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Chapter 10

Queueing Theory

Robert B. Cooper

Department of Computer Science, Florida Atlantic University, P.O. Box 3091,
Boca Raton, FL 33431-0991, U.S. A,

1. Introduction

Queueing theory concerns the construction and analysis of mathematical
models of systems that provide service to customers whose arrival times and
service requirements are random. The basic queueing model, from which more
complicated models can be constructed, consists of three components: (1) the
input process, (2) the service mechanism, and (3) the queue discipline.

The input process describes the statistical properties of the time instants
(epochs) at which the customers arrive. Typically, this is expressed in terms of
the distribution of the interarrival times (the time intervals separating succes-
sive arrival epochs), but other descriptions may be preferable, depending on
context. Similarly, the service mechanism specifies the number of servers and
describes the statistical properties of the service times (the lengths of time that
the customers hold the servers). Usually, the service times are assumed to be
independent of the arrival process and each other, and to be identically
distributed, without regard for which server, if any, provides the service. And
the queue discipline describes the behavior of the customers who are blocked,
that is, who find all servers busy when they arrive. Two typical assumptions for
the queue discipline are (1) all blocked customers leave immediately (blocked
customers cleared or lost), or (2) all blocked customers wait in a queue (hence
the name Queueing Theory) until they are served (blocked customers delayed);
in the latter case it may be necessary to specify the order in which waiting
customers are selected from the queue, such as first-in first-out (FIFO) or its
reverse, last-in first-out (LIFO). Other, more complicated situations can be
modeled, but the simple structure described above provides a sufficiently rich
basis to construct a useful mathematical theory of the behavior of many service
systems subject to random demands.

Queueing theory was originally developed to facilitate the analysis and
design of telephone systems. (In telephony, the ‘customers’ might, for exam-
ple, be the telephone calls, and the ‘servers’ the telephone trunks that carry
them.) The first major results were obtained by A.K. Erlang, a scientist and
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mathematician with the Copenhagen Telephone Company who, in 1917,
published the important formulas that today bear his name. (See Brockmeyer,
Halstrgm and Jensen [1948], The Life and Works of A.K. Erlang.) With the
codification of the subject of Operations Research in the early 1950s, Queueing
Theory was adopted as one of its methodologies and its range of application
enlarged, but its major applications remained primarily in telecommunications
(under the names teletraffic theory, telephone traffic engineering, and the like)
until the early 1970s. (Significantly, Syski’s 1960 encyclopedic work, Intro-
duction to Congestion Theory in Telephone Systems, has recently been reissued,
with some revisions, Syski [1986]; Section 2.6 of Chapter 1 is a short historical
survey of teletraffic theory, including many historically interesting references.)
With the explosive growth of computer science and engineering, a major new
area of application was born in the early 1960s, and new models and theory
were developed to meet the needs of this new technology. (Here, the ‘custom-
ers’ might, for example, be transactions, and the ‘server’ a CPU.) And with the
increasing convergence between telecommunications and computer technology
in the 1980s, as well as other interesting developments such as flexible
manufacturing systems, technology again is providing the models and applica-
tions for a new era of accelerating growth in queueing theory. (As evidence,
1986 saw the birth of a new international journal, Queueing Systems: Theory
and Applications, edited by N.U. Prabhu, unique in its dedication solely to the
‘study of queueing systems occurring in science and engineering’.)

In the 1950s, D.G. Kendall introduced the shorthand notation a/b/c to
describe a queueing model, where a refers to the input process, b refers to the
service-time distribution, and ¢ is the number of servers, and where it is
assumed that the queue discipline is blocked customers delayed. This notation
is convenient for describing certain standard models, but it becomes messy and
ambiguous when it is adapted to include the many variations of the standard
models. Therefore, we will use this notation to describe only these standard
models, which we will specify when we come to them; otherwise, we shall
describe the models verbally.

It may be surprising for the nonspecialist reader to learn that such elemen-
tary models would lead to, literally, thousands of papers and books. (Accord-
ing to an estimate reported in Disney and Kiessler [1987], there are at least
5000.) In fact, queueing theory has spawned subfields that are becoming
disciplines in themselves. A good example is the subject of Queueing Networks
(in which the classical models are interconnected in networks, with compli-
cated routing patterns, including feedback), to which Chapter 11 in this
Handbook has been dedicated. And, of course, queueing theory is both a
consumer and producer of more fundamental mathematical theory, such as
that of Point Processes (which can be used to represent arrival epochs and
service times), and to which Chapter 1 of this Handbook has been dedicated.

In this chapter, we will restrict ourselves largely to what are now called the
‘classical’ queueing models, as exemplified by the models and notation of
Kendall, and some of their variants. Our aim is to give a basic understanding of
the models that have proven useful and, together with some of the other
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chapters in this Handbook, to provide the tools and insight for the continuing
development of the theory and its application to increasingly complicated
systems. Our method will be to survey the main concepts and results, omitting
algebra and details of proofs; to direct the reader to more detailed sources; and
to provide interpretations and commentary that unify and explain, where
possible. The selection of topics and order of presentation follow, somewhat,
Cooper [1981] (naturally); this chapter updates that text, and concludes with a
list of English-language (and a few foreign-language) books on queueing theory
published since 1981.

2. Some general theorems

In this section we will present some general theorems and concepts that we
shall specialize and apply later when we discuss specific queueing models.

Let N(¢) be the number of customers present at time ¢, and define the state
probability P,(t) = P{N(t) = j} (j=0,1,2,...), the probability that the system
is in state j at time ¢. Of particular interest in queueing theory and its
applications is the statistical-equilibrium (or steady-) state distribution P; (j=
0,1,2,...), defined by

P, =lim P,(1). (2.1)

P, is interpreted as follows: Suppose the ‘system’ has been in operation for a
time sufficiently long so that the initial conditions are irrelevant, that is, the
system is in statistical equilibrium. Then P, is the probability that, at any
arbitrary point in time, the number of customers present is j; equivalently, P; is
the fraction of statistically identical systems that contain j customers at any
arbitrary point in time. (The equivalence of these interpretations states that the
system is ergodic.) The statistical-equilibrium distribution is stationary; that is,
if the statistical-equilibrium distribution describes the system at time ¢, it will
describe it at every epoch t>1,, as long as there is no other information
relating to the state of the system between ¢, and ¢. It is important to emphasize
that the notion of statistical equilibrium relates to our knowledge of the system,
not essentially to the length of time it has been in operation (because an
observation made at any time, including an epoch at which the statistical-
equilibrium probabilities apply, provides information equivalent to new initial
conditions, and thus the equilibrium probabilities implied by stationarity are
henceforth inapplicable until an (essentially) infinite additional time has
elapsed).

For the most part, queueing theory is concerned with the calculation of the
probabilities {P;} and their use in calculating performance measures such as
probability of blocking, server utilization, and mean waiting time. Deeper
mathematical questions, such as those pertaining to existence of limits and
ergodicity of distributions, are more properly in the domain of the theory of
stochastic processes. As a practical matter, theoretical questions of this type do
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not usually intrude on queueing-theory studies; except in unusual cases, a deep
theoretical understanding of the theory of stochastic processes is not necessary
for the understanding, development, or application of queueing theory. (I must
report that this assertion generated some disagreement from readers of an
early version of this chapter. Perhaps it depends on how deep is deep.)
Furthermore, queueing theory tends to be ‘error-detecting’: results derived
under false assumptions are often (but not always) obviously meaningless or
incorrect.

The distribution {P;} is said to represent the viewpoint of the outside
observer, because it describes the distribution of states that an outside observer
would see if he were to observe a system over all time, or to sample many
statistically identical systems at arbitrary points in time. The critical charac-
teristic of the outside observer is that he only observes the system, but does not
interact with it; and furthermore, his observation epochs are arbitrary, that is,
ordinary, not special, in the statistical sense.

In contrast, consider the viewpoint of the arriving customer, who, by
definition, observes the system at his arrival epoch, that is, when he is making
a request for service. The arriving customer’s observation epoch is clearly
special, since any point at which the number of customers present increases is
necessarily an arrival epoch (although an arrival that departs immediately
because of blocking, say, will not directly affect the state of the system), and
hence the arriving customer, in general, interacts with the system when he
makes his ‘observation’. If we let C(t, t+ k) be the event that a customer
arrives in the interval (¢, t + h), then the probabilities (for j=0,1,2,...)

I(6) = lim P{N(1) = j|C(t, t + h)} (2.2)

can be interpreted as the arriving customer’s distribution. That is, II(t) is the
conditional probability that the system is in state j at time ¢, given that a
customer arrives just after time £; in other words, {IL(r)} is the distribution
that describes the state of the system as seen by the customers when they
arrive.

It is a remarkable theorem that, if the customer arrival epochs follow a
Poisson process (see Chapter 1), then

(1) = P(1) . (2.3)

Note that (2.3) remains valid whether or not the system is in statistical
equilibrium, and whether or not the arriving customer actually joins the system
(and thereby causes a state transition) or merely observes the system and
departs immediately (and hence does not cause a state transition).

To see the subtlety of this result, consider the following example: A single
customer repeatedly requests service from a server, causing the system state to
alternate between ‘server idle’ (j=0) and ‘server busy’ (j=1) according to
some arbitrary stochastic process (in which the time from any service comple-
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tion to the customer’s next arrival epoch is assumed to be nonzero). Then,
clearly, II,(¢) = 0 because the server can never be occupied at (just prior to) an
arrival epoch; on the other hand, P,(¢) might have any value between 0 and 1.
(In this example, the interarrival times have ‘memory’ and therefore the arrival
epochs cannot constitute a Poisson process.)

Although we have defined the arriving customer’s distribution {I[,(r)} for
finite ¢, as a practical matter we will be concerned almost exclusively with the
limiting (i.e., statistical-equilibrium) distribution,

11, = lim I1(r) . (2.4)

IT; is the probability that a customer, who arrives when the system is in
statistical equilibrium, finds j other customers present; equivalently, IT; is the
fraction of arrivals (to a system in statistical equilibrium) who find the system
in state j. Then, for systems with Poisson input in statistical equilibrium, (2.3)
becomes

=P, (2.5)

The Poisson process is characterized by the property of memorylessness (to
be discussed shortly), which, in the absence of evidence to the contrary, makes
it the least presumptive (and therefore, arguably, the most realistic) description
of a customer arrival process. It is also the simplest mathematically, in the
sense that it yields the most tractable models. (These facts are probably not
unrelated.) The important theorem expressed by (2.5) is proved in Wolff
[1982], who coined the acronym PASTA (Poisson Arrivals See Time Averages)
to describe this fundamental property. (See Konig and Schmidt [1980] and Niu
[1984] for a discussion of models for which the stochastic inequality {I} =
{P;} obtains, and vice versa.) A discrete analogue of PASTA is given in Halfin
[1983] and Whitt [1983], and extended in Makowski, Melamed, and Whitt
[1989] (see also the observation following our equation (4.9)). Although the
assumption of Poisson arrivals is sufficient for (2.5), it is not necessary; this and
other aspects of (P)ASTA are discussed in recent papers by Brémaud
[1989, 1990], Konig, Schmidt, and van Doorn [1989], Melamed and Whitt
[1990a,b], Serfozo [1989a, b], and Stidham and El Taha [1989)].

So far, we have considered two viewpoints, that of the outside observer and
that of the arriving customer. Another natural viewpoint is that of the
departing customer: Let 117 be the statistical-equilibrium probability that just
after a departure epoch there are j customers remaining in the system;
equivalently, IT7 is the probability that a departing customer (from a system in
statistical equilibrium) leaves behind him j other customers. Then, we have the
following useful theorem:

i ¥ iR (2.6)

There are only two, rather weak, conditions required for (2.6): (1) the system
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is in statistical equilibrium, and (2) the system is skip-free (that is, state
transitions occur only in single up-or-down steps or, in other words, arrivals
and departures occur one-at-a-time).

This theorem becomes intuitively obvious when one observes that to every
customer whose arrival causes the state transition j— j + 1, there corresponds
another whose departure causes the transition j+1—j (if the system is in
statistical equilibrium). A formal statement and proof (by P.J. Burke) is given
in Cooper [1981], pp. 185-188. A generalization to include the case when
arrivals occur in batches of random size, or departures occur in batches of fixed
size, is given in Hebuterne [1988] (see also Papaconstantinou and Bertsimas
[1990]).

The usefulness of (2.5) and (2.6) follows from the fact that in many cases, as
we shall see, adoption of one of the three viewpoints (outside observer,
arriving customer, departing customer) greatly simplifies the calculations;
which viewpoint to adopt depends on the specific model under consideration.

Another extremely useful result, remarkable in its generality, is Little’s
theorem, usually written

L=AW. (2.7)

Here L is the expected value (‘time-average’) of the number of customers
present in the ‘system’ at an arbitrary point in time, W is the expected value
(‘customer-average’) of the time spent in the ‘system’ by a customer, and A is
the rate at which customers enter the ‘system’; (2.7) holds for any ‘system’ in
statistical equilibrium. We have put system in quotes to indicate that its
definition is very broad, not necessarily restricted to queueing systems. Even in
the context of queueing models, the definition is broad. For example, the
‘system’ might be the queue of customers waiting for service, excluding those
being served; then L is the mean (expected value) queue length, W is the mean
waiting time, and A is the rate at which customers join the queue. Or the
‘system’ might be the servers alone; then L is the mean number of busy
servers, W is the mean service time, and A is the rate at which customers enter
the servers. The only requirements for (2.7) to hold are a ‘system’ in statistical
equilibrium for which the expected values L, A, and W exist, and some
technical assumptions. The usefulness of (2.7) follows from its great generality
and the fact that, in many cases, it is much easier to calculate L (which is an
expected value of a discrete random variable) than to calculate W (which is an
expected value of a (usually) continuous random variable), or vice versa.

Although the notation of (2.7) is traditional, the use of the symbol A to
represent the entry rate is somewhat confusing, because the same symbol A is
traditionally used also to represent the arrival rate, which includes those
customers who arrive (request service) but never get served (because of
impatience, lack of waiting space, or any other reason), as well as those arrivals
that do receive service. In what follows, we will reserve the symbol A to
represent the arrival rate.
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As an example of the generality and utility of Little’s theorem (2.7),
consider any queueing system in statistical equilibrium; and let A denote the
arrival rate, let B denote the fraction of arrivals who don’t get served, and let 7
denote the mean service time for those customers who do get served. Then, if
a' is defined to be the mean number of busy servers, it follows from (2.7)
(more precisely, from ‘H = AG’, a generalization of (2.7); see Exercise 11-15
of Heyman and Sobel [1982]) that a’ = A(1 — B)r, or

a'=a(l-B), (2.8)
where a = Ar. Furthermore, in the case of a single-server system, then a' =
P + P, +---=1- P, where P, is the probability that j customers are present

(where the first equality follows from the definition of a’ for a single-server
system, and the second equality follows from the normalization requirement);
hence, from (2.8) we have

P,=1-a(1-B). (2.9)

We shall return to these results later.

Theorem (2.7) was first proved by Little [1961]. Stidham [1974] gives an
elementary and intuitively appealing proof; and Heyman and Sobel [1982]
reproduce Stidham’s proof and give a detailed discussion and some generaliza-
tions. Ramalhoto, Amaral, and Cochito [1983] give a comprehensive survey,
including discussions of historical aspects, different proofs, and generalizations.
In Glynn and Whitt [1986] the authors establish a central-limit-theorem version
of (2.7), and in Glynn and Whitt [1989] they apply their results to investigate
the asymptotic efficiency of different statistical estimators of L and W; also,
they provide many references. Halfin and Whitt [1989] give an insightful and
useful ‘ordinal version’ of (2.7), in which time is measured solely in terms of
the number of arrivals that occur. In a wide-ranging paper on sample-path
analysis (drawing probabilistic conclusions through analysis of individual reali-
zations of a stochastic process) in queueing theory, Stidham [1981] discusses
Little’s theorem and its generalizations, relations between the stationary
distribution of a process and an imbedded (defined in Section 7) process, the
phenomenon of insensitivity (invariance of some characteristic with respect to
the form of the distribution function of an underlying random variable; see,
e.g., Schassberger [1986], Whittle [1986]), and operational analysis (a heuristic
method of analysis popular in performance evaluation of computer systems,
not discussed further here).

A final useful result is the relationship between the Laplace—Stieltjes trans-
form ¢ of the distribution function of the length of an interval and the
probability-generating function g of the number of Poisson arrivals that occur
during the interval: If the length of the interval has distribution function F,
with Laplace—Stieltjes transform ¢,

]

b(s) = L e dR(r), (2.10)
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and if

p= [ O v g, (2.11)

J!
with probability-generating function g,
g(z)= 5}) P, (2.12)
s
then substitution of (2.11) into (2.12) yields

g(z) = ¢(A — Az). (2.13)

Keilson and Servi [1988] enlarge on the ‘distributional form of Little’s law’
expressed by (2.13) in the case when g and ¢ describe number in system and
time in system, respectively.

3. Performance measures

For a given queueing model, a typical objective is to find a formula that
expresses the relationship between the demand on a system and its perfor-
mance. Demand is often expressed in terms of the offered load a, which is
defined as the mean number of arrivals per unit time, with the time unit taken
to be the mean service time. If we let A denote the customer arrival rate and 7
denote the mean service time, then (consistent with the definition following

(2.8))
a=Ar. (3.1)

The unit of this dimensionless quantity is the erlang. In a system with an
infinite number of servers (in which every arrival immediately enters service,
and hence B =0), it follows from (2.8) that the offered load equals the mean
number of customers simultaneously in service; that is, the offered load is the
mean number of servers that the customer population ‘wants’ to be able to
hold simultaneously. A given offered load a, which is a measure of what the
customers want, will result in a carried load a', defined as the actual mean
number of busy servers, which is a measure of what the system provides. Then
the throughput, defined as the rate at which customers depart after having been
served, is given by a'/T = A(1 — B), which is the rate at which customers are
accepted for service.

In terms of the equilibrium state probabilities {P,}, the carried load for an
s-server system is given by
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o

s—1
a'=3 jP+s X Py (3.2)
j=1 J=

=3

Note that @’ < s. In the case of one server, a’ = 1— P,: the carried load equals
the proportion of time the server is busy. Clearly, when s =, then a = a’. We
define the lost load or overflow a as the difference between the offered load
and the carried load:

a=a—a'. (3.3)

To interpret «, note that if the blocked customers are immediately routed to an
overflow group consisting of an infinite number of servers with the same mean
service time, then « equals the mean number of simultaneously busy servers in
the overflow group. Thus, a equals the load that is lost to (overflows from) the
primary group of s servers; if all blocked customers wait until they are served
on the primary group, then @ =0 and a = a’. (Systems with facilities to handle
overflow traffic are of particular interest in telephony; a list of references is
provided in Sudo [1987].)

The server utilization (or occupancy) p is defined as the load carried per
server:

p= (3.4)

Since carried loads are mean values, we can interpret the load carried by a
group of s servers as the sum of the loads carried by each of the s servers
individually; and the load carried by each server (viewed in isolation as a
one-server group) equals the proportion of time (or probability, from the
outside observer’s viewpoint) that the server is busy. Hence, the utilization p
can be interpreted as the ‘average’ probability that a server is busy, or the
‘average’ load carried by a server. For a single-server system with Poisson
input, the server utilization p equals (by PASTA) the probability that an
arriving customer will find the server busy.

An essential characteristic of (real) queueing systems is that, for a given
configuration, when utilization increases, so does the probability of blocking;
that is, more efficient utilization of equipment is gained only at the cost of
poorer service to the customers. Hence, one of the main virtues of queueing
theory is that it permits one to examine the tradeoffs between the cost of
providing service and the quality of the service provided. Along with blocking
(resulting in loss or delay of a customer), other typical measures of perfor-
mance (which also deteriorate as utilization increases) from the customer’s
viewpoint are his waiting time (time from arrival until commencement of
service) and response time or sojourn time (waiting time plus service time).
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4. Length-biased sampling and the role of the exponential distribution

The distribution most commonly used to describe the service times and the
interarrival times is the exponential; that is, if X is a random variable that is
exponentially distributed, with parameter p >0, then its distribution function
Fy(t)= P{X <t} is given by F,(¢) =0 when <0, and when t=0,

Fu()=1-¢e™, (4.1)
The parameter u, called the rate, is the reciprocal of the mean value,

EX)=p""; (4.2)
also, the variance is

V(X)=pnp2. (4.3)

The essential property of an exponentially distributed random variable is the
Markov or memoryless property, one expression of which is

P{X>y+tlX>y}=P{X>1}. (4.4)

This identity, which is easily verified by calculating each side of (4.4) from
(4.1), can be interpreted to say that knowledge of the present ‘age’ of an
exponentially distributed random variable provides no information about its
remaining lifetime. The Markov property, therefore, simplifies mathematical
analysis, because it permits one to neglect information that otherwise would be
relevant. And as a model of ‘pure randomness’, it seems to be the least
presumptive in the absence of explicit information about how the past affects
the future; furthermore, it has been found to be consistent with observation in
many cases. Therefore, the assumption (4.1) is ubiquitous in queueing theory,
sometimes for the sake of mathematical convenience, sometimes because it is
the best model of randomness.

In particular, if interarrival times are independent, identically distributed
exponential random variables, then the number of arrivals occurring in any
fixed interval has the Poisson distribution, and conversely; such an input
process is called a' Poisson process. Thus, queueing models with Poisson input
are both less presumptive (in a sense) and more tractable than their brethren;
this is a consequence of the Markov property and its corollary, PASTA.

The use of the exponential distribution to describe service times is more
difficult to justify than its use to describe interarrival times. Whereas the
memoryless property seems reasonable for interarrival intervals that are gener-
ated by a large population of customers who behave independently of each
other (see the superposition theorem in Chapter 1), it seems counterintuitive
that a service time of a single customer would have the (memoryless) property
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that the future service requirement is independent of the amount of service
received so far. Nevertheless, data often show that the assumption of exponen-
tial service times is sufficiently accurate for many applications and, further-
more, it turns out in some significant cases that the performance measures are
insensitive, or nearly so, to the form of the service-time distribution function.
We will discuss this phenomenon as it arises in specific cases.

Whenever a customer arrives in a single-server queueing system, either he
finds the server idle, in which case he enters service immediately, or he finds
the server busy, in which case his arrival epoch has ‘selected’ a service time
(the one in progress at his arrival epoch) from the service-time population. It is
important to realize that, in general, a service time so selected is statistically
‘longer’ than an arbitrary service time (that is, one selected according to an
unbiased sampling procedure) because, all other things being equal, an arrival
epoch is more likely to occur during a long service time than during a short
one.

This phenomenon of length-biased sampling gives rise to the well known
waiting-time paradox: How long does a blocked arrival have to wait until the
completion of the (exponential) service time of the customer in service at his
arrival epoch? If the mean service time is 7, then ‘common sense’ leads most
people to guess 37. But the Markov property implies that whenever an
exponential variable is interrupted, its remaining duration is statistically the
same as it was when it began, namely, exponentially distributed with mean 7.
The latter answer is correct; the paradox is resolved by the realization that the
selection process is length-biasing and the bias is, in the case of the exponential
variable, exactly a factor of two.

In fact, this phenomenon is general: If we let X denote the length of an
arbitrary (i.e., ordinary, typical) interval and let I denote the length of an
interval ‘selected’ by an arbitrary Poisson arrival (the test customer), with
distribution functions Fy and F,, respectively, then

1

dF,() = EX) tdF,(f) . (4.5)
(According to (4.5), the frequency dF,(f) with which the length-biased inter-
vals have length (duration) ¢ is proportional (by 1/E(X)) to the product of the
length ¢ and the frequency dF, (¢) at which intervals of length  appear in the
general population.) Similarly, the forward recurrence time R, defined as the
elapsed time from the sampling epoch until the end of the selected interval, is
described by

F® = 5 Jy 1= By (46)
and
_ E(X) V(X) ] _ E(XY)
BR= =5 [1 * EZ(X)] T 2E(X) 47
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for any random variable X. (In particular, if X is exponential, then F,(f) =
Fy(r) and E(R) = E(X), as is easily verified.)

Also, if ¢ is the Laplace-Stieltjes transform of Fy, and ¢, is the transform
of Fy, then it follows from (4.6) that

1 1= ¢x(s)

dr(s) = EX) i y

(4.8)
a result that will prove useful later.

These topics are usually discussed in the context of renewal theory (see
Chapter 1). As we shall see, relations (4.5) and (4.6) often are imbedded in
queueing models in ways that are not obvious to the naive observer. Equation
(4.6), in particular, appears in many guises. A discrete analogue of (4.5) also is
important in queueing theory: Suppose that customers are grouped into
batches, and consider the batch that contains a typical customer, selected ‘at
random’ (the test customer). If M, denotes the total number of customers in
the test customer’s batch (including himself), then (Burke [1975])

P(M, =]} = E(j,,j PAM, = j) (4.9)

where M, is the number who belong to an arbitrary batch. An interesting
observation: It follows easily from (4.9) that if (and only if) the batch size has a
Poisson distribution, then the number of other customers in the test customer’s
batch has the same Poisson distribution (Cooper [1981], Ex. 20, p.59);
similarly, if (and only if) the batch size has a geometric distribution, then
(assuming that the test customer is equally likely to be in each of the positions
in the batch) the number of customers in front of him has the same geometric
distribution (Halfin [1983], Whitt [1983]).

5. One-dimensional birth-and-death models

Let {N(t); t=0} represent the size of a ‘population’ at time ¢, and assume
that ‘births’ and ‘deaths’ occur according to the transition probabilities

P{N(t+h)=j+1N@t)=j}=Ah+o(h) (j=0,1,2,...),
(5.1)

P{N(t+ h)=j—1|N(t) = j} =ph+o(h) (j=1,2,..), (5.2)
and

P{N(t+ h) = kIN(t) = j} =o(h) (|j~K|=2), (5.3)
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where o(h) is any function with the property that o(h)/h—0 as h—0. It is
easy to derive from these postulates the set of differential equations (for
j=0,1,2,..., with all undefined terms taken to be zero)

g} Pj(t) = ’\;—1Pj~1(t) + Mj+in+1(f) 3 (A,' " 1 F’,‘)P,'(f) . (5.4)

The stochastic process { N(r); t =0}, called a birth-and-death process, can be
used to construct queueing models, in which the customers (waiting or in
service) correspond to the ‘population’, arrivals are ‘births’, and departures are
‘deaths’. Various queueing models can be obtained by judicious choice of the
birth coefficients A; and the death coefficients ju;; then, for each ¢> 0 the state
probabilities P;(¢) can, in principle, be determined, subject to specification of
the initial conditions P,(0) (j=0,1,2,...). Unfortunately, this time-dependent
(or transient) solution (i.e., for finite ¢) is ordinarily very difficult to obtain in
closed form (a brief discussion is given in Section 9); however, numerical
solutions are not nearly as difficult to obtain (see Chapter 5).

Fortunately, one need not solve (5.4) in order to obtain the equilibrium
probabilities (2.1). It can be shown that if the limits defined by (2.1) exist, they
can be calculated by taking limits directly in (5.4); the derivative on the
left-hand side goes to zero (as one would expect) and the resulting difference
equations reduce to

NP= Py 1750, 1804 ) (5.5)

which, together with the normalization condition,
2 P=1, (5.6)
j=0

can easily be solved successively in any particular case to yield the statistical-
equilibrium state distribution (as seen by the outside observer). This solution is

})_:ﬁhp0 (j=1,2,..) (5.7)
J S Y L
and
B AN nee =1
pﬂ:(1+2u) ) (5.8)
k=1 Mot My

Mathematical questions concerning existence and uniqueness of solutions are
standard fare in textbooks on stochastic process; see, e.g., Chapter 2 of this
Handbook.

It can be shown that for any skip-free queueing model (customers arrive and
depart one-at-a-time), the birth-and-death postulates (5.1)—(5.3) will be valid
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if the length of time from any epoch ¢ until the next event (arrival or departure)
depends only on the population size at time ¢, and not on its history prior to
time ¢ (i.e., {N(t); t>0} is a Markov process—see Chapter 2). In particular,
queueing models with Poisson or quasirandom (to be defined shortly) input
and exponential service times are described by (5.5); however, in some
important cases (to be discussed shortly) the equilibrium state probabilities
satisfy (5.5) for any service-time distribution (the phenomenon of insensitivity).

The recurrence (5.5) has the important interpretation: ‘“rate up = rate
down”. That is, the long-run rate, in transitions per unit time, at which the
system moves up from state j to state j + 1 equals the rate at which the system
moves down from state j + 1 to state j. Thus, the recurrence relations (5.5) are
conservation-of-flow equations; in Section 6 we will generalize them to describe
multidimensional models, with the interpretation ‘“‘rate out = rate in”’. We note
in passing that these results can be derived from system point theory, originated
by Brill [1975] (see also Brill and Posner [1977,1981] and Cohen [1977]).
Shanthikumar and Chandra [1982] have specialized the theory to discrete
state-space models, giving some interesting applications (e.g., see Shan-
thikumar [1987]).

The probabilities {P;} given by (5.7) and (5.8) represent the viewpoint of
the outside observer. To obtain the arriving customer’s distribution {11}, we
apply the definition (2.2), with the right-hand side in a form usually referred to
as Bayes’ formula:

.- lm P,P{C(t, t + h)|N(1) = j} ’ (5.9)

h-*[) =

Z P.P{C(t, t + h)|N(t) = k}

where f in (5.9) is an arbitrary epoch for a system in statistical equilibrium.
Note that (5.9) describes the distribution of states as seen by an arbitrary
arriving customer, whether he joins the system or departs immediately without
causing a state transition. In particular, if the arrivals follow a Poisson process
with rate A, then

P{C(t, t+ W)|N(t)=j} = Ah+o(h) (j=0,1,2,...) (5.10)

and (5.9) reduces to (2.5). Next, we consider some important examples of
birth-and-death models.

Erlang loss system

In the Erlang loss model, we assume that (i) customers arrive according to a
Poisson process (with rate A), and (ii) customers who arrive when all s servers
are busy leave the system immediately and have no effect on it (i.e., blocked
customers cleared). Then the birth coefficients (5.1) are

A (7=0,1,2,...,5-1),
A= {0 (=31 (5.11)
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The form of the birth coefficients {4} reflects, through the statement A, =0,
the assumption that blocked customers are cleared: although arrivals can occur
when all s servers are busy, such an arrival does not cause a state transition. If
the service times were assumed to be exponentially distributed (with rate u),
then the aggregate service completion rate (5.2) for the system when in state j
would be

F’]:.”J' (j=1:2:""s); (5.12)

where p,"l = 7, the mean service time. Then the equilibrium state probabilities,
given by (5.7) and (5.8), are

a'lj!

> a1k
k=0

P=

7

(j=0,1,2,...,5) (5.13)

and P, =0 (j>s), where a = A/u is the offered load. In particular, when j= s
in (5.13) we have the Erlang loss formula,

g1
B(s, a)= ——— . (5.14)

> @'k

k=0

Formula (5.14) is also called the Erlang B formula and Erlang’s first formula,
the latter denoted by E, ((a); it can be interpreted (by virtue of PASTA (2.5))
as both the fraction of time all servers are busy and the fraction of arrivals who
find all servers busy (and thus are lost). The distribution (5.13) is called the
Erlang loss distribution or the truncated Poisson distribution (if the range of
the index k were extended to s =, the denominator in (5.13) would be e,
yielding the Poisson distribution).

It is most important to note that (5.13) (and hence (5.14)) remains valid
even when the service times are not exponentially distributed, a fact conjec-
tured by Erlang himself (a proof is outlined in Section 6); this is an example of
the phenomenon of insensitivity. This insensitivity of the Erlang loss distribu-
tion (5.13) to the form of the service-time distribution has been proved and
generalized by a succession of authors (see, e.g., Takacs [1969] and Section 10
of Disney and Konig [1985]).

It can be shown (using insensitivity and PASTA) that (5.13) remains valid
when there are n =2 independent Poisson streams of arrivals, with different
arrival rates A; and different mean service times 7;; that is, if a;, = A;7;, then
(5.13) applies with @ =a, +---+ a,. In particular, each stream experiences
the same probability of blocking, given by (5.14) witha=a, +---+a,.

Substitution of (5.13) into (3.2) gives (see also (2.8)) for the carried load a’,

a' = a(1-B(s, a)) (5.15)
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(which can be interpreted to say that the carried load is the portion of the
offered load that is not lost), and hence the overflow a is given by

a = abB(s, a) . (5.16)

If the traffic is distributed equally among the s servers, then each server
carries p = a'ls erlangs. An interesting and important case is that of ordered
hunt or ordered entry: the servers are numbered 1,2, ... and each arrival is
carried by the lowest-numbered idle server. Let p; denote the probability that
server j is busy, i.e., the utilization of (or load carried by) the jth server; then,
for a>0 and B(0,a)=1,

pi=a(B(j—1,a)- B(j,a) (j=1,2,...). (5.17)

This can be interpreted to say that the load carried by the jth server is the
difference between the overflow from server j — 1 and the overflow from server
j. Formula (5.17) is useful in calculating economic tradeoffs between flat-rate
and measured-rate trunks in telecommunications systems. For a generalization
to the case of heterogeneous servers (server j has mean service time 7,) see
Cooper [1976, 1987]. Direct numerical calculation of formulas (5.14)-(5.17) is
difficult for large values of @ and s. A fast and accurate computational scheme,
easy to program, is based on the recursion

aB(n—1, a)

Bin, ) = n+aB(n—1,a)

(n=1,2,...;B0,a)=1).  (5.18)

Graphs of B(s, a) as a function of a, for different values of the parameter s, are
given on pp. 316, 318 of Cooper [1981]. Mathematical properties of the Erlang
loss function B(z, @), with z and & complex, are developed in Jagerman [1974].

Erlang delay system

In the Erlang delay model, we assume that (i) customers arrive according to
a Poisson process (with rate A), (ii) service times are independent, identical,
exponential random variables (with rate u), and (iii) customers who arrive
when all s servers are busy join the queue and wait as long as necessary for
service to begin (i.e., blocked customers delayed), and the queue discipline is
nonbiased (i.e., the selection of a customer from the queue to begin service is
made without regard to the customer’s service time). In the notation of
Kendall, this model is called M/M/s (Markov (Poisson) input, Markov
(exponential) service times, s servers).

The birth coefficients in (5.7) and (5.8) are

A=A (j=0,1,2,..), (5.19)

and the death coefficients are
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e (J=0152 0 00.08)
’u'f_[sp, (J=8+ Lis+25.4)5 (5:20)
where ' =7, the mean service time. Substitution of (5.19) and (5.20) into
(5.7) gives
a’ .

Pj:ﬁP0 (j=1,2, viny8—=1) (5.21)

and
a’ )
PI:FPU (]:S,S+1,...), (522)

where a = A/u is the offered load. If a < s the infinite sum in (5.8) converges,
and

s—1 ak as e | 3
Pﬂ_(zoﬂJrs!(l—afs)) ' \9i23)

If a =5, then the infinite sum diverges to infinity, and we can take P, =0,
which implies, from (5.7), that P, =0 for all finite j. When all s servers are
busy, the service completion rate is si. Thus, we can interpret the condition
a<s (i.e., A <su) to say that a proper state distribution will exist only if the
arrival rate is less than the maximum service-completion rate; otherwise, the
queue length will grow to infinity. (Of course, this is only a mathematical
idealization; no real queue can be infinite.) Note that the queue length will
grow to infinity not only when a > s, but even when a = s; this means that the
potential work-time lost when the server is idle cannot be recovered later.

In particular, let C(s,a) denote the probability that all s servers are
occupied:

C(s, a) = zi: P . (5.24)

Then, we have the Erlang delay formula,

5

L
sl(1— als)

C(s,a)= —

= k §
a a
zo k! * si(1—als)

(a<s). (5.25)

Formula (5.25) is also called the Erlang C formula and Erlang’s second
formula, the latter denoted by E, (a). It can be interpreted (by virtue of
PASTA (2.5)) as both the fraction of time all servers are busy and the fraction
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of arriving customers who find all servers busy (and thus are delayed, i.e., must
wait in the queue).

In particular, when s = 1 (i.e., for M/M/1) the distribution defined by (5.22)
and (5.23) becomes (for a <1) the geometric,

Pf.:(l—a)a’ (j=0,1,2,..); (5.26)
also,
C(l,a)=a. (5.27)

(Observe that (5.27) follows also from (2.9), because here B =0.)

Note that, unlike the Erlang B distribution, the Erlang C distribution is valid
only for exponential service times. As a practical matter, the state probabilities
become less sensitive to the form of the service-time distribution as the number
of servers increases or the offered load decreases, all other things being equal.
This is because as the probability of queueing decreases, the system looks more
like an (insensitive) Erlang loss system, in which queueing never occurs.

Substitution of (5.21) and (5.22) into (3.2) gives

@' = {f Egg j (5.28)

(See also (2.8).) Hence, the server utilization (see (3.4)) is

[ 633 =

In the case of ordered hunt, if we let p; be the load carried by the jth server,
then it can be shown (Cooper [1981], pp. 153-157) that

p;=p(1—pC(s, a)) + pC(s, a) , (5.30)

where p, is the corresponding value for the Erlang B model, given by (5.17).
Again, for a generalization to the case of heterogeneous servers, see Cooper
[1976, 1987].

As with the Erlang B formula, direct numerical calculation of the Erlang C
formula is difficult for large values of @ and s. However, it is easy to verify that,
for every integer n > a.

nB(n, a)
C = :

(5,:) n—a(l - B(n,a))’ (&)
formula (5.31), in conjunction with the recurrence relation (5.18), provides a
basis for a fast, accurate computational algorithm. Also, in light of (5.15),
(5.31) shows easily that, for a >0, C(s, a) > B(s, a). Graphs of C(s, a) as a
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function of a, for different values of the parameter s, are given on pp. 320, 322
of Cooper [1981].

Next, we consider the distribution of waiting times when the queue discipline
is FIFO, i.e., service in order of arrival. Let W be the waiting time of an
arbitrary customer. Then we can write

P{W>t}=P{W>0}P{W>|W>0}. (5.32)
Now, clearly, for any nonbiased queue discipline,
P{W >0} = C(s, a) (5.33)
and, it can be shown, for FIFO,
P{W > t|W >0} =g (1Pl (5.34)
Observe that, according to (5.34), the waiting-time distribution for those

customers who wait is (again) exponential. Thus, the conditional mean waiting
time (for those who are not served immediately) is

EWIW>0)= —— 5.35
i )T T =
and, therefore, the mean waiting time for all customers is
C(s, a)
E(W)= —2——; 5.36
(W) (1-p)sp B0

also, by Little’s theorem (2.7), if Q is the queue length, then E(Q) = AE(W).
It is important to note that formulas (5.35) and (5.36) remain valid for any
nonbiased queue discipline (an easy consequence of Little’s theorem and the
fact that queue lengths are stochastically invariant with respect to nonbiased
queue disciplines).

Quasirandom input: Blocked customers cleared, delayed

With Poisson input, which is characterized by (5.10), the stream of arriving
customers is external to the system in the sense that future arrival epochs are
not affected by the current state of the system. In particular, the Poisson-input
model ignores the fact that when the arrivals are generated by a finite number
of potential customers, or sources, the instantancous arrival rate might be
affected by the number of sources that are ineligible to generate requests for
service because they are currently waiting in the queue or being served.
Quasirandom input accounts for this ‘finite-source effect’ by assuming a finite
customer population of size n, in which each customer generates requests with
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rate y when idle and rate 0 when waiting or in service; then, in contrast with
(5.10),

P{C(t, t+ R)|N(t) = j} = (n— j)yh +o(h) (j=0,1,2,...,n).
(5.37)

One consequence of quasirandom input is that, in contrast with Poisson input,
the arrival rate A now must be calculated from the state probabilities. When
(5.37) is inserted into (5.9), we have

] - DB

(1] = , 5.38
;m—mnMJ (539

where we have written P, = P,[n] and 11, = IT[n] to emphasize the dependence
on the number n of sources. After inserting (5.7) into (5.38) and simplifying,
we get the remarkable result:

[[n]=P[n—-1]. (5.39)

(For a more general statement and a more rigorous proof (by P.J. Burke), see
Exercise 1, p. 188 of Cooper [1981].) Equation (5.39) can be interpreted to say
that, for systems with quasirandom input, the arriving customer’s viewpoint is
the same as that of the outside observer of the corresponding system with one
less source; that is, the arriving customer sees what he would see if at his
arrival epochs he were only to observe the system (containing only the other
customers), but never join it. This theorem has a long history; according to
Wilkinson [1955], it was used as early as 1907, in a memorandum by E.C.
Molina of the American Telephone and Telegraph Company. Recently, Kelly
[1979, Theorem 3.12], Lavenberg and Reiser [1980], and Sevcik and Mitrani
[1981] have generalized it (as the arrival theorem) in the context of queueing
networks (see also Melamed [1982], Disney and Koénig [1985], Disney and
Kiessler [1987], Melamed and Whitt [1990a], and Chapter 11).

When blocked customers are cleared and n > s, we retain (5.12) and replace
(5.11) with

(n—j)y (j=0,1,2,...,5—-1),
(g R e (5.40)

Then (5.7) and (5.8) yield

p}.[n]z(’;)af éﬂ(z)&" (j=0,1,2,...,5) (5.41)

and, from (5.39),
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= AN Sl fi =T 5,
mn]=\" . )a'/ > & (j=0,1,2,...,5), (5.42)
) k=0 k

where d@ = y/u is the load offered per idle source. Formula (5.42) with j = s,
which is the analogue of the Erlang B formula, is often called the FEngset
formula (after Engset [1918], who derived (5.44), below).

Observe that if we make the substitution

._ P
Q=1 (5.43)

in (5.41), we obtain the fruncated binomial distribution:

(1)a-n-

Pln]= —1 (j=0,1,2,...,s). (5.44)
n s
> (k)p"(l—P) *
k=0
From (5.43), we have
a
p=rt, (5.45)

which equals the probability that an arbitrary source would be busy if n <, in
which case there would be no interaction among the sources; this provides a
remarkable interpretation of (5.44): The loss system with quasirandom input
behaves as if the sources become busy and idle independently of each other,
when, in fact, they do interact. From (5.44), a’ = np when s = n. Hence, np
can be interpreted as the load that would be offered if there were enough
servers so that blocking never occurs; that is, np is the load the sources ‘want’
to offer, which we call the intended offered load a*. From (5.45),

N>

a*=n

BT (5.46)

When blocked customers are cleared (and n>s), then a > a*; the actual
(measured) offered load increases as the number of servers decreases (all other
things being equal), because customers who are blocked are returned immedi-
ately to the calling population. (When s =0, then a = nd, because all sources
are always idle.) This fact embodies the essential reason why quasirandom-
input models are more complicated than their Poisson-input counterparts.

Finally, we observe that, like its Poisson-input counterpart, the
quasirandom-input loss system is insensitive to the form of the service-time
distribution (for proofs and generalizations see Kosten [1949], Cohen [1957],
and Konig [1965]).

The model with quasirandom-input, exponential service times, and blocked
customers delayed (sometimes called the machine interference or repairman
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model) is the finite-source analogue of the Erlang C model. The state
probabilities are given by (5.7) and (5.8), with

A==y =0 52 s ven) (5.47)
and
o j“ (j=1721""s)7
'u'fﬁ{s,u (j=s+1,s+2,...,n). (5.48)

Unfortunately, unlike its Poisson-input counterpart, this model does not yield
simple expressions for its performance measures or the state probabilities,
which are most easily calculated numerically directly from the recurrence
relations (5.5). However, this model is theoretically more elementary than its
Poisson-input counterpart in that it raises no questions about convergence of
infinite series; it is, in effect, self-regulating, shutting off the arrival stream
when the queue length reaches n —s. Note that a <a* (when n>s), the
opposite effect from that observed when blocked customers are cleared, and
explained similarly. (When s =0, then @ =0, because all sources are always
waiting in the queue.) Numerical results for this model are given in Descloux
[1962].
A useful relationship, which follows easily from Little’s theorem, is

n=My '+ EW)+u"), (5.49)

but either the arrival rate A (which, in this case, equals the throughput) or the
mean waiting time £(W) must be calculated from the state probabilities; (5.49)
then determines the other.

In summary, the quasirandom-input models are a finite-calling-population
generalization of their Poisson-input counterparts (which can be obtained from
the former by taking appropriately the limit as the size of the calling population
approaches infinity). Unfortunately, they are more difficult both in concept
and calculation than their Poisson-input counterparts.

6. Multidimensional birth-and-death models

The multidimensional birth-and-death model is the generalization of the
one-dimensional birth-and-death model to the case where more than one
variable is required to describe the system. Instead of the statistical-equilibrium
“rate up =rate down” equations (5.5), we now have conservation-of-flow
equations that can be interpreted to say “rate out = rate in”; that is, for each
‘state’ (appropriately defined, possibly a macrostate, i.e., a collection of states),
the rate at which the system leaves that state (because of arrivals or de-
partures) is equated to the rate at which the system enters the state. This is best
explained through an example.
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We consider a model of a simple circuit-switched telecommunications net-
work: Suppose city A is connected to city B by s, telecommunications channels
(trunks), and city B is connected to city C by s, trunks. Suppose calls between
A and B occur according to a Poisson process with rate A, and each such call,
if it finds an idle trunk among the s, that connect A and B, holds the trunk for
an exponentially distributed time with mean value ,u.l_l. Similarly, calls between
B and C arrive at rate A, and have mean holding time p,'. And calls between
A and C (which are routed through B) arrive at rate A,, have mean holding
time u; ', and require simultancously two trunks, one connecting A and B and
one connecting B and C. Any arriving call that cannot commence immediately
is cleared from the system.

Let P(j,, j,, j;) be the statistical-equilibrium probability that there are j,
calls between A and B, j, calls between B and C, and j, calls between A and C.
Then the “rate out = rate in” equations are, when j, + j, <s, and j, + j; <s,,

(A + A+ A+ iy + japa + j3p3) PUj1s Jas J3)
= MP(jy =1, jp» J3) + MP(jys Jo = 1 i) + AP(js Jos Ja— 1)
+(j, + D PGy + 1, Jos 3) + G # DiaPCins o 15 J3)
+(j + DpsP(hys Jor T 1) (6.1)

Now consider the boundary conditions j, + j, = s,, j, + j; <s,; then

(A +jipy +jatty + jama) P>j1s Jos J3)
= MP(ji— 1, Jas Ja) T AP(Js Ja— 1, a) + MP(jy, jos J3— 1)
+(jo, + D POy Jo+ 1, 13) - (6.2)

Note that (6.2) can be obtained from (6.1) by deleting terms that correspond
to transitions prohibited by the boundary conditions. Similar equations hold for
the boundary conditions j, + j; <s,, j, + j; =5,, and the boundary conditions
Ihtia=s, atja=s;.

Clearly, equations of this type cannot, in general, be solved by recurrence, in
contrast with the one-dimensional flow equations (5.5). There are many
solution strategies, including generating functions, numerical analysis (see
Chapter 5), and ad hoc serendipity but, as it turns out, the method of
separation of variables, leading to a product-form solution, works in a surpris-
ing number of cases. For example, it is easy to verify that the following
product-form solution satisfies (6.1) and all the boundary equations:

(M"M)h ()‘2"’1-"2)j2 (’\3”1“*3)}3
I J2! Js!

P(jl’jZ’jB): C, (6.3)
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where ¢ is the normalization constant. One can now calculate network perfor-
mance measures, such as the blocking probabilities for the three types of
traffic.

As a second example, we consider a model of a simple store-and-forward
telecommunications network: Suppose that two sets of servers are arranged in
tandem, so that the output (customers completing service) from the first set of
servers is the input to the second set. Assume that the arrival process at the
first stage of this tandem queueing system is Poisson with rate A, the service
times in the first stage are exponential with mean p; ', and the queue discipline
is blocked customers delayed. The customers completing service in the first
stage enter the second stage, where the service times are assumed to be
exponential with mean ;' and (unrealistically for this application) indepen-
dent of their values in the previous stage. Customers leaving the first stage who
find all servers occupied in the second stage wait in a queue in the second stage
until they are served. The number of servers in stage i is s,.

Let P(j,, J,) be the statistical-equilibrium probability that there are j,
customers in stage 1 and j, customers in stage 2. To save rewriting the state
equations for each set of boundary conditions, let

N/ (j=0,1,...,st.), v
H’j(])—{si”‘i (j=si+1’si+2"‘ _) (1—1,2,). (64)

Then the statistical-equilibrium state equations, obtained by equating the rate
the system leaves each state to the rate it enters that state, are

[A+ () + m(GiDIPGys 1)
=AP(j; —1, j,) + m(j, + DP(j, +1, 2= 1)
+uy(j, + DP(jy, j,+1). (6.5)

The term w,(j, + 1)P(j, +1, j, — 1) reflects the fact that a departure from
stage 1 constitutes an arrival at stage 2.

Again, it is easy to verify that the following product-form solution satisfies
(6.5):

P(jy, j2) = Pi(j)) Py( 1) (6.6)

where P,(j) is given by (5.21)-(5.23) with a = A/, and s =5, (i=1,2). The
product solution (6.6) shows that, remarkably, the number of customers in
each stage is independent of the number in the other; and furthermore, the
second stage has the same state distribution it would have if the first stage
weren't there.

These remarkable results, which were first obtained by R.R.P. Jackson
[1954, 1956], suggest that the output process might, in fact, be the same as the
input process to the first stage, that is, a Poisson process. The truth of this
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conjecture was proved by Burke [1956]; Burke's theorem (the output theorem)
states that the sequence of departures from an Erlang delay system in
equilibrium follows a Poisson process and, further, (as a consequence of
reversibility—see, e.g., Kelly [1979]) the state of this Erlang delay system at
any arbitrary time ¢, is independent of the departure process previous to ¢,.
J.R. Jackson [1957, 1963] first considered queueing networks with feedback;
incredibly, the introduction of feedback preserves the product form of the
solution even though it destroys the ‘Poisson-ness’ of the internal flows (see,
e.g., Burke [1972] and Disney and Kiessler [1987].) Today, networks of queues
that yield to product-form solutions are called Jackson networks (presumably,
J.R.) or, in the computer science literature, BCMP networks (after Baskett,
Chandy, Muntz, and Palacios [1975]). Driven by these kinds of theoretical
results and many important applications in computer science and industrial
engineering, the subspecialty of queueing networks has generated a huge
literature of its own—see, e.g., Disney [1985], Disney and Konig [1985], Kelly
[1979], and Chapter 11.

These two examples (circuit-switched and store-and-forward telecommunica-
tions networks) were chosen to illustrate both the simplicity of the product-
form solution and the applicability of queueing models to the analysis and
design of telecommunications networks. Some recent papers relating to circuit-
switched networks are Whitt [1985a], Kelly [1986, 1988], and Heyman [1987],
who discuss exact solutions, computational issues, insensitivity (e.g., the
assumption of exponential service times is not necessary for the validity of
(6.3)), and approximations (such as the important Erlang fixed point or reduced
load iteration procedure, for calculation of point-to-point blocking probabilities
without completely neglecting the dependencies among the network links that
form a communications path). Models for store-and-forward networks were
studied early on by Kleinrock [1964] who, in order to obtain a product-form
solution, made (as in our example) the reasonable (but false) assumption that a
message that traverses several links has its service times chosen independently
at each link. The mathematical difficulties of removing this independence
assumption are explored by Boxma [1979].

As a third example, we consider the method of phases (or stages), which is an
important procedure according to which a random variable with an arbitrary
distribution is replaced by either a sum, or a mixture, or a combined sum and
mixture of independent (but not necessarily identical) exponential random
variables (each being a phase or stage of the lifetime of the original random
variable). This technique allows transformation of the original model into a
multidimensional birth-and-death model, thus making it more amenable to
analysis. In what follows, we first give an example in which the method of
phases is used for an approximation; we then use this example to indicate how
the method of phases can be used as a theoretical tool, especially for the
investigation of insensitivity.

Consider, for example, the s-server Erlang loss system; we assume that
blocked customers are cleared, arrivals follow a Poisson process with rate A,
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and service times are independent, identical random variables with an arbitrary
distribution. In this example of the application of the method of phases, we
assume that the service time X can be approximated by a sum of n indepen-
dent, but not necessarily identical, exponential random variables,

X=X 4ot X, ¢ (6.7)

that is, we imagine that the service time X is composed of n independent
phases of service, the ith phase being exponentially distributed with distribu-
tion function F(t) = P{X, <t} =1—e™"" Then E(X)=X", u; ' and V(X) =

"1 m; . Since it is true that (I7-, u; ")?>2", (u ') it follows that any
service time described by a random variable X, where E(X)>\/V(X), can be
approximated as a sum of independent, exponential phases, as in (6.7), with
the given mean and variance. Furthermore, by judicious choice of the values n
and p, (i=1,2,..., n), other moments might also be fitted to better approxi-
mate the given service-time distribution. Of course, the phases X, ..., X, do
not necessarily correspond to any actual phases of service, but are only artifices
introduced for the purpose of approximating the original process by a birth-
and-death process.

Now suppose the service time X has greater variability than the exponential
distribution prescribes; that is, assume E(X)<V/V(X). In this case, we can
model the random variable X as a parallel arrangement of exponential phases;
that is, the realization of X is obtained by choosing, with probability p,, the
realization of the exponential random variable X,. Thus, the distribution
function of X is Fy(t)=L]_, p,F.(t), where, as before, F,(t)=1—e *"; then

E(X)=2 pu;’
i=1
and
n n 2
V(X)ZZE Pfl-"i_z - (2 PfJUnTI) .
i=1 i=1

In this case, X is said to be a mixture of exponentials, and F,(¢) is called the
hyperexponential distribution function.

To continue with our example of the method of phases applied to the
s-server Erlang loss system, suppose that a representation of the form (6.7) has
been fitted to the original data or hypothesized service-time distributon. For
ease of exposition let us assume n=2. Now, if we let P(j,,j,) be the
equilibrium probability that simultaneously there are j, customers in phase 1 of
service and j, customers in phase 2, the corresponding conservation-of-flow
equations are exactly the same as (6.5) with u,(j;) = j,,; hence the solution is

(Alp)™ (Aip,)"
! Ja!

P(jis j2) = (L +irs59). (6.8)
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The distribution {P;} of the total number of customers present is given by

P= X Pluhls (6.9)

h+ia=j

insertion of (6.8) into (6.9) yields, with the help of the binomial theorem, the
Erlang loss distribution (5.13), where @ = A(g; ' + 1, ).

This conclusion should not be surprising in light of the asserted insensitivity
of the distribution {P;} for the Erlang loss system to the service-time distribu-
tion (with a given mean). Clearly, the restriction to n = 2 phases is irrelevant.
This ‘approximate’ analysis indicates that the method of phases might be useful
as a theoretical tool in the investigation of insensitivity (because it shows
explicitly that the value of the parameter n is irrelevant).

Regarding the use of the method of phases as an approximation, Schass-
berger [1973, pp. 32-33] proves a theorem that states, roughly speaking, that
any nonnegative random variable X can be represented as accurately as desired
by a compound sum of independent, identical, exponential variables; this,
together with certain continuity results for stochastic models (see, e.g., Whitt
[1980] and the references therein), provides the theoretical justification for its
use in approximations.

The method of phases was generalized with the introduction of the class of
PH-distributions (PHase-type distributions) by Neuts [1975] and Takahashi and
Takami [1976]: A nonnegative random variable X has a PH-distribution if X
can be viewed as the time until absorption in a Markov chain with a finite
number m of transient states and a single absorbing state m + 1. PH-distribu-
tions enjoy certain closure properties, with the consequence that they can be
used as the basis for computational (i.e., numerical) algorithms for a wide
variety of queueing models. These matrix-analytic methods have been de-
veloped systematically by Neuts [1981, 1989] (see Neuts [1984] for a nontechni-
cal review) and his coworkers (see, e.g., Ramaswami and Latouche [1989],
Ramaswami and Lucantoni [to appear], Neuts [1988]); see also Chapter 5.

Botta, Harris, and Marchal [1987] examine a similar class of distribution
functions (the Generalized Hyperexponential (GH) family), and discuss the
relationships among these and other similar classes.

Finally, we remark that a particularly useful technique for the numerical
analysis of multidimensional birth-and-death queueing models is the Gauss-
Seidel iteration method and its variants—see Kaufman [1983] and Mitra and
Tsoucas [1988] for a theoretical discussion and references, and Chapter 5 for a
discussion in the context of general numerical methods.

7. The M/G/1 queue

The archetypical classical queueing model is, in Kendall’s notation, the
M/G/1 queue: Markov (Poisson) input (with rate A), General service times
(with distribution function H, with mean 7= ' and variance crz), and 1
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server; blocked customers wait in the queue as long as necessary for service to
commence and the queue discipline is nonbiased.

The difficulty of this model, relative to M/M/1, is that when the service
times are not assumed to be exponential, the transition rates at any time ¢
depend on the amount of service attained by the customer (if any) who is being
served at time ¢; hence, the “rate up =rate down” equations (5.5) are no
longer applicable. One of the most fruitful approaches to this problem (and
many similar problems) is to ‘imbed’ a Markov chain (see Chapter 2) at the
service-completion epochs (Kendall [1951, 1953]): Let N§ be the number of
customers left behind by the kth departing customer; then, from the theorem
of total probability, we can write

8

P{N:+,=j}=._0 P{N:+1=j|N,’:=i}P{N}j=i}. (7.1)
Now define
ITi=1lim P(N;=j} (j=0,1,2,..)). (7.2)

It can be shown (see Cohen [1982]) that (7.2) defines a unique proper
distribution, independent of the initial conditions, if and only if @ = A7 <1 (in
which case a = p, the server utilization). (The interpretation of this result is the
same as that given earlier for the Erlang delay model—see the discussion
between (5.22) and (5.29)). Then, the equilibrium imbedded-Markov-chain
equations, which can be obtained by taking limits formally in (7.1), are

j+1
I3 =pIT5+ 2 ppadl? (j=0,1,2,..), (7.3)
where
[t
P —J; T e “dH(t). (7.4)

(Note that p, is the probability of k arrivals during a service time.) Then, from
(7.3) and (7.4) the probability-generating function g(z) = I ITz’ of the distri-
bution (7.2), which satisfies the normalization condition g(1) =1, is

_ (2= (A~ A2)
8(z) = z-n(A—Az2)

where 7 is the Laplace-Stieltjes transform of H. Note that from (2.5) and
(2.6),

m=1=F, (7.6)
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(but IT; and P; are more difficult to calculate directly). Differentiation of (7.5)
(and two applications of L’Hospital’s rule) yields

2 2
p o
1)= +—(1+—~). 7.7
If N denotes the total number of customers in the system and Q the number in
the queue, then E(N)=g’(1) and E(Q) = E(N) — p; hence,

E(Q)= 2(12 (1+(:—22) (7.8)

and, by Little’s theorem, the waiting time W has mean value

E(W) = ﬁ (1 d ‘:—j) . (7.9)

These important formulas exhibit two characteristic terms: the term 1 — p in
the denominator, and the term 1+ o%7% which is a manifestation of the
length-biased sampling by which a customer ‘selects’ the service time during
which he arrives. (Note that (7.9), for example, can be written E(W)=
p(1 - p)'E(R), where E(R) is given by (4 7) with X being the service time.)
Comparison of (7.7) for M/M/1 (¢* = 7%) and M/D/1 (Deterministic, i.e.,
constant service times, o = 0) shows that the mean waiting time in the case of
exponential service times is exactly twice that in the case of constant service
times (all other things being equal); but, in both cases, the probability of
blocking is the same:

PW>0}=1-I,=1-ITt=1-g(0)=p, (7.10)

where the last equality in (7.10) follows from (7.5). (Note that I, = P, by
PASTA, and hence (7.10) is consistent with (2.9) (with B = 0).) Thus, remark-
ably, the probability of waiting is insensitive to the form of the service-time
distribution, but the length of wait is not.

Now, suppose the queue discipline is FIFO, and let w be the Laplace—
Stieltjes transform of the waiting-time distribution function. If ¢ is the corre-
sponding transform for the sojourn time (waiting time plus service time) then,
since the customer’s service time is independent of his waiting time,

$(s) = w(s)n(s) - (7.11)

Furthermore, since every departing customer leaves behind him exactly those
customers who arrived during his sojourn time, (2.13) applies, with F inter-
preted as the distribution function of sojourn times. Combination of (2.13)
with (7.5) and (7.11) yields the celebrated Pollaczek—Khintchine formula
(Pollaczek [1930], Khintchine [1932]):
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s(1-p)
w(s)= —————— . T:12
R ) Heléd
(Equation (7.9), which of course can be obtained from (7.12) according to
E(W)= — '(0), is also often called the Pollaczek—Khintchine formula.)
To invert (formally) the Pollaczek—Khintchine transform, note that the
right-hand side of (7.12) can be expanded in a geometric series, and thus

mnzzgrmm(liiﬂﬂy. (7.13)

T §

Comparison of (7.13) with (4.8) shows that term-by-term inversion gives
P{(W<t}=2 (1-p)p'H*(t), (7.14)
j=0

where H is the distribution function of the forward recurrence time of a service
time,

Aw="1 - HoNay, (1.15)

(see (4.6)) and H* is its j-fold self-convolution.

Formula (7.14), found by Bene$ [1957], seemed quite mysterious until
recently: It says that the waiting time in M/G/1-FIFO is a geometric convolu-
tion of partial service times. This is clearly true for M/M/1, where (i) the state
distribution is geometric (see (5.26)) and (ii)) H= H (see the discussion
following (4.6)) but, in general, neither (i) nor (ii) is true (but, of course,
(7.14) is).

One explanation of this mystery lies in the realization that waiting times in
M/G/1-FIFO are the same as remaining work (the time until the system would
become empty if no new customers arrived) in M/G/1-LIFO preemptive-
resume (a new arrival preempts the customer in service, pushing him back to
the head of the queue, and service resumes from where it left off when a
preempted customer reenters service); in the latter case, the state distribution
is indeed given by (5.26) (and is thus insensitive to the form of H), and the
remaining service time for a preempted customer is, not surprisingly, described
by (7.15). (For an intuitive derivation and references, see Cooper and Niu
[1986].) In some sense, then, one can say that the queue discipline LIFO
preemptive-resume is simpler, more natural, than FIFO.

We have discussed these arguments for M/G/1 in some detail because
variations of them are common in the analysis of more complicated M/G/1-
type queueing models. We now summarize some results that relate to other
aspects of the M/G/1 queue.

Consider the queue from the viewpoint of the arrivals: Let N be the number
of customers present when a typical customer (the test customer) arrives, and
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let R be the remaining service time of the customer (if any) in service when the
test customer arrives. Define IL(x)=P{R<x, N=j}, with probability-
generating function I1(z, x) = X7_, II(x)z’. Then, Wishart [1961] (see also
Takacs [1963]) has shown (after much calculation) that

_(0=-p)Az(1-2) r —A(1-2)¢ o
H(z, ¥)= P22 | ™M H(E +2) - H(§)) ¢
(7.16)
from which it follows easily that, as one might expect,
P{R<x|N=1}=H(x), (7.17)

where H is given by (7.15).

The busy period B is defined as the length of time from the instant a
customer enters a previously empty system until the next instant at which the
system is completely empty (i.e., the continuous busy-time of the server). If 8
denotes the Lapace-Stieltjes transform of the distribution function B(¢) =
P{B =<1}, then it can be shown (Takécs [1962]) that B is the solution with
smallest absolute value of the functional equation

B(s) =m(s + A= AB(s)) ; (7.18)

furthermore, when At =1 the mean busy period b is infinite, and when A7 <1 b
can be calculated from (7.18) according to b = — B'(0), which yields (with
p=Ar<1)

_ T
1-p

b (7.19)

(which is insensitive to the distribution of service times). (Observe that,
characteristically, (7.19) ‘tells’ you that b is finite only when A7 <1, because
otherwise the right-hand side is infinite or meaningless.)

Define a j-busy period B; as a busy period that begins with j customers
present (B, = B). A simple argument shows that

B(r)= B*/(1), (7.20)

where B,(r) = P{B, <t}: For imagine that the server serves all the descendants
of the first of the j original customers (those who arrive during the first service
time, plus those who arrive during the service times of those who arrived
during the first service time, and so on) before beginning to serve the second of
the original j, and so on; that is, each of the original j customers generates,
through his descendants, his own 1-busy period. Hence, the j-busy period is the
sum of these j (independent) 1-busy periods.
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Equations (7.18) and (7.20) turn out to be quite useful in the analysis of
some of the more complicated variants of M/G/1, such as vacation models (to
be discussed shortly) and priority queues (see Takagi [1987]), and queues
served in cyclic order by a server that moves from queue to queue (cyclic
queues, or polling models—see Takagi [1986, 1990]). Interestingly, the right-
hand side of (7.19) also equals the mean sojourn time in the M/G/1 queue
with processor-sharing (in which each of the n customers present receives
(1/n)th of the server’s work; this model, which, like M/G/1-LIFO preemptive-
resume, has its state distribution given by (5.26), insensitive to the form of H,
is surveyed in Yashkov [1987, 1989]).

Now let K; be the number of customers served during a j-busy period. Then,
the joint distribution of K; and B, is

n—j
P{K;,=n,B;<t} = ] E:{)])‘ MAH*"(y) (n=)).  (7.21)
Equation (7.21) suggests that the factor j/n equals the probability that the n — j
arrivals occur in such a way that the n service times form a busy period (that is,
the server remains continuously busy until the completion of the nth service
time). This interpretation is, in fact, correct, and has led to the realization that
many such results can be obtained by combinatorial methods (in particular,
from generalizations of the classical ballot theorem), and that there are deeper
reasons, not immediately obvious, why apparently different questions often
have strikingly similar answers. These ideas have been developed systematical-
ly by Takacs [1967]; for some new results of this type, see Niu and Cooper
[1989].
Another example of a result that is composed of familiar-looking terms,
begging for interpretation, is the distribution function of the waiting times in
nonpreemptive LIFO M/G/1:

(M)’

PiW<ty=1-p 2 J [1-H*(y)]dy.  (7.22)

To illustrate how the ‘pieces’ of the classical M/G/1 model fit together in the
analysis of a variant of M/G/1-FIFO, and to convey the flavor of the classical
transform-type arguments, as examplified by Takacs [1962], we will outline a
derivation of (7.22).

Let T, be the arrival epoch of an arbitrary customer (the test customer,
whose viewpoint we adopt). Assume first that he arrives when the server is
busy, and let T be the next subsequent service-completion epoch. Then the
joint probabllty P(x) that j other customers arrive in (7., T,) and that
T,— T,<x is given by

Py(x) :f: (t—f)! e M dH(¢), (7.23)
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where H is, according to (7.17), given by (7.15). Because the queue discipline
is nonpreemptive LIFO, the test customer’s waiting time W is the j-busy period
generated by the j customers who arrived in (7,, T,). Therefore,

P{W<1|lW>0}= i‘, L P(t-x)dB(x), (7.24)

where, by (7.20), B; is the j-fold self-convolution of the distribution function of
the 1-busy period, whose Laplace-Stieltjes transform is defined by (7.18).
Therefore, in light of (7.10), the unconditional distribution of W is

P{WSI}=1—p+péleﬁj(t—x)dB*"(x), (7.25)

Inserting (7.23) into (7.25) and taking Laplace—Stieltjes transforms (and using
the fact that, if g; is the Laplace-Stieltjes transform of B;, then, from (7.20),
B = B'), we get, after some calculation,

1—=n(s + A= AB(s)
s+A(1-B(s)

which, with the help of (7.18), reduces to

A(l - B(s)
T (7.27)

Finally, inversion of (7.27) yields (7.22). (See Riordan [1961], Wishart [1960],
and, especially, Takécs [1963].)

This example illustrates not only the characteristic interlocking of the pieces
of the M/G/1 jigsaw puzzle, but also the virtuosity required to obtain and
invert Laplace-Stieltjes transforms. These techniques, while powerful in the
hands of those at home in the complex plane, are felt by some to hide
understanding behind the ‘Laplacian curtain’ (Kendall). This has motivated
some to search for probabilistic or combinatorial derivations, which are
technically more elementary, but may be conceptually more complicated. In
truth, each approach complements the other. We shall return to this point
shortly, when we indicate how (7.22) can be obtained by a combinatorial
argument coupled with the concept of duality (between the M/G/1 queue and
its dual GI/M/1 (General Independent interarrival times) obtained by inter-
changing the interarrival-time and service-time distributions).

An interesting and important variant of M/G/1 is the case when the number
n of waiting positions is finite. Then II ,, is the probability that an arriving
customer will find all » waiting positions occupied; that is, I, is the fraction
of customers who overflow and are lost. As a practical matter, a system
designer might want to find the smallest value of #n to satisfy a given criterion
for probability of loss. The analysis is complicated by the fact that although the

w(s)=1-p+A (7.26)

w(s)=1—p+
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departing customer’s distribution {IT§, ITf, ..., II*} can be determined (at
least numerically) from (7.3), one cannot calculate IT,,, directly from IT),,
(because, clearly, II,, =0). Discussions are given in Cooper [1981] and
Takagi [1985], who provide complementary references.

Another interesting variant is the M/G/1 queue with batch arrivals: Each
arrival epoch now corresponds to the arrival of a batch of customers, where the
batch sizes are independent, identically distributed random variables (with
mean m and variance &) and customers are served one-at-a-time, with
service-time distribution /H as before, and Amr <1. Let W be the equilibrium
waiting time of an arbitrary (test) customer. Then W= W, + W,, where W, is
the time from arrival to start of service of the test customer’s batch, and W, is
the remaining time until start of service of the test customer; hence E(W)=
E(W)) + E(W,), where

Am’r? ma? + 767
EW) = 20— amn) ( e ) ag)
and
a2
E(Wz) = M il (7_29)

2 2m

Formula (7.28) follows directly from (7.9) if we view the batch as if it were a
single customer whose service time is the compound sum of the service times of
the customers in a batch (with mean m7 and variance mo” + 7°6%). Formula
(7.29) follows from the recognition that the batch that contains the test
customer is ‘larger’ than an arbitrary batch; this is the discrete analogue of the
length-biasing effect alluded to in the discussion surrounding (4.9). Interesting-
ly, several treatments of this model in the literature have overlooked this
effect, with the consequence that the second term in (7.29) is omitted. (This is
an example where the ‘error-detecting’ property of queueing theory failed.) A
more detailed discussion is given in Burke [1975]; see also Halfin [1983] and
Whitt [1983], who study further the relationship between batch delays and
customer delays.

There are many more related topics and variants of the M/G/1 model; our
selection is based on a combination of criteria including importance, simplicity,
and illumination of concepts that are characteristic of queueing theory. We
close this section with a short discussion of vacation models, which have
received much attention of late, both because of their interesting theoretical
properties and because of their use as components in the analysis of the more
complicated cyclic-queueing (or polling) models, which have important applica-
tions in telecommunications and computer network design (see, e.g., Bertsekas
and Gallager [1987]).

In a vacation model the server intermittently goes on a ‘vacation’, during
which time it is not available to serve the main stream of customers. The
vacations can model server breakdowns, scheduled maintenance, or time
devoted to other work, such as serving customers of a different priority class.
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The idea of allowing a removable server dates at least from Gaver [1962] and
Keilson [1962], but the general vacation model was introduced in Skinner
[1967] and Cooper [1970]. Their motivation in defining the general vacation
model was to permit calculation of waiting times in an N-queue cyclic-queueing
model in the case N =2 (Skinner [1967]) and arbitrary N (Cooper and Murray
[1969]), in which a set of queues is served in cyclic order by a single server that
travels from queue to queue. Then, from the viewpoint of any particular
queue, the server is on vacation when it is not serving this queue. In their
cyclic-queueing model, Cooper and Murray [1969] considered two vacation
disciplines, exhaustive service (the server takes a vacation whenever the
particular queue is empty) and gated service (the server takes a vacation when
it finishes serving the customers who were waiting in the particular queue at the
end of the last vacation); Cooper [1970] then used the M/G/1 vacation model
to obtain exact waiting-time information for the (more complicated) N-queue,
cyclic-queueing model with these two vacation disciplines. In this application, it
is natural to assume that if the server finds no customers waiting when it
returns from a vacation, it immediately takes another vacation, which is now
called the multiple-vacation model (as opposed to the single-vacation model,
introduced by Levy and Yechiali [1975], in which the server remains available
for service if there are no customers waiting at the end of its vacation).

The interesting fact about vacation models is that, in certain cases, the
equilibrium distribution of the number of customers present decomposes into a
convolution of distributions, one of which relates to the corresponding model
without vacations, and the other to the vacations alone. For example, let N;
and N, be, respectively, the number of customers present at (1) an arbitrary
(or arrival or departure) point in time and (2) an arbitrary (or arrival) point in
time when (given that) the server is on vacation. If ¢ and y are the
probability-generating functions of the equilibrium distributions of N, and N,,
then, as shown by Fuhrmann and Cooper [1985b] under quite general condi-
tions,

¥(z) = x(2)8(2) , (7.30)
where g is given by (7.5) and, for the multiple-vacation model,
1 ik,
x(2) = {(2) m‘%—) : (7.31)

where { an « are, respectively, the probability-generating functions of the
number of customers present at the start of a vacation and the (presumed
independent) number of customers who arrive during the ensuing vacation.
Note that the vacations are not required to be mutually independent.

The decomposition theorem (77.30) in the particular case of exhaustive service
was first obtained by Skinner [1967] and Cooper [1970]; in that case, {(z) =1
and, as subsequently observed by Levy and Yechiali [1975], Scholl and
Kleinrock [1983], and Fuhrmann [1984], the right-hand side of (7.31) is then
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the probability-generating function of the number of (Poisson) arrivals that
occur during a time interval that is distributed as the forward (or backward)
recurrence time of a vacation interval (if the rules that govern when the server
begins and ends the vacations do not anticipate future jumps of the Poisson
arrival process). In certain cases, the queue-length decomposition (7.30)
translates directly into a waiting-time decomposition; for example, if the
vacations are not anticipative of the arrival process, and the queue discipline is
FIFO, then application of (2.13) leads directly to an analogous decomposition
of the Laplace-Stieltjes transform of the waiting-time distribution (see, e.g.,
Exercise 12, p. 222 of Cooper [1981]).

Two particular multiple-vacation exhaustive-service vacation disciplines of
interest are the N-policy and T-policy. In the N-policy, the server is turned off
(sent on vacation) when there are no customers present, and turned on again as
soon as there are n customers present; then «a(z) = z". In the T-policy, the
server is turned off at the end of a busy period and then ‘looks’ periodically at
intervals (i.e., after vacations) of length ¢, terminating its vacation at a ‘look’
only when there is a customer waiting; then a(z)=e "'"?* These models
have been analyzed from the viewpoint of optimal control (balancing costs of
waiting against costs of operating the server) by Yadin and Naor [1963] and
Heyman [1968] (N-policy) and Heyman [1977] (T-policy). (See Heyman and
Sobel [1984] for a comprehensive discussion of optimization and control of
queues.)

Recently, decomposition theorems of the form (7.30) (and similar forms—
e.g., Ott [1984]) have been proved to hold for a wide variety of vacation
disciplines in M/G/1 (see Fuhrmann and Cooper [1985b], and also Baba
[1986], Boxma [1989], Doshi [1990a], Harris and Marchal [1988], Keilson and
Servi [1990], Kella and Yechiali [1988], Lee [1988], Shanthikumar [1988], and
Wolff [1989]) and even, in some cases, for G/G/1 (see, e.g., Doshi [1985,
1986, 1990c], Fricker [1987], Gelenbe and Iasnogorodski [1980], Keilson and
Servi [1986], Kella and Whitt [1989], Lucantoni, Meier-Hellstern, and Neuts
[1989], Shanthikumar and Sumita [1989], and Takagi [1989]).

Finally, we note (to come full circle) that decomposition results of the type
(7.30) have been applied recently to the analysis of waiting times in cyclic-
queueing models—see Fuhrmann [1985], Fuhrmann and Cooper [1985a], Levy
and Kleinrock [1986], Servi [1986], Boxma and Groenendijk [1987, 1988],
Boxma, Groenendijk, and Weststrate [1988], and Servi and Yao [1989]. The
most recent comprehensive surveys of vacation models and polling models are
Doshi [1990b] and Takagi [1986, 1987, 1990]. (As the reader can see from these
citation dates, papers on this topic are now appearing so frequently that the
present discussion will be out of date soon after its appearance.)

8. The GI/M/s queue

We now turn to the classical GI/M/s model: Interarrival times (the times
between successive arrival epochs) are General /ndependent random variables
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(with distribution function G and mean A '), service times are exponentially
distributed (with rate u), there are s servers, blocked customers wait in the
queue as long as necessary for service to commence, and the queue discipline is
nonbiased. Let {II.} be the arriving customer’s equilibrium distribution, as
defined by (2.2) and (2.4) (and note that, in general, (2.5) does not apply,
because the input process is no longer assumed to be Poisson). As with
M/G/1, we can write the imbedded Markov-chain equations for the distribu-
tion {/I;}, where now the imbedding occurs at the arrival (instead of de-
parture) epochs (but note that (2.6) still applies).
It can be shown that, for A/su <1,

IL=Ar"" (j=s-1), (8.1)

where the constant A will be given shortly, and r is the unique root in (0, 1) of
the equation

r=y((1= 1w, (82)

where vy is the Laplace-Stieltjes transform of G. Equation (8.1) shows,
significantly, that the distribution {II;} is essentially geometric, with r playing
the same role for GI/M/s as that played by p (= A/sp = a/s) in M/M/s (see
(5.22)). Therefore, by the same arguments that led to (5.34) and (5.35) we
have, for FIFO,

P{W > t|W >0} = (7" (8.3)

and, for any nonbiased queue discipline,

1

E(W|W>0)= m «

(8.4)
Note that although r replaces p in (5.22), (5.34), and (5.35), the server
utilization a’/s is still given by p = A/su; that is, (5.28) and (5.29) remain valid
for GI/M/s (of course, when G(f) =1—e™", then r = p).

The analogues of (5.33) and (5.34) are

P(W >0} = -l‘f—r (8.5)
and
A
E(W)= ———.
() == (8:6)
The constant A is given by
1 : 1 sys(A-%)-17"
A :{ + () ’ } , 8.7
1-r E‘le(l—yj) i/ s(1-nr—j (8.7)
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where
y=v0r) (j=0,1,...,9) (8.8)
and
C,=H1(1—~_’f7) (j=1,2,...,5). (8.9)
A derivation of (8.7), as well as the probabilities I, IT,, . . ., I, _,, is given

in Takécs [1962]. The outside observer’s distribution {P,;} can be calculated
from the arriving customer’s distribution {11} and the “rate up = rate down”
equations

AIIf-—lzlr"l‘,u"Dj (j:]-a 2’- '-)a (810)

where p; is defined in (5.20) (see Heyman and Stidham [1980]).

In the particular case of GI/M/1, things simplify somewhat and there are
similarities with M/G/1. Indeed, it makes sense to define for any M/G/1
queue its dual (or inverse), which is the GI/M/1 queue that is obtained from its
M/G/1 counterpart by interchanging the service-time distribution and the
interarrival-time distribution. Then, any busy period can be translated into a
busy period in its dual by replacing each arrival epoch by a departure epoch
and vice versa, and letting time run in the reverse direction. This observation
has been exploited recently by Niu and Cooper [1989] (1) to provide some new
derivations of old results and (2) to derive some new results for GI/M/1.
(Similar arguments were used in Bhat [1968].)

As an example of (1), consider the duration B of the busy period in
GI/M/1. 1t is well known that

pa<y=3 & (“‘)} - erigpray, (8.11)

which looks remarkably like (7.22). Although (8.11) can be derived from first
principles (Takacs [1962]), the derivation via its M/G/1 dual ‘explains’ the
striking similarity between (8.11) and (7.22). (The point here is that it makes
sense to look for connections between results that look similar but do not, at
first glance, yield to term-by-term interpretation or an obvious mapping of one
into the other.)

As an example of (2), we give the joint distribution of the number K served
during a busy period, its duration B, and the duration / of the idle period that
follows:
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P{K=n,B=t 1<z}

[ A e (1)

xty=s
x,y=0

[G(y + 2) — G(y)]p dy dG*" " P(x) . (8.12)

There are many other facts about the classical single-server models (for
example, Cohen’s [1982] The Single Server Queue runs about 700 pages) but
the results given here include the most important and useful, and reflect the
flavor of the subject.

9. Other topics

As noted earlier, there are at least 5000 papers on queueing theory (Disney
and Kiessler [1987]). Clearly, there are many topics we have not yet discussed.
We shall mention a few:

The G1/G/1 queue

One of the first studies of the FIFO GI/G/1 queue is Lindley [1952], who
began with a relation that (clearly) expresses the waiting time of a customer in
terms of the waiting time and service time of the previous customer and the
time between their arrival epochs:

=(Wn+Xn7‘[n+l)+! (9'1)

where W, is the waiting time of the nth arrival, X, is his service time, I, is
the interarrival time between the arrival epochs of customer n+ 1 and cus-
tomer n, and Z" = max (Z,0). Relation (9.1) can be written as an integral
equation,

W)= [ W0 dPX, -1, <) (20), 9:2)

where W (t) = P{W,_ <t}. Lindley showed that a unique equilibrium distribu-
tion W(t) =lim,_ W,(¢) exists if and only if p= E(X,)/E(I,)<1 (in which
case p equals the server utilization); and furthermore, the distribution function
W(t) is the solution of the integral equation (which is of the type called
Wiener—Hopf) that is obtained formally by taking limits in (9.2). Wiener—
Hopf equations can be solved by the methods of complex analysis; typically,
this requires the use of such theorems from analytic-function theory as
Liouville’s theorem and Rouché’s theorem. (See for example, Prabhu [1974]
and Cohen [1975].) These results are of primarily mathematical interest, and
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do not usually lead to simple formulas or computational algorithms (but see
Ott [1987]). Other methods for the study of GI/G/1 queues include combina-
torial analysis, fluctuation theory, and random walks (see e.g., Chapter 3). A
survey and synthesis is given in Kingman [1966]. As with M/G/1, there has
been for GI/G/1 recent interest in the properties of the LIFO queue discipline
(e.g., Fakinos [1987], Niu [1988], Shanthikumar and Sumita [1986], and
Yamazaki [1984]) and in vacation models (e.g., Doshi [1986]).

The GI/G/s queue

This model, of course, includes GI/G/1 as a special case, but it is much
more complicated (see Kingman [1966]). Kiefer and Wolfowitz [1955] (see also
Wolfson [1986]) proved the existence of a unique equilibrium waiting-time
distribution function for FIFO GI/G/s if and only if p = E(X,)/sE(1,) <1
(again, p equals the server utilization). GI/G/s was studied in a series of
papers by Pollaczek, beginning in the 1930s and spanning over three decades.
A discussion of the Pollaczek method is given in Pollaczek [1965] and the
appended discussion by Syski, Takacs, Kingman, and others. Pollaczek’s
method has been extended and simplified (somewhat) by de Smit [1973].

Because of the generality and complexity of the GI/G/s model, Pollaczek’s
method does not yield simple formulas or computational algorithms. However,
tables of performance measures for GI/G/s queues (including the case of finite
waiting-room), calculated using the method of phases, are given in Seelen,
Tijms, and Van Hoorn [1985].

A formula that approximates the mean waiting time (for any nonbiased
queue discipline) in GI/G/s is

2 2
c.t+c

E(WGIIG.".s) = % E(Www;) > (9.3)

where ¢, and c, are, respectively, the coefficients of variation of the inter-
arrival-time and service-time distributions, and E(Wy,y,,) is given by the
right-hand side of (5.36). Formula (9.3) works well for M/G/s, and holds
asymptotically as p— 1 for GI/G/s (the latter statement being an example of a
heavy-traffic theorem). Whitt [1985b] discusses this and other approximations
for GI/G/1 and GI/G/s, including diffusion approximations (see Chapter 4),
and gives tables and many references. Similarly, Tijms [1986], in a long
chapter, “Algorithms and approximations for queueing models”, devotes a
section to GI/G/s and gives many references.

Statistical analysis

Typically (as in this chapter), queueing theory is approached from the
viewpoint of the probabilist, according to which models are constructed and
analyzed under the assumption that the underlying distributions and their
parameters are known or can be obtained easily. Therefore, application of
queueing-theory formulas often requires that these quantities be measured or
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estimated, and hence the viewpoint of the statistician becomes relevant (see
Chapter 6). A survey on the statistical analysis of queueing systems is given in
Bhat and Rao [1987].

Transient analysis

Finally, we remark that this chapter has been focused primarily on queues in
equilibrium. Transient (or time-dependent) analysis, for systems assumed to
have been in existence for only a finite length of time, is much more difficult
than equilibrium analysis. To illustrate this complexity, we give one form of the
transient solution of (5.4) for M/M/1 with initial condition P,(0) = 1:

Pj(t) s a(j—l).’z B—(l+a)'|:1j7i-(2a”2t) i a—l/llj+i+1(2alf2r)

+(1-a) 2 a7 Ijﬂ.ﬂ(za“’*t)] . (9.4)
k=2

where the functions I are modified Bessel functions. (For related results see
Pegden and Rosenshine [1982], Boxma [1984], Towsley [1987], Syski [1988],
Baccelli and Massey [1989], and Parthasarathy and Sharafali [1989].) Numeri-
cal methods for transient analysis are discussed in Abate and Whitt [1989] and
Chapter 5; approximate transient descriptions are discussed in Abate and
Whitt [1987, 1988].

10. Concluding remarks

As I have stressed repeatedly throughout this chapter, Queueing Theory has
a large literature that seems to be growing exponentially. Therefore, instead of
trying to cover as many different models as possible, I have restricted myself to
a few basic models, and emphasized what I see as the flavor of the subject,
with a proper balance between classical and recent developments. My choice of
topics reflects those I feel are most important (and those on which I have
worked—one writes what one knows).

I have tried to choose the references with care; the papers and books cited
reflect a compromise among several criteria. The cited works are (in my
opinion) either (1) historically important, (2) technically seminal, (3) wide-
ranging and definitive, with many references, (4) recently published, and
therefore not cited in other references, or (5) some combination of these
criteria. Unfortunately, many important papers and books are not cited here
but, I think, almost all remaining important works are cited in the papers and
books cited here; the reader has been provided with a list of pointers.

This chapter is keyed somewhat to my textbook Cooper [1981], which
contains an annotated bibliography of almost all English-language hardcover
books on Queueing Theory published prior to 1981. Also, detailed solutions to
the Exercises in Cooper [1981] are given in Tilt [1981]. Many of the details
omitted in the present survey can be supplied by consulting these books. Two
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other textbooks at about the same mathematical level are Gross and Harris
[1985] and Kleinrock [1975, 1976] (with solutions manuals by Kleinrock and
Gail [1982, 1986]). Serfozo [1986] gives a survey of recent developments; Syski
[1985] and Pakes [1986] provide short surveys in the form of encyclopedia
articles; and Prabhu [1987] gives a bibliography of books and survey papers.
Heyman and Sobel [1982] cover the ground midway between the queueing-
theory texts and those that give a more traditional treatment of the theory of
stochastic processes. Franken, Konig, Arndt and Schmidt [1981], using the
theory of stationary random marked point processes, give a unified treatment
of many theoretical issues (such as stationarity, ergodicity, insensitivity, and
Little’s theorem). Whittle [1986] gives the latest on insensitivity. The most
important classical books (defined as theoretical works that predate 1970 and
remain useful today) include Cohen [1982, first edition 1969], Prabhu [1965],
Riordan [1962], Syski [1986, first edition 1960], and Takécs [1962, 1967].

For completeness, and to illustrate further the vitality of the field, the
following list of recent books, not cited in the annotated bibliography of
Cooper [1981] and not previously cited in this chapter, is provided: Agrawal
[1985], Akimaru and Cooper [1985], Asmussen [1987], Aven, Coffman, and
Kogan [1987], Baccelli and Brémaud [1987], Borovkov [1984], Brémaud
[1981], Bruell and Balbo [1980], Bunday [1986], Carmichael [1987], Chaudhry
and Templeton [1983], Cohen and Boxma [1983], Conway and Georganas
[1989], Daigle [to appear], Fujiki and Gambe [1980], Gelenbe and Mitrani
[1980], Gelenbe and Pujolle [1987], Gnedenko and Kénig (1983, 1984],
Gnedenko and Kovalenko [1989], Hillier and Yu [1981], Kashyap and Chaud-
hry [1988], Lavenberg [1983], Medhi [1984], Newell [1984], Prabhu [1980],
Shedler [1987], Srivastava and Kashyap [1982], Stoyan [1983], Trivedi [1982],
Van Doorn [1981], and Walrand [1988]. Finally, a comprehensive bibliography
of books, including works in Russian and Japanese, is given in Takagi and
Boguslavsky [1989].
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