		P(W > 0)		P(W > 0.5)		E(W)	
X	theory	simulation	theory	simulation	theory	simulation	theory	simulation
1								
2					NA			
3					NA			
4					NA			

	$F_w(t)$					
t	theory	simulation				
-1						
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						