AT&T Technical Journal
Vo.l. 64, No. 5, May-June 1985
Printed in U.S.A.

Application of Decomposition Principle in M/G/1
Vacation Model to Two Continuum Cyclic
Queueing Models—Especially Token-Ring LANs

By S. W. FUHRMANN* and R. B. COOPER!

(Manuscript received November 15, 1984)

We apply a recent decomposition result of Fuhrmann and Cooper for the
M/G/1 queue with server vacations to obtain mean waiting times for the
following two cyclic queueing models: The server scans at a constant velocity
(1) serving work as it is encountered, or (2) collecting work that it serves at
the end of each cycle. Model 1 describes token-ring polling in certain computer-
communication networks; Model 2 has been used to describe mail pickup and

delivery systems.

. INTRODUCTION AND SUMMARY

Cyclic queueing models, in which a single server switches back and
forth among a (large) number n of queues, have been studied by many
authors. These studies were motivated largely by the need to describe
the performance of electronic telephone-switching systems. Recent
technological developments in computer-communication networks (lo-
cal area networks, or LANs) have generated renewed interest in these
models. In the present paper we consider two continuum cyclic
queueing models, i.e., models where n —  while the total arrival rate
remains fixed. Model 1 describes the behavior of certain token-ring
LANs, while Model 2 has been used to describe mail pickup and

delivery systems.
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Exact analytic models for finite n tend to be very complicated (see,
for example, Refs. 1 through 8). One of the earliest techniques for the
analysis of these complicated multiqueue models was to define the
ordinary single-server vacation model, in which the server periodically
leaves the queue and takes a “vacation”; this vacation model is then
“connected” to the model of n queues served in cyclic order by
interpreting the vacation as the time interval from when the server
leaves a particular queue until its return to that queue after cycling
through the other n ~ 1 queues.?

The basis for the analysis in the present paper is to relate the server
vacations to the cyclic queueing model in an entirely different manner,
and then to apply a new stochastic decomposition result of Fuhrmann
and Cooper® for the M/G/1 vacation model. (As noted, in the present
paper we are interested in models where n is infinite. Another paper'
uses a related method to analyze certain cyclic queueing models where
n is finite.)

In both of our continuum models, the server scans (or polls) at a
constant velocity along a closed path. Customers arrive according to a
Poisson process (with rate A) in time, and are uniformly and inde-
pendently distributed in space along the scanning path. Service times
have distribution function H(-), with mean 7 and variance o2, and are
independent of the arrival process and each other. In Model 1, the
server stops scanning and serves customers as they are encountered
along the scanning path. In Model 2, the server collects customers
(there is no time expended in collecting a customer) as they are
encountered along the scanning path; when the server reaches a unique
point on the path called the origin, the server stops and serves all the
customers it has collected since last leaving the origin. Model 2 is
closely related to a model studied by Nahmias and Rothkopf,!" which
we shall refer to as Model 3, in which customers are served at the
origin and are then randomly (uniformly) redistributed (delivered)
over the scanning path on the server’s next cycle. This is in contrast
to Models 1 and 2, where each customer departs from the system as
soon as his service is completed.

. Model 1 provides a good description of a large, symmetric, token-
ring LAN. In such a network, a number n of terminals (devices, work
stations) are interconnected in either a physical or logical ring struc-
ture. The terminals’ access to the transmission medium is controlled
by a “token” (a signal) that circulates around the ring. A terminal
gains access to the medium by seizing the circulating token as it goes
by. It retains the token while it is transmitting, thereby preventing
other terminals from simultaneously accessing the medium; it then
releases the token to circulate around the ring, enabling another
terminal to gain access to the transmission medjum. (For a general
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description of LANs and token-passing protocols, see, for example,
Refs. 12 through 14.) .

One identifies the scan time c as the time required for the server to
poll all the terminals once (equivalently, the time required for the
token to cycle once around the LAN ring when no terminals are
waiting to transmit). If the number n of terminals is large, and the
terminals submit statistically identical loads (i.e., each terminal is
characterized by the same arrival rate and distribution of service
Eili}s), then there is a good correspondence between Model 1 and the

Model 3 has been studied by Nahmias and Rothkopf,!’ who used it
to describe a delivery system in which a clerk (the server) traverses
(scans) at a constant velocity a route along which letters (customers)
are generated (arrive) randomly in space and time. As the clerk travels
along the route, he picks up the letters that have been generated since
his last traversal, and he delivers the letters (to locations distributed
uniformly along the route) that were previously picked up and sorted.
When the clerk reaches the end of the route he sorts (serves) the
letters he has just picked up; then he again traverses the route,
delivering the letters that have just been sorted, and picking up the
new letters that have been generated since his last traversal of the
route. This process is repeated indefinitely.

For each model, the equilibrium cycle time Tj, defined as the time
(during equilibrium) between successive visits in Model j by the server
to any given point along the scanning path, has the same mean value

T = E(T;), given by

T=—— (<), (1)
1—0p

where ¢ is the (constant) length of time the server spends scanning
during each cycle (which is the time to complete a scan cycle when
there is no work to be done), and p(=\r} is the server util}zation.
[Equation (1) is easily derived by the following argument, given by
Kuehn,” for a very general model of n queues served in cyclic order
by a single server: The mean cycle time T'is the sum of t‘he (constant)
time ¢ spent scanning and the mean time s spent serving per cycle;
that is, T = ¢ + s. Clearly, s = pT, and (1) follows. Note that T C!OES
not depend on the form of the service-time distribution function,
but only on its mean value; also, the parameter n does not appear

explicitly.] . o
Our main results are these: Let W;(j = 1, 2) be the equxh'brxu.m
ice until start of service) In

waiting time (time from request for service untit & |
Model j, and let W, be the equilibrium waiting time in the correspond-

ing M/G/1 queue (Model 0). Then,
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E(W,)) =

Do =

T + E(W,), (2)

and
E(Wy) = T + E(W)), | (3)

where T is given by (1), and E(W,) is given by the celebrated
Pollaczek-Khintchine formula [see, for example, Ref. 15, p. 217, eq.
(8.39)]:

2
pT g
= — . 4
E{W,) 2(1_'0)(1+72) (4)
The simplicity of (2) and (3) and their similarity are quite remarkable.

We also define S;(j = 0, 1, 2) to be the equilibrium sojourn time
(waiting time plus service time) in Model j. Since

E@S)=EW;)+r (j=0,1,2),

egs. (2) and (3) are equivalent to the following two equations:

Ewﬂ=%T+Ewd (5)
and

E(Sy) = T + E(Sy). (6)

For Model 3; we define the equilibrium delivery time D; as the
elapsed time between the generation of a letter and its delivery to its

destination. We will show that E(D;) is given by the following formula,
again remarkable in its simplicity:

_ 345, 1+ 2 '
E(D;) =1+ 2T + 15, E(W,). (7)
The special case of (7) when ¢ = 0 (i.e., when the time required to
sort a letter is constant) was found (in a different form, by a more
complicated argument) by Nahmias and Rothkopf.! The general result
(7) was found also by Shanthikumar,® using level-crossing analysis.
The well-known textbook by Tanenbaum'? discusses a model of a
token-ring LAN with an arbitrary number n of terminals that, for n
infinite, coincides with our Model 1. Tanenbaum gives eq. (1) and
then states (p. 310) that the mean waiting time is “about half”
the mean cycle time. It is interesting to note that, for the case
of n infinite, eq. (2) shows that Tanenbaum’s approximation (i.e.,
E(W,) = T/2) underestimates the correct value by exactly E(W,), an
amount that can be considerable, being essentially proportional to ¢°
and inversely proportional to 1 — p. [The reason that 7/2 underesti-
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mates t1:1e .correct value is a manifestation of the phenomenon of
length biasing, i.e., the cycle to which an arbitrary customer (the test
custc.)mer) arrives is stochastically longer than an arbitrary cycle. In
particular, if T is the length of the cycle during which the test
f:ustomer arrives, then E(TY) = E(Ty) + V(T)/E(T}), where V(T})
is the variance of the cycle times in Model 1 (see, for example, Ref.
1.5, pp. 200-6). Since E(W;) = E(T/2, it follows from this observa-
tion and eq. (2) that V(Ty) = 2TE(W,). A practical implication of
thfs observation is that the mean waiting time E( W) can be estimated
using measurements of cycle times only.]

Several authors (see Refs. 4, 17, 18, and 19), using arguments more
cqmplicated than ours, have obtained results for related models with
different queue disciplines (e.g., exhaustive service or gated service)
and_ a finite number n of terminals; our result (2) can be obtained from
their results when n — . Coffman and Gilbert® have analyzed Model
1 fgr the case of constant service times and, for this special case,
derived a number of explicit distributional results, such as the distri-
bution of waiting times.

In Section II we state the M/G/1 decomposition result alluded
to earlier. In Section III we apply this decomposition result to obtain
egs. (2), (3), (5), and (6). For completeness, in Section IV we quickly
derive eq. (7) by directly comparing the mean delays in Models 2

and 3.

Il. A STOCHASTIC DECOMPOSITION RESULT

At all times the server is either scanning or is serving customers.
The basis for the analysis of this paper is to interpret the time intervals
when the server is scanning to be vacations, and then to invoke
Proposition 3 of Fuhrmann and Cooper.” We define
¥ (-) = the p.g.f. (probability generating function) of the equilibrium
distribution of the number of the customers present in Model
j(j =1, 2) at an arbitrary point in time;

x;j(+) = the p.g.f. of the equilibrium distribution of the number of
customers present in Model j(j = 1, 2) at an arbitrary point
in time, given that the server is scanning (on vacation); and

7(-) = the p.g.f. of the equilibrium distribution of the number of
customers present in the corresponding M/G/1 queue at an
valently, just after a service

arbitrary point in time (or, equi
completion epoch).

Thus, #(-) is given by a well-
(8.12), p. 210, Ref. 15]. It fol
Fuhrmann and Cooper® that

¥%i(2) = x(2)w(2)
CONTINUUM CYCLIC QUEUEING 1095

known formula [see, for example, eq.
lows directly from Proposition 3 of

(=12, 8)



In terms of mean values,

() =xi) +7'(1)  (G=12). 9)

In Section III we show that it is a simple matter to find x;(1) for j =
1, 2. Since (by Little’s theorem) 7’(1) = AE(So) and ¥/(1) = AE(S;),
eq. (9) yields eqs. (5) and (6) or, equivalently, (2) and (3).

Il. MEAN WAITING TIMES: MODELS 1 AND 2

In this section we derive formulas (2) and (3) for the mean waiting
times for Models 1 and 2. To do this, first note that (for either model)

during each customer’s service time, k new customers arrive to the
system with probability

® k
De :J; O‘;,) e™MdH(t) (h=0,1,2, ---). (10)

We now define two auxiliary models, Auxiliary Model 1 and Auxil-
iary Model 2. Auxiliary Model 1 is defined in exactly in the same way
as Model 1 except for the following aspect: Now, whenever the server
encounters a customer, the customer is served in zero time and departs
from the system; coincidental with his departure, however, a batch of
k new customers joins the system (distributed along the scanning path
in a uniform and independent manner) with probability ps, given by
(10). Thus, while the lengths of all service times have been collapsed
to zero, the number of customers in the system just after a service
completion epoch is stochastically the same for both Model 1 and
Auxiliary Model 1. (This is true in a distributional sense. Or, if we go
to the trouble to define Model 1 and Auxiliary Model 1 on the same
sample space, we can make this statement true on every sample path.)
This leads to the following conclusion: If we define A; to be the mean
number of customers present in Auxiliary Model 1, then

x1{1) = A,. (11)

. To cgl.culate Ay, let Af and S¥ be the arrival rate and sojourn time
in Auxiliary Model 1. Then, by Little’s theorem,

A, = ME(SY), (12)
where, clearly,
o €
E(SH = 5 (13)

T_‘) calculate A}, let N be the total number of customers (including
himself) generated by a Poisson arrival in Auxiliary Model 1; then
AT = AE(N). Now observe that the average number of new customers
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generated when a customer is served is Ar = p; and each of these
customers will generate, on average, E(N) additional customers.
Hence, E(N) = 1+ pE(N); that is, E{N) = (1 — p)7!, and therefore

A
AN =— (14)

1-p°
[Note that E(N) is precisely the mean number of customers served
during an M/G/1 busy period. Observe also that (14) follows imme-
diately from the requirement that the mean number of arrivals per
cycle be the same in Auxiliary Model 1 as in the original Model 1:
Ae = AT.] Equations [11) through (14} yield xi(1) = Ac¢/2(1 — p); in
light of (1), we have

‘ AT
x1(1) = 5 (15)
This completes the calculation of (9) for Model 1, from which the

main result (2) follows.
We now define Auxiliary Model 2 in a completely analogous manner,
that is, in exactly the same way as Model 2, except that now when a

customer is served (at the origin), he is served in zero time and is
instantaneously replaced by a batch of & customers with probability
P, given by (10). We define A to be the mean number of customers
present in Auxiliary Model 2. By the same argument used earlier,

x2(1) = Ay, (16)

and the same argument that was used to derive eq. (15) for Model 1
applies. Hence, combining the equations that are analogous to (12)

and (14), we have
Ay = ——E(SD. (17)
1-p

But, in contrast with (13), the mean sojourn time of a customer in
Auxiliary Model 2 is exactly the cycle time ¢,

E(S3) = c. (18)
Therefore, the analogue of (15) is
x3(1) = AT, (19)

and the main result (3) follows.

IV. MEAN DELIVERY TIME: MODEL 3
derive eq. (7). This is accomplished by

For completeness, we now ;
T compe ; nd 3. Recall that in

directly comparing the mean delays in Models 2 a
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these models, all customers are served at the origin. For either model,
consider an arbitrary customer (the test customer) and define

y the mean number of customers in the test customer’s batch;

y» = the mean number of customers in the test customer’s batch that
are served before the test customer; and

v, = the mean number of customers in the test customer’s batch that
are served after the test customer.

Then

Yy=%+y.+1 (20)
and, by symmetry,

Yo = Ya. (21)

Now let L, denote the number of customers present in Model 2,

excluding the test customer, when the test customer enters service.
Then

e
5+ e+ Ve (22)

E (Lz) =
The term Ac/2 equals the mean number of customers who arrived
during the last scan, but behind the server. (These customers will be
collected on the server’s next cycle.) The term yyp(=A ¥p7) equals the
mean number of customers who arrived during the service times of
the customers (in the test customer’s batch) who were served before
the test customer. Finally, the term y, equals the mean number of
customers that have not yet been served.

Now observe, on the other hand, that L, has the same distribution
as the number of customers present in Model 2 at an arbitrary point
in time, excluding the customer being served (if any). [This is true
because departures see the same distribution of customers that arrivals

see (see Ref. 15, p. 187) and the arrivals see time averages (see Ref.
21).] Hence, by Little’s theorem,

E(Ly) = NE(W,). (23)
Combining (21), (22), and (23) yields

A
NE(W,) = —2-‘5+ Yol + p). (24)
Equations (3) and (24) determine y,. Now observe that, clearly,
E(Dy) = E(Wa) + 7 + yor + % (25)

Equations (3), (24), and (25) now yield eq. (7) after some straightfor-
ward algebra.
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