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Queues Served in Cyeclic Order:
Waiting Times

By R. B. COOPER
(Manuseript received December 2, 1969) -

This paper extends the resulls of a previous paper in which two models
of a system of queues served in cyclic order were studied. One model is an
exhaustive service model, in which the server waits on all customers in
a queue before proceeding to the next queue in cyclic order. The other is a
gating model, in which a gate closes behind the waiting units when the
server arrives, and the server waits on only those customers in front of
the gate, deferring service of later arrivals until the nezxt cycle.

In the present paper, the Laplace—Stieltjes transforms of the order-of-
arrival waiting time distribution functions and, for the exhaustive service
model, the mean waiting time for a unit arriving at a queue, are obtained.

I. INTRODUCTION

In a recent paper' we studied two models of a system of queues
served in cyclic order:

In each model, the 7th queue is characterized by general service time
distribution funetion H;(-) and Poisson input with parameter A; . In
the exhaustive service model, the server continues to serve a particular
queue until for the first time there are no units in service or waiting in
that queue; at this time the server advances to and immediately starts
service on the next nonempty queue in the cyclic order. The gating
model differs from the exhaustive service model in that when the server
advances to a nonempty queue, a gate closes behind the waiting units.
Only those units waiting in front of the gate are served during this
cycle, with the service of subsequent arrivals deferred to the next cycle.

In Ref. 1 we found, for the exhaustive service model, expressions for
the mean number of units in a queue at the instant it starts service, the
mean cycle time, and the Laplace—Stieltjes transform of the cycle time
distribution function.

In the present paper, we extend the analysis to obtain, for each
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model, the Laplace-Stieltjes transform of the order-of-arrival waiting
time distribution function and, for the exhaustive service model, the
mean waiting time for a unit arriving at the sth queue.

In Ref. 1 we defined a switch point as a time epoch at which the
server finishes serving a queue; and we defined P,;(n, , --- , ny) as the
joint probability that at a switch point the server has just completed a
visit at queue 7 (¢ = 0, 1, --- , N) and », units are waiting in queue
% -+ 1, n, units in queue ¢ 4- 2, --- , and %y units in queue ¢ + N.

The central results of Re’. 1 were an iterative algorithm for the
calculation of the probability generating functions
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and, for the exhaustive service model, an expression for the mean
number 7; of units waiting in queue 7 + 1 when the server completes a
visit at queue <. In particular, it was shown for the exhaustive service
model that these generating functions satisfy the functional equations
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and where \; is the rate of arrivals of units at queue 2, p; is the traffic
intensity at queue 7,
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and 8;(-) is the Laplace—Stieltjes transform of the distribution function
of the length of the busy period at queue 7. Equations (1), (2), and (3)
appear in Ref. 1 as equations (3), (5), and (34), respectively.
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The distribution generated by g.(z, , «- - , 2x) is defined with respect
to a Markov chain imbedded at the switch points. An analysis by
Takfcs® of the exhaustive service model for the special case of two
queues is based on a Markov chain imbedded at the set of service com-
pletion points. Clearly, the set of switch points is a proper subset of
the set of service completion points. Our use of switch points instead of
service completion points enabled us in Ref. 1 to analyze the multiqueue
model with about the same degree of mathematical complexity as
Takécs required for the analysis of the 2-queue model. On the other
hand, one would expect that our use of a chain imbedded in a “smaller’’
set of points would result in a corresponding loss of useful information.

Takécs’ analysis yielded waiting time results for the 2-queue model.
At the time Ref. 1 was written, it was not apparent to us that our
method of analysis provided enough information to enable us to obtain
corresponding waiting time results for the multiqueue model. Accord-
ingly, we concentrated on the cycle time, a quantity that seemingly
gives the same kind of information as the waiting time. Unfortunately,
we did not have complete freedom in choosing a precise definition of the
quantity we would call cyele time. The mathematical formulation of
the model dictated that the cycle time for queue ¢ be defined, roughly
speaking, as the length of time between two successive instants at which
the server completes service at queue #, without regard to whether or
not the server is continuously busy throughout this time interval. This
definition introduces, among others, the following difficulty in the inter-
pretation of realized values of the cycle time: A long cycle time could
have resulted either from heavy congestion or from no congestion.

No such ambiguities exist with respect to interpretation of the waiting
time, which is simply the elapsed time from the arrival instant of a
unit to the instant at which service on this unit begins. Therefore, we
would like to obtain waiting time results. Furthermore, we would like
to obtain these results, if possible, without directly extending the pre-
vious analysis to include the entire set of service completion points.

In the present paper, we obtain the desired waiting time results
without recourse to a complicated reformulation of the original analysis
based on the complete set of service completion points. Rather, to obtain
the waiting times at queue 7, we use the generating function
gi-1(xy , + -+, 2x), calculated in Ref. 1, to append to the original set of
switch points only those service completion points that correspond to
departures from queue 7; and this is sufficient for our waiting time
calculations.

The essence of the method is to calculate the probability generating
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function of the number of units left in queue ¢ by an arbitrary de-
parture from queue 7, using only the (known) probability generating
function of the number of units waiting in queue ¢ when the server
arrives. The Laplace-Stieltjes transform of the order-of-arrival waiting
time distribution funection for units at queue 7 is then easily obtained
by a standard argument.

The preceding discussion refers mainly to the exhaustive service
model, which was discussed in detail in Ref. 1. The gating model was
shown to be characterized by equations that are essentially the same
as those of the exhaustive service model, and was therefore not devel-
oped in detail. In the present paper, the waiting times for the gating
model will also be discussed.

II. THE M/G/1 QUEUE WITH SERVER VACATION TIMES

In preparation for calculation of the waiting times in the exhaustive

service model, we first consider the following generalization of the
M/G/1 queue:

As usual, the server serves the queue continuously as long as there
is at least one unit in the system (waiting or in service). When the
server finishes serving a unit and finds the system empty, however, it
goes away for a length of time called a vacation. At the end of the vaca-
tion the server returns to the queue, and begins to serve those units, if
any, that have arrived during the vacation. If the server finds the
system empty at the end of a vacation, it immediately takes another
vacation, and continues in this manner until it finds at least one waiting
unit upon return from a vacation.

Let Xi (k = 1,2, - - ) be the number of units left behind by the kth
departing unit. Then

n+1l

P{Xu =1} = 2 P{X, =v}P{Xs, = n | Xi =}

y=0
(k=1)2"";n=071:"')- (4)
Let P(j) be the probability that at the end of a vacation the server

finds § = 0 units waiting for service. If the arrival rate and the service
time distribution function are denoted by X and H(+), respectively, then
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and
n+1 LJ n+1-g
PXew =n|X =0} = 37 f<£(0) [ - . o7 e (=)
dHE).  (8)

The expression P(j)/[1 — P(0)] in equation (6) is the conditional prob-
ability that when the server starts serving the queue there are § units
waiting, given that at least one unit is waiting.
When the traffic intensity p is less than unity (p = M, where & is
the mean service time), there exists a unique distribution
m, = lim P{X; = n} n=0,1,-.-) )

k=0
that satisfies both the normalization equation
Sora=1 8
n=0

and the limiting set of equations obtained from equation (4),

Ta = 7"0':_2l 1 f(Q(O) ow (n .EI_)\E]_” _—’]')' €xp (_)‘E) dH(E)
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Define the probability generating functions

@) = E " (10)
and
Vo) = 3 PG )

Substitution of equation (9) into equation (10) yields, after some
manipulation,

@) — PO) _ } _

{ 1 = P(0) 1p(A — Az)
z — 9(\ — Az)

where 7(-) is the Laplace-Stieltjes transform of the service time distri-

bution function H(:). Observe that the expression [y(z) — PO)/[1 —

P(0)] is the probability generating function of the number of units
waiting when service commences.

flx) = o (12)
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The unknown probability =, is determined from equation (12) by the
normalization condition f(1) = 1. Application of I’'Hospital’s rule to
equation (12) yields

_1=PO
To = ‘l’/(l) (1 P)- (13)
Thus, the probability generating function f(-) of the number of units left
behind by an arbitrary departure, and the probability generating func-
tion ¥(-) of the number of units waiting at the end of a vacation are
related as follows:

@ — 1n0 — ) (L — p)
& =""00 0 v

We now apply a standard argument to obtain the Laplace-Stieltjes
transform w(+) of the order-of-arrival waiting time distribution function
from the generating function (14).

Let F(-) be the distribution function of an arbitrary unit’s sojourn
time, defined as the elapsed time between the unit’s arrival and de-
parture epochs, and denote by ¢(-) the Laplace-Stieltjes transform
of F(-). Since the sojourn time is the sum of the waiting time and the
service time, and since these latter times are independent, therefore

$(s) = w(s)n(s). (15)

When units are served in their arrival order, each departing unit
leaves behind it precisely those units that arrived during the departure’s
sojourn time. Further, these remaining units arrived according to a
Poisson process, independent of the sojourn time. Therefore, the prob-
ability =, that a departing unit leaves behind n other units is

(14)

m= [ S e (—np ar. (16)

Substitution of equation (16) into (10) gives the well known and funda-
mental relation

f@) = oA — A2). a7)

Equations (14), (15), and (17) together give the Laplace—Stieltjes
transform w(-) of the waiting time distribution function in terms of the
probability generating function y(-) of the number of units waiting
at the end of a vacation:

wls) = TX(T) [1 - ¢<x x s)] by lx:r et (18)
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Note that for the ordinary M /G/1 queue, in which the vacation ends
immediately whenever a unit arrives and finds the server idle, ¥(z) = z
and equation (18) reduces to the well known Pollaczek-~Khinchin
formula,

__sl—=p
w(s) = s = N F WG 19)
Finally, the mean wait for service W = —o'(0), obtained from

equation (18), is given by

5 )\7]”(0) lp”(].) )
W=31~p T oawQ

The first term on the right side of equation (20) is identical with the
mean waiting time in the ordinary M /G/1 queue, as would be obtained
directly from the Pollaczek—Khinchin formula (19). The second term
in equation (20) represents the component of the mean wait that arises
because of the variability in the number of units waiting when service
begins. Although service in arrival order was assumed in its derivation,
equation (20) is valid for any order of service that is independent of the
service times.

Note that the result (14) is true regardless of any relationship be-
tween the vacation lengths and the arrival process, whereas equations
(18) and (20) are valid only when the vacation lengths are determined
without regard to the arrival process. For example, if one were to
consider a mechanism such that service begins as soon as a fixed number
7 ( = 2) units are waiting, then equation (14) with ¢(z) = z' would
correctly give the probability generating function of the number of units

(20)

in the system just after a service completion epoch. On the other hand, G

X é% (20)
L vodid

) ca volsd

equations (18) and (20) would not apply, because (16), and therefore (bwewat L:)\L‘/)'

(17), would no longer be true. (For if (x) = 2, then the first departing
unit would always leave behind at least those ; — 1 other units that
were present when service commenced. Thus, for the first departing
unit, =, = 0 for n < j — 1, and this contradicts the assumption (16)
ifj = 2)

III. LAPLACE—STIELTJES TRANSFORM OF WAITING TIME DISTRIBUTION
FUNCTION FOR EXHAUSTIVE SERVICE MODEL

We now proceed to apply the results of Section II to the analysis of
waiting times in the exhaustive service model. In essence, the ‘“vaca-
tion time”’ of Section II is the length of time that the server spends idle

See £X.12,
_ZZl';l 0#

luuo. T

Quenessy Thory,
gttﬂld [d)
18
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or working on other queues before registering a switch point at queue
7 — 1 and beginning service on queue <.

For want of a better word, let us define as a supercycle the elapsed
time between the arrival epoch of a unit at any queue when the system
is completely empty, and the first instant at which the whole system
again becomes empty. Then units that arrive at queue % can be classified
into two exclusive and exhaustive categories:

(1) arrivals at queue ¢ that either initiate a supercycle or occur
during the 1-busy period generated by an arrival at queue 7 that
initiated a supercycle; or

(2) all other arrivals at queue 7.

Equivalently, units in category (1) are those arrivals at queue 7 whose
service begins prior to the occurrence of the first switch point of a
supercycle, whereas units in category (2) are arrivals at queue 7 whose
service times begin after the first switch point of a supercycle.
Consider now the waiting times of units that arrive at queue 7. Those
units in category (1) are served during a busy period originated by one
unit. Therefore, the Laplace-Stieltjes transform «’(-) of the order-
of-arrival waiting time distribution function for units at queue 7 that
belong to category (1) is given by the Pollaczek—Khinchin formula (19):

W) = S = p)
w9 = 8 — A+ Ninils) @)
where p; , \; , and 7,(+) are the corresponding quantities in equation (19)
defined now with respect to queue 7.

Units in category (2) are served during a busy period originated by
those units waiting in queue ¢ when the server leaves queue 7 — 1.
Let ¢.(-) be the probability generating function of the number of units
waiting in queue ¢ when the server leaves queue ¢ — 1; ¢;(-) is the
probability generating function of the number of units waiting for
service in queue ¢ when the server finishes a vacation, and is given by

= g-‘—l(x, 1’ ttt 1)- 354(0;0,.---,0)
ge-i(, 1, o0, =g (0g,...,0)

[Note that /(1) = f,_y = M;-1/9:-1 (1, 1, - - -, 1).] Thus, the Laplace—
Stieltjes transform !> (-) of the waiting time distribution function for
units in category (2) is given by equation (18):

0 = 35 [1 - w(® » s)] v D

¥i(z) (22)
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Let pi" be the proportion of all arrivals at queue ¢ that are in cate-
gory (1). The mean number of units that arrive at queue ¢ during an
interval of length ¢ is A\;. The probability that an arbitrary arrival at
queue 7 finds the whole system empty is 1 — p (p = po + -+ + pw)y
so that A;£(1 — p) is the mean number of arrivals at queue 7 that initiate
a supercycle during any elapsed time {. The mean number of units
served at queue ¢ during the 1-busy period generated by each such
arrival is (1 — p;)™", and hence the mean number of units in category
(1) served at queue ¢ during an elapsed time ¢ is M ¢(1 — p)/(1 — pi).
Therefore, the probability is [\ ;#(1 — p)/(1 — p:)]/\i¢ that an arbitrary
arrival at queue 7 is in category (1); that is,

(1)_1—P
D —l—Pi’ (24)

and the probability p{® = 1 — p{V that an arbitrary arrival at queue ¢

is in category (2) is
p = = (25)

The Laplace—Stieltjes transform w;(+) of the waiting time distribution
function for an arbitrary unit at queue Z is the weighted sum of the
transforms for each category:

wi(s) = pPw(s) + pPw®(s). (26)
Finally, equation (26) becomes, with the help of equations (21) through
(25) and equation (3),

1—0»p
s — N+ Mnls)

{% [gi—l(ly 1, 1) — gH()‘f): S, 1)] + s}

G=0,1,---,N). (@0

Inherent in equation (27) is the assumption that units in queue 7 are
served in their arrival order, but no assumption is made regarding the
order of service of units in other queues. If at each queue units are
served in their arrival order, then the waiting time distribution function
for an arbitrary unit, without regard to the identity of the queue in
which it is served, has Laplace—Stieltjes transform w(-) given by

ws) =

w(s) = N\ 2__;) Niw(s). (28)
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IV. MEAN WAITING TIMES FOR EXHAUSTIVE SERVICE MODEL

Denote by W, the mean wait for service suffered by units arriving
at queue ¢. The mean wait for service for units in category (1) is
\enf7(0)/2(1 — p,)]; the mean wait for service for units in category (2) is,
in analogy with equation (20), [\:n/"(0)/2(1 ~ p.)] + [¥¥"(1)/2N04(1)].
Weighting these values according to equations (24) and (25), respec-
tively, we have

= A0 yi') _p — ps . _
Vit tvm - 0L M @)

In equation (26) of Ref. 1 we defined

_ d
m.(k) = a_x); gt'(xl y " xN)

Zymeesmgym]
¢=01,:--,N; k=1,---,N) (30)

and m,; = #.(1). Let us also define

_.o_ Ml—p &
G, k) = PO) 7z, o7, gy, -o+ W)

(i=0)17"':N; j=1-.--,N; k=17""N)~ (31)
Then it follows from equation (22) and these definitions that

YO _ PO w1, 1)
Vi) T M= ) men(D)

Using equations (3) and (32), we can rewrite (29):

W. = \ini’(0) m:_ (1, 1)

It remains to calculate the quantity 7,_, (1, 1) in (33). To this end, we
define

B = 22 8 3 heanl = 2)

(32)

+ (¢=0,1,---,N). (33)

o, st Zameeemzy=1
zZ=0,1,---,N; k=1,---,N) (34)
and
. 3’ -
Bi(]r k) = ozx; 9z, 6’(";1 )\H'"'(l - :l),,,)) Zameeemzy =l

(1'=0’17°'7N7 ]=177N; k=17yN) (35)
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Note that in terms of the given parameters,

Bik) = News J—lp‘ (36)

and

7i7(0)
(1 - Pi)s
where h; is the mean and #;(-) the Laplace—Stieltjes transform of the
service time distribution function for a unit at queue 7.

We proceed to calculate m,(1, 1) in the same way we calculated
7m;(1) in Section VII of Ref. 1. Differentiating twice through equation (2)
and setting z, = --- = a2y = 1, we obtain the three-dimensional set of
linear equations

Ei(jy k) = )\i+i)\i+k (37)

e, k) = *—(}(%)”) T (DBG, B) + (1 — INEG, B)

+ B:(DBuk) M- (1, 1) + (1 — SN — MB(k)min(1, § + 1)
+ (@ — 8N — B)B:()Ms-a(1, k + 1)

+ @@ — 8N — DA — N — BNmeaG+ 1,k + 1)
<=0,1,---,N; 4j=1+---,N; k=1,---,N) (38

where 6(z) = 1if z = 0 and 8(z) = 0if z # 0. Using equation (3) and
combining the first two terms on the right side of equation (38), we can
write
(4, k) = N1 — p)B:(G, k) + B:(B:(k) ;- (1, 1)
+ Bl w1, § + 1) + Bl b+ 1) + Mea(G+ 1,5+ 1)
(i=0;1;"'7N; j=1)"'1N; k=1:"'1N) (39)
where all undefined terms are taken to be zero. (The functions 77, (j, k)
are defined only for j, & = 1, -++ , N.) It is required to solve this set of
1IN(N + 1)® independent linear equations for the 7;(1, 1). [Note that
(4, k) = ma(k, 5).]
Successive substitution into the last term on the right side of equa-
tion (39) gives

m(l, k) = Zo Nou(1 — pi-)Bin(l + v,k +v)

-+ ;) Ea-y(l + V)B_i—v(k + V)mi—l—v(ly 1)
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+ 2 Bk + Ao, 2 + )

v=0
+ 20 Bl + )M,k + 1+ )
v=0

where each sum is continued as long as the terms are defined.

The set (40) consists of ¥(N + 1) independent linear equations.
Unfortunately, it does not appear that further algebraic simplification
is likely. However, for particular values of the parameters and reason-
able values of N, numerical solution should not be difficult.

Therefore, to calculate the mean wait W, for service at queue
i ({ =0,1, --- , N) for any particular values of the basic parameters,
simply solve the set (40) of N(N 4 1) linear equations numerically,
and use the resulting value of m,;_, (1, 1) in equation (33). Note that
these calculations for the mean waiting times require no iteration, since
neither generating functions nor state probabilities appear. This last
observation is remarkable in light of the complicated iteration process
(discussed in Ref. 1) underlying the derivation of these results. Thus,
despite the complicated derivation, calculations do not seem
impractical.

In the particular case of two queues (N = 1), only NV 4 1) = 2
simultaneous equations must be solved to find 7.(1, 1), and an algebraic
solution is easily obtained. For N = 1 equation (40) gives

_ Mo 2 (0)A — p)* 4+ Nint(0)pis
= 1 1 = )\f L L
" 1( ’ ) (1 - Pi—1)2(1 - Pi)2 - P?—lpf

and hence, for two queues,

= )\1"'75,(0) )\i—177§,—1(0)(1 —_ P‘i)2 + )\mil(O)P?ﬂ
FT1 — py) T 20 — p)[(1 = o)’ — p2)° — pioipl]
G=0,1. (41

Our result (41) is in agreement with previous results of Takécs,” Avi-
Itzhak, Maxwell and Miller,’ and Eisenberg.*

Although service in order of arrival was assumed throughout, the
results for the mean waiting time are valid for any order of service that
is independent of the service times.

W

V. LAPLACE—STIELTJES TRANSFORM OF WAITING TIME DISTRIBUTION
FUNCTION FOR GATING MODEL

Turning to the gating model, we now study briefly the distribution
of waiting times for units served in order of arrival at the 7th queue.
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As with the exhaustive service model, we first calculate the probability
generating function of the number of units left in queue ¢ by an arbi-
trary unit departing from queue ¢; and using the same arguments, we
obtain from this generating functicn the Laplace-Stieltjes transform
of the waiting time distribution function. As in Ref. 1, the notation
for the gating model is the same as for the exhaustive service model;
gi-1 (T1, + -+ , zy) and related probabilities are defined and caleulated as
described in Section IX of Ref. 1.

Let 7.(5) be the conditional probability that an arbitrary departure
from queue ¢ leaves behind it j units in queue 4, given that this de-
parture did not arrive when the system was completely empty. Then

r.(f) = "21 1 = P 1(7?(0); 2 ) G ‘i 2 :l- A1 exp (—\;£) dH¥(®)

(G=0,1,---) (42

where P;_;(n)/[1 — P,_,(0)] is the conditional probability that n = 1
units are waiting in queue ¢ when the gate closes, given that at least
one unit is waiting; and 1/ is the probability that a departing unit is
kth in line for service (k = 1, 2, --- , n) given that n units are present
at the closing of the gate. The integrand in equation (42) is taken to be
zero whenn — k& > j.

Following the argument for the exhaustive service model we see that
the (conditional) probability generating function of the number of
arrivals at queue ¢ that occur during the waiting time of a departing
unit (given that the departing unit did not find the system empty on
arrival) is

0

Er(y)x/n(x — \a).

A simple calculation gives

i m(j)z’ © p "
1=0 ion) 1 b Bt
7.\ — Nx) ,;l 1 —P,_,(0) n 22 (v — ). (43)

k=1

The probability that an arbitrary departing unit did not find the system
completely empty on arrival is p = Y%} A\;h; . Thus, after summing
the geometric series in equation (43), the unconditional order-of-arrival
waiting time distribution funection for units served at queue ¢ has La-
place-Stieltjes transform w;(-) given by



prvwo LAY

yLL”Umm@ u'ﬂxﬂ) ><

witven

-

138/ ‘o3 298 b
292°¢f 1143 ’

412 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1970

~ & P 1 D@l = O — 9"
wi(s) =1 —p)+p E 1 — P._,0) ATt s — N Nns)

G=0,1,--- ,N—1). (44

Equation (44) allows numerical calculation (and hence numerical
inversion) of the transform w;(-). Unfortunately, this procedure requires
knowledge of the distribution { P;_,(n)}, which is specified only through
its generating funetion g;-, (z, 1, -+ , 1). Thus, to obtain numerical
results for the gating model one must solve two distinct problems in nu-
merical analysis, numerical calculation of the {P;_,(n)} and then nu-
merical inversion of the transform. Note that the first of these numerical
calculations is not required for the exhaustive service model. The subject
of numerical inversion of Laplace-Stieltjes transforms and probability
generating functions (the latter being, in fact, a special case of the
former) is important for the recluction to practice of these cyelic queuing
models. However, it is a subject best treated separately, without regard
to the particular applications at hand, and will not be discussed further
here.

VI. SUMMARY AND PROPOSALS FOR FUTURE WORK

We have extended our previous study of cyclic queues to obtain
waiting time results. In particular we have obtained, for both the ex-
haustive service model and the gating model, the Laplace-Stieltjes
transform of the waiting time distribution funetion for units arriving
at the 7th queue, when units at that queue are served in order of arrival.
These transforms are given by equation (27) for the exhaustive service
model and equation (44) for the gating model. Also, we have obtained
for the exhaustive service model a formula (33) for the mean waiting
time for units arriving at the <th queue. Use of equation (33) requires
calculation of the value m;_, (1, 1), which can be obtained in any
particular ease by numerical solution of the N(N + 1) linear equations
(40). It is noteworthy that the calculation of the mean waiting time
requires no iteration.

The techniques used in this and our previous study might be useful
in the analyses of priority queuing models and other cyclic queuing
models that have important practical applications. Examples of the
latter are: extensions of the present models to include arbitrary switching
times and/or set up times; systems of queues served in arbitrary periodic
order (of which cyelic order is a special case); and within-queue disci-
plines other than service in order of arrival, such as service in random
order.
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