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ABSTRACT

We consider a queuing system in equilibrium in which customers
arrive according to a Poisson process and request service from a group
of parallel heterogeneous exponential servers that are numkbered 1,2,..,
s. An arriving customer is served by the lowest-numbered idle server.
The parameter of the exponential distribution that characterizes the
jth server depends on the index j; that is, each server works at its own
characteristic rate. A blocked custcmer (one who finds all s servers
busy) may defect from the system or wait in accordance with any
scheme such that the states of the system comprise a birth-and-death
process. For this model we calculate (i) the probability that an arriv-
ing customer will find all s servers busy and i = 0, 1,.... other
customers waiting in the queue, and (ii) the load carrried by (utiliza-
tion of) each server in the ordered group. These quantities sometimes
permit straight-forward calculation of other important quantities,
such as the waiting time distribution function when ali blocked custo-
mers wait until served and service is in order of arrival. The method
of solution is of interest in itself; it consists of recognizing that the
complicated set of multidimensional birth-and-death equations that
describe this model are essentially the same as those that describe
a different model, which in turn can be analyzed by a method that
does not require solution of these equations.

1. Introduction

We consider an equilibrium queuing system composed of s heterogeneous
exponential servers, numbered 1, 2, ..., s, in which each arriving customer
is served by the lowest-numbered idle server. The queuing system is
represented as a multidimensional birth-and-death process as follows: Let
A and pk (k = 0, 1, ...) be the birth and death rates when the total number
of customers present (waiting or in service) is k. We require only that
M = X when k < s (customers arrive in a Poisson stream when there is at
least one idle server) and pr = p(l)x,+... +u(s)xs when k < s, where
[w(N]~* is the mean service time for the jth server and x; is the realization
of a random variable X; that assumes the value 0 when the Jth server is idle
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and 1 when it is busy. The birth rates A(k = s) and death rates px(k > $)
can be arbitrarily chosen in the usual fashion to correspond to different
arrival processes and queue disciplines (for example, if the waiting room can
accommodate at most n customers, then Ax = 0 when k = s + n). For
this model we calculate (i) the probability that an arriving customer will
find all s servers busy and i = 0, 1, ... other customers waiting in the queue,
and (ii) the probability P{X; = 1} that the jth ordered server is busy (that
is, the utilization of or load carried by the jth server). These quantities,
which are easily calculated, permit straightforward calculation of other
important quantities in certain models, such as the waiting time distribution
function for order-of-arrival- service when all blocked customers wait until
served.

The method of solution is of interest in itself; it consists of recognizing
that the complicated set of multidimensional birth-and-death equations that
describe this model are essentially the same as those that describe a different
model, which in turn can be analyzed by a method that does not require
the solution of these equations.

In the standard birth-and-death queuing model, in which the servers are
homogeneous (statistically ideatical), the system in equilibrium can be
described in the usual manner by the well known one-dimensional birth-and-
death equations that relate the rates at which the system moves from state
to state. In this case the srare of the system is taken simply as the number
of customers present without regard to which servers they occupy. Thus the
order of search for an idle server is irrelevant unless one is interested in the
behaviour or states of a pariicular server instead of only the behaviour of
the system as a whole. On the other hand, if the servers work at different
rates, then a description of the (birth-and-death) process requires specifica-
tion of not only the total number of customers present, but also the identities
of the particular servers they occupy. Thus, the way in which a customer
chooses which server to occupy when more than one is available must be
specified when the servers are heterogeneous. And the birth-and-death
equations that describe the case of heterogeneous servers are now multi-
dimensional instead of one-dimensional. These multidimensional equations
are no more difficult than their one-dimensional counterparts to derive, but
they are much more difficult to solve since, unlike the one-dimensional
equations, they do not, /n general, yield a simple closed-form solution.

Most previous authors who have considered queues with heterogeneous
servers have assumed either random or ordered selection of idle servers, and
all have approached the problem through solution of the detailed multi-
dimensional equulibrium birth-and-death equations. For the case where an
arrival who finds at least two idle servers chooses his server at random from
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all those idle, Gumbel [4] has shown that, as sometimes occurs in such
problems, the multidimensional birth-and-death equations for this case do
admit a simple closed-form solution whose correctness is easily verified by
substitution.

On the other hand, if service is provided by heterogeneous "servers that
are selected in a prescribed order, the problem is more difficult in the sense
that the multidimensional birth-and-death equations for this case do not
admit a simple closed-form solution. Singh has solved the equilibrium
birth-and-death equations by brute force for the special case of s = 2 servers
(Singh [9], see also pp. 220-223 of [1]) and 5 = 3 servers (Singh [10]). In
Ref. [9] Singh was concerned primarily with the question of finding the
optimal allocation of service rates between the two servers. (see Ref. [9]
also for additional references.) This question has been considered by Tahara
and Nishida [12] for the corresponding model with an arbitrary number of
servers but with no waiting positions. It will follow as an easy counsequence
of our analysis that the conclusions of Tahara and Nishida remain valid for
the more general model considered here. The interesting model in which
each customer minimizes his own expected sojourn time by (possibly)
refusing to accept service from an idle server if he can reduce his expected
remaining sojourn time by waiting for a faster server to become idle was
considered by Godini [3], who set up, but did not solve, the multidimensional
birth-and-death equations.

The problem of homogeneous servers that are selected in a prescribed
order is of importance in teletraffic theory, particularly in studies of alternate
routing of telephone calls and defermination of the load carried by each
trunk (server) of an ordered group. These efforts, which date from the 1920’s
are described in Syski [11] under the headings of alternate routing, gradings,
hunting, overflow, and limited availability. Recently, Wallstrém [14] has
generalized a classic teletraffic model to include heterogeneous servers. In
Wallstrém’s model, customers arrive in a Poisson stream and seek service
first from any server in a primary group. If an arrival finds all servers in
the primary group busy, he overflows to a secondary group. If he also
finds all servers in the overflow group busy, he is cleared from the system
without receiving service. The service times provided by servers in the
primary group are assumed to be exponentially distributed with mean a2,
while the service times provided by the secondary group are exponen-
tially distributed with (different) mean $-1. Wallstrom solves the (two-
dimensional) equilibrium probability state equations for the joint distribution
of the number of customers present simultaneously on each of the two server
groups. Also, he obtains expressions for the mean and variance of the
marginal distribution of the number of customers on an infinity-server
secondary group, results that are of interest in teletraffic applications.
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Wallstrom’s model differs from ours in that (a) it allows only two different
service rates and (b) it does not include provision of waiting positions for
blocked customers. Kiihn [6] discusses numerical methods for analysis of a
model that differs from Wallstrdm’s in that Kiihn’s model allows for provi-
sion of a finite number of waiting positions. Both of these models are
included as special cases of the model presented here. Recently, Forys and
Messerli [2] studied a similar model, again with no provision of waiting »
positions, to describe a telephone trunk group containing faulty trunks
(which are characterized by short holding times).

The strategy of the present paper is to attack the problem of ordered
heterogeneous servers through application of some ideas that teletraffic
theorists have used in studies of ordered homogeneous servers. This
approach permits solution of the problem of ordered heterogeneous servers
without necessitating the solution of the detailed multidimensional birth-
and-death equations.

2. Statement of Results

The model under consideration is the following : Customers request
service from a group of servers that are numbered 1,2, ..., 5. An arriving
customer is served by the lowest-numbered idle server. No server can be
idle if a customer is waiting. The probability that exactly one customer
will arrive in any interval of length A during which & is the number of
customers present is Avh + o(h)as h— 0, k = 0, 1, ..., where Ax = A when

'k < s5; and the probability of more than one arrival is o(h) as h— 0,
independently of all other considerations. Similarly, the probability that
exactly one customer will depart from the system (through service completion
or defection from the queue) in any interval of length % during which %
customers are present is uh + o(h) as A — 0, k = 0, 1, ..., where
e = ull)x; + ... + p(s)xs when k < s, and where x; (j=12,..,9) is
the realization of a random variable X; defined by

0 when the jth ordered server is idle,
X = |
! {1 when the jth ordered server is busy; M

also, the probability of more than one departure is o(h) as & - 0. (Note
that the death rate ux(k < s) depends not only on the number k of busy
servers, but also on the identities of the busy servers). ‘

We define v,(2) by the recurrence

R vz + w(p] P a1
\XH-l(‘) - 1 — Yj(z) _+_ Yj[z + P-(J)] ) [] 1: 2’ ey 8 1;
1@ =¥Aa+2] ()
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and let
B = vfuM] v:lu@)] - wle( G =129 @)
Finally, we define
(1, (=0
|
= . 4
Y Adesg e hegig (=12, ..) @
U Msiillsgn oo Pospi
and
4=3 4. )
i=1

Then we have the following results :

(i) If Py is the equilibrium probability that there are k customers in
the system (in service or waiting for service) at an arbitrary instant,
then P =0(k=0,1,..) when 4 = oo ; if A < o0, then

B
14 4B

(if) If p; is the load carried by (or the utilization of) the jth ordered
© server (that is, pj = P{X; = 1}), then

A (B — ,)(1 — z P +E1P’“‘ %)

Poyi = 4. (i=01,..) (6)

4 u(J)

(] =1,2,.,8 B, =1)
3. Proof of Results

We begin with the temporary assumption that blocked customers are
cleared; that is, there are no waiting positions, so every arriving customer
who finds all s servers busy leaves the system immediately. Let

P(Xyy ooy X5) =P{Xy = X5, ..o, Xs = X3} (8)

be the equilibrium joint probability function of the random variables X,
., Xs, where X; (j = 1, 2, ..., s) takes the value 0 when the jth server is
idle and the value I when it is busy. Then, as is well known, these proba-
b lities satisfy the following system of conservation-of-flow equations for all
aj=0o0rl(j=1,2,...,8)exceptx, = ... = xs = 1:

A+ w(Dxy + oo + p()x] P(xy, o.vy x5)

A
= A .glg(j, Xy + veo F x5) P(xy, ey Xjmqy Xi— 1, Xjpg, oony Xs)
]:

s —
+ 3 80D 805 P s Xty 35+ L Xy o 3. )
J=
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where, by definition, §(x, y) = 0 when x 54 y and 1 when x = y. Note
that the set (9) comprises 25 — 1 independent equations for the 25 unknown
probabilities {P(xl, ..., Xs)}. Another equation, which is valid when
Xy = ... = xs = 1, can be obtained from (9) by omitting the term in A on
the left-hand side; this equation can also be obtained as the sum of all the
equations in the set (9), and is therefore redundant. The final independent
equation required to determine uniquely the distribution {?(xl, vees Xs5)} 18
the normalization equation :

2 P(x1s ey xs) = 1, (10)
where the summation is carried out over all 25 probabilities.

We shall now determine, without solving the set (9), the probabilities
{B;} defined by

By =3P (1, 1,0, 1, Xpts Xjrgreee» X5)s (j=1,2,...,5 (11
where the summation is extended over all 25/ probabilities for which
X, = ... = X; = 1. Bj;is thus the probability that an arriving customer

finds all the first j ordered servers busy.

Observe that the (conditional) probability that a customer who finds
the first j—1 ordered servers busy also finds the jth ordered server
busy is By/Bi_; (j=1, 2,..., s; By=1). If we let y;(z) be the Laplace-
Stieltjes transform of the distribution function of elapsed time between two
successive instants at which an arriving customer overflows the first j—1
ordered servers and thus requests service from the jth ordered server, then
vi [e ()] is this same probability;

that is,

j

Ve = g (= L2 12)

Thus, B; (j=1, 2,..., s) is given by (3). Further, it follows from the work
of Palm {7] on overflows in systems with no waiting positions (see also
pp. 88-91 of [5]. pp. 36-37 of [8], and pp. 262-263 of [11]) that the
transforms v; (z) are determined by the recurrence (2).

Next we calculate P, = P {X; = 1}, the load carried by the jth ordered
server, which is defined in terms of the probabilities (8) as

;f = 2 5(x1,"'5 x]—la ], Xj+1,---,xs), (13)

where the sum is taken over all values of the arguments

xl, Iy ,Xj—l, xj+1, ven g Xse

<3

“x



QUEUES WITH ORDERED SERVERS THAT WORK AT DIFFERENT RATES 75

As was done with the probabilities {B;}, we will calculate the distribution
{p;} without solving the equations (9).

Observe that, under the assumption that blocked customers are cleared,
AB,_, is the rate at which customers overflow the first j—1 servers and
request service from the jth. Hence AB;_1—~AB; is the rate at which the jth
ordered server is seized by arriving customers; and (AB;_,—AB))/p(J) is
therefore the equilibrium proportion of time that the jth server is busy.
We conclude that

~ A
Di H'(J) (BJ—]. J)' ( )

We have now proved the results (i) and (ii) for the special case in
which blocked customers are cleared. Our method did not require solution
_ of the equilibrium probability state equations (9), but instead was based
on an argument whose validity depends on the assumption that blocked
customers are cleared. We will now drop that assumption and show that,
surprisingly, essentially the same results hold, even though the argument
made in the derivation of these results no longer applies.

First, let us define
P(xy,..., Xs; I) = P{X;=x,...,Xs=xs; Q=1i}, (15)
where Q is the number of customers waiting in the queue at an arbitrary
instant. Then the probabilities defined in (15) satisfy, for i=0, the same

set of equations (9) satisfied by the probabilities (8) for the case of blocked
customers cleared. From this important observation we can conclude that

the probabilities {2} and {P} are proportional (by c) when i=0:
P(xy,...,%5; 0) = CP (X1eresXs). (16)
For notational simplicity, let us write
P = P(1, 1,...,1;0). i=01.) {an
Then the probabilities Ps.; (i=0, 1,...) satisfy the recurrence
Asyi Psypi = pariys Psiiva i=0,1,.) (18)
from which we can conclude that )
As Asgyere Aspin ,
Psy ;= m P.. i=12,.) (19)

If we define 4; (i=0,1,...) according to equation (4), then equation (19)
can be written

Ps+i = Ai P.\' (i = 0, 1,...) (20)
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From equations (16) and (20) we can write

Poyi=cd; P(1, 1,...,1), (i=0,1,.) V1))
which, by virtue of (11), becomes .

Psyi = cA; Bs. i=01,.) (22)

It remains to determine the constant ¢ from the normalization equation

2 Pl 0) F 3 Pag=1, (23)
iz .
where the summation on the left hand side is extended aver all values
of the arguments x,..., x;.
Substitution of equation (16) and (22) into (23) gives
€2 P (xpeee, Xs) + cAbs = 1. (29)

where A is defined by (5). Equations (24) and (10) give
¢ = (1+4B); (25)

and equations (22) and (25) yield (6) which completes the proof of

result (i).

It remains only to calculate p; = P{X; = 1}, the load carried by the jth
ordered server. Let N be the total number of customers in the system (in
service or waiting in the queue). Then, from the law of total probability,
we can write

P = PX;=1| N&s} PINEs} + P(Xi=1| N>s} P{N>s}.

(J=12,...,9) (26)
Clearly, P{X; = 1| N>s} = 1. '

Vaulot [13] has given a clever intuitive argument that can be adapted
to the present case to show that

P{X; = 1| N<s} = p,. (G=12 .53 (27

that is, the load carried by the jth ordered server during those time
intervals when no customers are waiting equals the total load carried by
the jth ordered server in the corresponding system in which customers are
not allowed to wait. The intuitive argument in support of (27) is simply
that for a birth-and-death process the stochastic behaviour of the system
during the time intervals when N<s is unaffected by the stochastic
behaviour of the system when N>s Equations (26) and (27), together
with (14), yield (7); thus result (if) will be established if we can provide a
rigorous proof of (27).
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To this end, we apply the definition of conditional probability to write

PX, = 1| N<s} = %’g—f” . 28)
Now
PLX; = 1, N<8} = 5 Py Xicts 1, Fotgnes %53 0) (29)
and
P{N<s} = Z P(xy,..., %53 0), (30)

where the summations in equations (29) and (30) extend over all values
of the arguments {x;}. Substitution of (16) into (29) gives, by virtue
of (13),

P{X; =1, N<s} = cp. (31)
Similarly, substitution of (16) into (30) gives, by virtue of (10),
PIN<s) = c. | )

Substitution of (31) and (32) into (28) yields (27). The proof is complete.
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