The following BASIC code simulates the single-server queue with FIFO service. It generates the interarrival times and the service times for 100,000 customers; and it produces estimates of the server utilization, the fraction of customers who must wait in the queue, and the average waiting time.

```
100 FOR i = 1 TO 100000
110 IA = (generate interarrival time)
120 T = T + IA
130 W = W + X - IA
140 IF W < 0 THEN W = 0
150 IF W > 0 THEN c = c + 1
160 SW = SW + W
1 7 0 ~ X ~ = ~ ( g e n e r a t e ~ s e r v i c e ~ t i m e ) ~
180 SX = SX + X
190 NEXT i
200 PRINT SX/T, C/100000, SW/100000
```

Adapt the program and run it (using the language of your choice) for four different service-time distributions:
(1) exponential service times, with mean service time $E(X)=0.5$
(2) constant service time, $X=0.5$
(3) $X \sim U(0,1)$
(4) $P(X=1 / 3)=0.9, P(X=2)=0.1$

Assume that the interarrival times are exponentially distributed with mean value 0.625 (that is, Poisson arrivals with rate $\lambda=1.6$). Fill in the table. For case (1), draw the graph of the theoretical distribution function of waiting times, $F_{w}(t)$; and, on the same axes plot the simulation estimates at the values of t as t goes from -1 to 12 in increments of 1 , and fill in the corresponding table.

Theory for the $\mathrm{M} / \mathrm{G} / 1$ queue: If λ is the arrival rate and X is the service time, then the server utilization is given by

$$
\rho=\left\{\begin{array}{cll}
\lambda E(X) & \text { if } & \lambda E(X)<1 \\
1 & \text { if } & \lambda E(X) \geq 1
\end{array}\right.
$$

The probability that a customer must wait in the queue is

$$
P(W>0)=\rho,
$$

and the mean waiting time is given by the famous Pollaczek-Khintchine formula,

$$
E(W)=\frac{\rho}{1-\rho} \cdot \frac{E(X)}{2} \cdot\left(1+\frac{V(X)}{E^{2}(X)}\right)
$$

In addition, if the service times are exponentially distributed, and the service is FIFO, then

$$
F_{w}(t)=\left\{\begin{array}{cc}
0 & (t<0) \\
1-\rho e^{-(1-\rho) \frac{t}{E(X)}} & (t \geq 0)
\end{array}\right.
$$

There is no simple formula for $F_{w}(t)$ when the service times are not exponentially distributed. (Therefore, simulation is an important tool for the analysis of queues whose service times have any arbitrary specified distribution of service times; and the theoretical results for the special case of exponential service times are important because they can be used to check the logic and accuracy of the simulation.)

ρ			$P(W>0)$					
X	theory	simulation	theory	simulation	theory	simulation	theory	simulation
1								
2					NA			
3						NA		
4								

$F_{w}(t)$		
t	theory	simulation
-1		
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

