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We consider two models, the GI/M/s queue and the M/G/1 queue, in which
waiting customers are served in random order. For each model we derive
expressions for the calculation of the stationary waiting-time distribution
function. Our methods differ from those of previous authors in that we do
not use transforms, and consequently our results may be better suited for cal-
culation. We illustrate our methods by deriving previously known results for
the M{/M/s and M /D/1 random-service queues, and by making sample calcu-
lations for the M/FE,/1 random-service queue for various values of the utiliza-
tion factor and the index k.

E CONSIDER queues in which, when a server becomes available, the next

customer to enter service is chosen at random from among all customers wait-
ing. For this queue discipline of random service, we give methods for caleu-
lating the waiting-time distribution function W(¢), which specifies, for every ¢=0,
the probability that an arbitrary customer will wait no longer than ¢ for service to
begin.

More precisely, we investigate the stationary random-service waiting-time
distribution function for two classes of queues, the GI /M /s queue [General Inde-
pendent interarrival times, Markov (exponential) service times, s=1 servers] and
the M/G/1 queue [Markov interarrival times (Poisson input), General service
times, 1 server]. In each case, the number of waiting positions is infinite. The
most commonly studied queue, M/M /s, can be considered to be a special case of
both these models.

For both the GI/M /s and M/G/1 random-service queues, we derive expressions
that may be suitable for the calculation of the stationary waiting-time distribution
function. Our methods differ from those of previous authors in that we do not
use transform techniques. Consequently, our results are not expressed in terms
of transforms that are difficult to invert, and hence they may be better suited for
caleulation.

We illustrate our methods by deriving previously known results for the 47/ /s
and M/D/1 [deterministic (constant) service times] random-service queues, and
by making sample calculations for the M/E;/1 [Erlangian of order k] random-
service queue for various values of the utilization factor and the index .
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PRELIMINARIES

LEr tHE RaNDOM variable W be the duration of time that an arbitrary customer
waits for service to begin, and let W(¢) be the corresponding waiting-time distribu-
tion function, so that

1—-W(t)=P{W>1}. (tz0)

As will become clear shortly, it is more convenient to work with the complementary
waiting-time distribution function 1— W(¢) than with W(t) directly.
It follows from the definition of eonditional probability that

P{W >t} =P{W >0} P{W >{|W >0}. (1)

Equation (1) holds for every queuing system; in particular, it is true for any order
of service. The first factor on the right side of (1), P{W >0}, is the probability
that an arbitrary arriving customer finds all s servers busy. Let the random
variable N be the number of customers in the system (including those in service)
found by an arbitrary arriving customer. Then

P{W>0} = 2,25 PIN =s+j). (2)

Since the state probabilities on the right-hand side of (2) are (clearly) independent
of the order of service, it follows that the probability P{W >0} that an arrival
must wait for service is also independent of the order of service. Hence (1) shows
that all the waiting-time information corresponding to the order of serviee is con-
tained in the conditional probability P{W >¢/W>0}. Therefore, we shall con-
centrate our attention on the conditional probability P{W >¢|W >0}, from which
the unconditional waiting-time distribution function can easily be ealeulated by
using (1). Also, as we shall see, the conditional probability P{W >¢W >0}
requires fewer parameters for its specification than does the unconditional proba-
bility P{W >t}.
It follows from the law of total probability that

P{W>t) = 2 iZ8 P{N =s+j} P{W> N =s+j}. (3)

Like (1), (3) holds for queuing systems in general. Also, all the waiting-time
information corresponding to the order of service is contained in the conditional
probabilities P{W >i|N =s+7},57=0,1, - -.

Although (1), (2), and (3) are correct for any queuing system, it does not
follow that they are equally useful in the analysis of any queuing system. It
happens that these equations are directly applicable to the analysis of the GI/M /s
queue, but that the analysis of the M/G/1 queue requires further consideration.

In the case of queues with Poisson arrivals at rate A, the probability p;(z)
that exactly ¢ customers arrive in any interval of length z is, by definition, the
Poisson probability '

pi(z) =[(ax)"/ille™, (i=0,1, --) (4)
where a=A\.

We shall also use the fact that, for s-server queues with exponential service
times with mean length 4", the conditional probability that exactly ¢ customers
complete service in an interval of length x, given that all s servers are continuously
busy throughout this interval, is also given by the Poisson probability (4), with
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a=su. (Note also that, when the service times are exponential, the conditional
probability P{W>t|W >0} for the s-server queue can be obtained from that for
the corresponding single-server queue by replacing u by su.)

THE M/M/s RANDOM-SERVICE QUEUE

Tne M /M /s RaNDOM-service queue has been studied by several authors. In this
section we review some of their results, and in the process we discuss some concepts
needed for our analysis of the GI/M /s and M /G/1 random-service queues.

Let A be the customer arrival rate, and ' be the mean service time, with utiliza-
tion factor p=XN/su. It is well known that the probability P{N =s+j} that an
arriving customer finds all s servers busy and 720 other customers waiting for
service is given by the geometric distribution,

P{N =s5+j) =p’P{N =s). (J=0,1, ---) (&)

Then, equating the right-hand sides of (1) and (3), and making use of equations
(2) and (5), we have, for the M /M /s queue in equilibrium,

P{W> W >0} =(1—p) 3125 p?'P{W >N =s-+j]. (6)

Equation (6) describes the waiting times in the stationary M /M /s queue with any
order of service.

For example, suppose that customers are served in their arrival order. Con-
sider a customer (called the test customer) who finds all 5 servers busy and 720
other customers waiting for service when he arrives. The test customer will wait
in excess of £ for his service to begin if and only if there are less than (j4+1) service
completions within this interval of length ¢. Therefore, for queues with exponential
service times and service in order of arrival,

PIW >N =s+5} = 2225 pi(1), (7)

where p;(¢) is given by the Poisson probabilities (4), with a=sp. Insertion of
(7) into (6) yields the well known result for the stationary A/M/s queue with
service in order of arrival:

P{W>tW>0} =¢ "0, (8)

We now turn to the case in point, service in random order. In contrast to the
case of service in arrival order, it is not possible to write down an expression for
the conditional probability P{W >N =s+j] directly from elementary considera-
tions. Ior convenience, we define W,(¢) =P{W>{N =s+j} for queues with
random service.

By considering all possible transitions during a time interval (t, t-+h) as h—0,
the following set of differential-difference equations ean be derived:

(d/d)W ;(8) =AW i1 () — (Asu) W i(8) + 5/ G+1) |saW (1), (9)
[7=0,1, ---; W;(0)=1]

Equation (9) was derived independently in 1946 by Vauror!'® and Para.®
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(According to Syskr, ! Palm’s work was done in 1938 but was not published until
1946.) Poruaczex,® also in 1946, obtained a closed-form solution for the con-
ditional waiting-time probability P{W>¢{|W>0}. Summaries of these and other
studies on the M /M /s random-service queue are given in Rrorpan!t! and Syski.l*”]

In 1953 Riordanll® obtained the Maeclaurin-series representation of the condi-
tional probability P{W >{|W >0} as follows: Let

W= (d&/dt YW i(£)] im0,

10
0,1, w5 vm0, 1, o WP =1

and assume that W;(t) has the Maclaurin-series representation
Wilt)= > Za (£/v)Y W, (j=0,1,--+) (11)

Then (6) can be written
P{W>tW>0} =14 (1—p) 2077 (£/»1) 2 I8 6’ WS, (12)

The derivatives {W$"} appearing on the right-hand side of (12) can be determined
from the basic recurrence (9)., Riordan evaluates the coefficients of i, £ and ¢
explicitly, giving
P{iW>{|W>0} =1—sut[(1—p)/plln[l/(1—p)]
+[(sut)*/21(L—p) {2—[(1—p) /plln[1/(1=p)]} - (13)
— [(sut)*/31(1—p) {143p— (1—p)In[1/(1=p)] = 25T (/1) )+~ .

However, Riordan mentions this result only for the sake of “completeness™; his
main result is an approximation of 1—W(¢) as a weighted sum of exponential
terms. Riordan makes no caleulations from this series (computers have come a
long way since 1953) and asserts only that the series converges for “small values”
of sul. As we shall discuss, recent results of P. J. BURKE show that the series (13)
converges for all sul=0.

Note that equation (13) is a power series in suf; we might just as well have
taken (su)”' as the unit of time (as Riordan does). This shows that the condi-
tional waiting-time distribution function depends on only two parameters, p and
the product suf. In contrast, the unconditional waiting-time distribution function
requires three parameters, p, ut, and s, for its complete characterization.

In the present study we give, among other results, heuristic derivations of the
Maclaurin-series representations of the conditional probability P{W > /W >0}
for the GI/M /s and M/G/1 random-service queues. We show that specialization
of our results (for Poisson input in the first case and exponential service times in
the second case) leads to (13), and we give results of sample ealeulations based
on these representations.

THE GI/M/s RANDOM-SERVICE QUEUE

Tue GI/M /s random-service queue has been considered previously by LEGaLL!
and Taxfes.l  LeGall gives an expression for the characteristic funetion of the
waiting-time distribution function, and Takdcs gives the corresponding Laplace-
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Stieltjes transform. Their results are quite formidable, and reduction to practice
(through explicit or numerical inversion) does not appear simple.

We first give a heuristic derivation of the Maclaurin-series expansion of the
conditional waiting-time distribution function, and show that our results include
(13) as a special case. We then summarize another method, proposed by P. J.
Burke,® from which it follows that the Maclaurin series (13) converges for all
sut=0. Neither of these methods uses transform techniques. Both methods will
be used in the next section to develop analogous results for the M/G/1 queue.

Our starting point is equations (1)-(3), which are valid for queuing systems in
general.  Corresponding to (5) for the GI/M /s queue is

PN =s+j] =w’P{N =3}, (7=0,1, -++) (14)
where « is the only root in (0, 1) of the equation
w=v[su(l—w)], (15)

and v(z) is the Laplace-Stieltjes transform of the interarrival-time distribution
function G(§),

ve)=[ o aoc. (16)

The complete set of state probabilities for the G1/M /s queue are given, for example,
in Riordan,"™" Syski,"” or Takdces."™ The root w can easily be caleulated according
to the iteration scheme,

wip1=7y[su(1—w;)]. (i=0,1, --+; 0Swo<1) (17)

Equating the right-hand sides of (1) and (3), and making use of (2) and (14),
we have, for the GI1/0{/s queue in equilibrium,

P{W>UW>0) =(1—w) 2iZ5 'P[W> N =s+j]. (18)

Equation (18) is similar in form to (6), and reduces to it when G(E) =1—e™M(£20).
It remains to calculate the conditional probabilities P{W>UN =s+5 =W (1)
(7=0,1, :--) for the GI/M/s random-service queue. The analysis leading to
(9) for the M /M /s queue was based on the fact that the M/M/s queue can be
described as a Markov process. Since we are no longer assuming Poisson input,
the @1/ /s queue cannot be described by a Markov process, but can be described
by an imbedded (at the customer-arrival epochs) Markov chain, That is, the
methods used by Vaulot, Palm, and Pollaczek to study the M /M /s random-service
queue are not applicable to the study of the GI/M /s random-service queue.

We give two methods for determining W;(t), J=0,1, -+, the Maclawrin-series
method and Burke’s additional-conditioning-variable method.

The Maclaurin-Series Method

Consider a test customer who, upon arrival at time 1., say, finds all s servers
busy and 7=0 other customers waiting for service. We wish to calculate the
probability W,(¢) that the test customer waits in excess of ¢ for his service to begin.
Consider the two events: (a) the next customer arrives after time T.+4t, or (b)
the next customer arrives prior to time 7.4t
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In case (a), the test customer will wait more than ¢ for service to begin if and
only if he is one of the i(1=i<j+1) customers still waiting for service at time
T.41. (If {=0, the test customer will necessarily have begun service.) Since
service times are assumed to be independently exponentially distributed with
common mean g, the probability p:(z) that exactly ¢ customers complete serviee
in an interval of length , given that all s servers are continuously busy throughout
this interval, ics the Poisson probability (4) with a=su. Let 7w be the next arrival
epoch after 7

Inm1r.—1T. >t then the (conditional) probability that the test customer waits
in excess of ¢ for service to commence is

PIWSUN =s+j, To—T:>t) = 2L G/ G+ DIpia-it), (19)

where the factor ¢/(j+41) is the probability that the test customer is not among
the j41—17 customers selected (according to the random selection procedure) to
begin service during the interval (7', T'.+t). Since the interarrival-time distribu-
tion funetion is G(z), and since 7', is an arrival epoch, event (a) occurs with proba-
bility 1—G/(t).

Now consider event (b); that is, suppose that the next customer arrives at
time T =T.+¢ where £<t. The probability that the test customer will be
among the remaining i waiting customers is [#/(j41)]pjy1-i{£). The test customer
will now experience a total wait in excess of ¢ for service to begin if and only if he
suffers an additional delay exceeding length t—£.  But, since waiting customers are
solocted for service in random order, the probability that the test customer’s addi-
tional waiting time will exceed {—§ (if he has not yet begun service) is the same
as the probability that a new arrival waits in excess of t—§ for service to begin.
This latter probability is Wi(t—£). Thus, if the next eustomer arrives at time
7o =T,+& where £<t, then the test customer’s waiting time will exceed ¢ with
probability

P{W>UN =s4j, To—Te=tst} = 215 l/G+ D (E)Wi(t—£).  (20)

Finally, the probability that the next arrival epoch 7' will occur in an infinitesimal
interval about the point 7.+4£ is dG(£).

Therefore, combining events (a) and (b), we have the following recurrence
for the conditional probability W;(t) that the test customer waits in excess of ¢
for service to begin, given that on arrival he finds all s servers busy and jZ 0 other
customers waiting for service:

i+l
Wi(t) =[=GO1 2 [/ G+ DIpina-i)
i+1 (21)

+3 /GO o OW—=8) dB(®),  (=0,1, )

where ({z) is the interarrival-time distribution function and pi(x) is given by
equation (4) with a=sp.

We now assume that W;(¢) for the GI/M /s queue has the Maclaurin-series
representation

Wit) = 2 0Ze (&/» )W, (j=0,1,---; Wi"=1) (22)
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LEquation (22) is the same as (11), except that (22) refers to the GI/M/s queue,
while (11) refers to the 3/M/s queue. Using the same reasoning that led from
(11) to (12) for the M/M/s queue, we have the analogous equation corresponding
to the GI/M /s queue:

PIW> W >0} =14 (1—w) D027 (£/v]) 2120 o'W, (23)
It remains to determine the derivatives {W{”} appearing on the right-hand side
of (23) from the basic recurrence (21).
Formally differentiating » times on both sides of equation (21) we have

itl

(d’/dt")W;(t) = (fl"/(lf,’){[l - G(t)]; [¢/(j+1 )]]};+1_;(£)}

i+l !
+ 2 GO Do ©HO@OW (=0 & o
i+l y—1
+ 2 6/GHDIZ, (@/d) psaiDg(IW ™,
(j:(]’ ]: B y=1’2’ )
where g(£) is the interarrival-time density function,
g(§) =(d/dE)G(¥). : (25)
IFor convenience, set
() =[1—=G(O] L i/ G+ D p (D) (26)
and
bivii() =g () pipa_i(l). (27)

Now set t=0 in equation (24). The integral on the right-hand side vanishes and
we have A
W3 =i 2 E [/ G+ i o w, (28)
(J~=O, 1, e 2, - ')

The recurrence (28) permits evaluation of the sum on the right-hand side of
(23); the problem is solved if the series converges and if the assumed derivatives
exist. If, in addition, the terms of the series are casy to ealeulate, the solution
is also useful.

We note in passing that this analysis was motivated by a study™" of the Bell
System’s No. 101 Electronic Switching System. In this system, &k groups of s
dial-tone machines (servers) provide dial tone in random order to waiting calls.
Each group of s dial-tone machines provides service for every kth call so that, if
calls occur according to a Poisson process, the distribution function of the inter-
arrival times of calls at any group of s dial-tone machines is the k-order Erlangian

G =1=-235 [\ /5™, (k=1,2,--+) (29)

Dial-tone-delay curves for engineering this system were caleulated according to
the above algorithm.

In particular, it is easy to verify that, when k = I in equation (29), direct calcula-
tion by means of the recurrence (28) gives, for the first three terms of the expansion
(23), the previous result (13) of Riordan for the M /M /s random-service queue.
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The Additional-Conditioning-Yariable Method

The Maclaurin-series method assumes the existence of the Maclaurin-series
representation of P{W>{W >0}, and gives no information as to the range of
convergence of this series, il indeed it does exist. In addition, the Maclaurin-series
method requires that the interarrival-time distribution function G(x) possess a
density; this constraint precludes analysis of the important case of constant inter-
arrival times.

Burke has proposed the introduction of an additional ‘conditioning variable,’
which meets some of these objections. According to Burke, this method yields
results that appear to be well suited for computation on a digital computer. Tor
the particular case of Poisson input, Burke’s method yields a power-series repre-
sentation for P{WW >t|W >0} that is easily shown to be convergent for all sut=0.
It follows from the uniqueness property of power-series representations that the
Maclaurin series (13) exists and converges for all sut=0. It appears that further
investigation of the GI/M/s random-service queue by Burke’s additional-condi-
tioning-variable method might similarly throw light on the existence and conver-
gence properties of the Maclaurin-series representation of P{W >¢|W >0} for other
choices of the input process. Then the choice of method to be used for computa-
tion could be based solely on other (computational) considerations.

In this section we briefly describe Burke’s additional-conditioning-variable
method, which we shall later extend to the analysis of the 3//G/1 random-service
queue,

The Maclaurin-series method was based on obtaining an expression for W;(t) =
P{W>t|N =s+j} for j=0, 1, - -+, where W is the waiting time of the test custo-
mer, and N is the number of customers present in the system just prior to the test
customer’s arrival epoch T. Burke considers the additional random variable
X(¢), defined as the number of customers who arrive in (T, T.+1], with t>0,
and X(0) =0 with probability one. Instead of caleulating W;(¢), Burke’s basic
caleulation is that of W; (), where we define

Wia(t) =P{W>HN =s+j, X(1) =k}.  (j=0,1, -+;k=0,1,--+)
We have that
P{X(t) =k} =@"()—a@***" (),  (k=0,1, --;G"=1;t=0) (30)

where G (1) is the k-fold convolution of the interarrival-time distribution funetion
G(t) with itself. Also, from the law of total probability,

P{W>i|N =s+7j} = D2 acs P{X(t) =k}P{W >IN =s+j, X(t) =k}. (31)

Since the conditional waiting-time distribution function is determined by (18),
it follows from (31) that it is now sufficient to determine the conditional proba-
bilities {W;x(t)}.

IMirst note that X (¢) =0 if and only if 7. —7.>¢ It follows from (19) and
the definition of W;:(f) that

Wia(t) = 225 G/ (G4 DIpia(t),  (7=0,1,--+) (32)

where p;(x) is given by equation (4) with a=spu.
For k>0 we define
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G(Elk, 1) =P{T.—T.<EX (1) =k}, (33)

which is the conditional distribution function of the elapsed time 7', — 7', between
the arrival epoch T, of the test customer and the next arrival epoch 7., given
that k arvivals oceur in (7', 7.+, Tt follows from the definition of a conditional
probability density function that

G (Ek, t) = P{X(t—§) =k—1}dG(£)/P[X (L) =k}. (k=1,2,---) (34)

Then, reasoning in a manner similar to that leading to equation (21), we have
the following general recurrence for k> 1:
i+l

Wis(t)=2 [i/(j-i-l)lj; Pin-i(E)Wina(t—§) dG(Elk, t).

i=1

(35)
(j=0} 1, "'5k=1121 )

Thus, by use of (32) and (35), one can compute P{W>{W>0} to any de-
sired degree of accuracy. Implementation of this algorithm is discussed by Burke.®
Burke illustrates his method for the case of constant interarrival times, for which
the Maclaurin-series method is inapplicable, and the case of exponential inter-
arrival times, for which he obtains an infinite series whose convergence is assured,
and from which we can infer the convergence of the Maclaurin series (13).

THE M/G/1 RANDOM-SERVICE QUEUE

WE Now TURN TO the stationary M/G/1 queue with service of waiting customers
in random order. This model has been studied by LeGall!” and Kingaan(el (see
also Takdesl'™), LeGall and Kingman used transform methods, and numerical
implementation of their results docs not appear simple.

The special case M/D/1 has also been studied by Burke,!! who obtained an
expression suitable for calculating the conditional waiting-time distribution func-
tion, Burke’s analysis utilizes certain simplifying properties of the constant-
service-time distribution that do not hold in the general case.

Our approach is to extend the two methods (Maclaurin-series and additional-
conditioning-variable) used in the analysis of the GI/M /s random-service queue
to the analysis of the M /G/1 random-service queue. As before, neither method
uses transform techniques, and hence our results may be more suitable for calcula-
tion than LeGall’s or Kingman’s.

As illustrations of our methods, we derive Riordan’s expansion (13) for the
M/ /1 random-service queue by specializing the Maclaurin-series analysis; and
we derive Burke’s results for the 37 /D /1 random-service queue by specializing the
additional-conditioning-variable analysis.

Suppose that an arbitrary customer (the test customer) arrives at time 7,
and finds j=1 other customers in the system (either in service or waiting for serv-
ice). Then the length of time that the test customer waits for service to begin is
the sum of (a) the time between the test customer’s arrival epoch 7', and the first
subsequent departure (service completion) epoch 7', and (b) the time between T,
and the instant at which the test customer commences service.
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The analysis of the total waiting time is complicated by two facts. Tirst, the
time intervals (a) and (b) are not, in general, statistically independent. Second,
any customer in service at epoch 7', when the test customer arrives does not, in
general, have the same service-time distribution function as does an arbitrary
customer.

In the special case of constant service times these difficulties disappear. When
the service times are constant, the delay suffered by a blocked customer between
the instant of his arrival and the first subsequent departure epoch is independent
of the remaining delay beyond this epoch; and the distribution of the serviee in-
terval containing 7' is the same as that of an arbitrary service interval (that is,
constant). These simplifying properties were noted explicitly by Burke in his
analysis of the M/D/1 random-service queue.

As before, we let W be the duration of the test customer’s wait for service to
begin, and we calculate the conditional probability P{W>{/W>0}. We denote
by T'. the test customer’s arrival epoch, and by 7' the first departure epoch subse-
quent to T'.. We also define N(T) as the number of customers in the system (in-
cluding service) at any time 7', and W(7') as the remaining waiting time for service
to commence for a customer who is waiting at time 7'.  Then we may write

PIWS(W>0} = P{T,—T.>t|W>0}
+2 UG-/ POV(T+0)>—HIW>0, N(Tit0) =j) (36)

deP{N(T40) =5, T\ —T. = W>0}.

As already noted, the service time of a customer in service at epoch 7', when
the test customer arrives does not, in general, have the same distribution function
as does an arbitrary service time. Let H () be the service-time distribution fune-
tion for an arbitrary customer, with mean 7; and let #(z) be the distribution func-
tion of the length of the service interval during which the test customer arrives.
(Since we are calculating the conditional probability P{W > W >0}, the test
customer is assumed to arrive during some customer’s service interval.) Then
it is known from renewal theory (see, for example, Chapter XI of reference 5)
that, if the queue is in equilibrium, the distribution function 7(x) of the length of
the service interval containing the arrival epoch 7'; and the distribution function
H(z) of the length of an arbitrary service interval are related as follows:

dfd(x) =(1/7)xdH (). (37)

Likewise, it is well known that the distribution function () of the length of the
remainder of this service interval, from 7, to 7',

H(z)=P{T\—T.S2|W>0}
is given by

(o) =(1/0 [ 1—H(o) e (39)
Let us define

Qi(£)=P{N(T\+0) =7, T'—T.Z{W>0}, (j=0,1,---)

and let {II;"} be the stationary distribution of the number of customers in the
system (waiting or in service) just after a service completion epoch. (The distri-
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bution {IT;*} is known, in principle, for any stationary M/G/1 queue; see, for
example, references 11, 12, or 13.)

Consider the service interval containing the test customer’s arrival epoch 7.
The probability that this interval has length between 2 and z++dx is df (z), given
by (37). The probability that exactly i customers arrive during such an interval
of length x is, by assumption, the Poisson probability (4) with a=\, where A is the
arrival rate.  Since the arrival process is Poisson, then for fixed z the length of the
interval (7', 7") is uniformly distributed over (0, «). It follows that Q,(£) has
density (d/dE)Q,;(£) =Q/ (¢) given by

Q;’(E)=j:° [Hﬂﬁpjﬁl(vl:)"i'g Ipim( @) df () /2, (5=1,2, ) (39)
which, in view of (37), ean be written
Q; (8)=(1/7) f: [Ilo*pj_l(r)+§ o)) dH(z).  (j=1,2,--+) (40)
Iinally, let us define

ﬁ’,-{x):P{W(T1+O)>le>O,A’(7'1+0):j']. (j=2,3,--)

Then (36) can be written
P{W >t W >0} zl—ﬁ(t)+; [(J"—l)/J"]f0 Wi(t—£)Q/ (&) d, (41)

where () is given by (38), Q' (#) is given by (40), and ﬁ’,—( x),7=2,3, -, re-
mains to be determined.

We now give two methods for calculating ﬁ’,-(.r), 7=2,3,+--, and
P{W>{W>0}. The first method, which has two variants, is based on the Mac-
laurin-serics expansion. The second method is based on the use of an additional
conditioning variable.

The Maclaurin-Series Method

We have the following set of integral equations for the functions {Wilx)):

i=o00

'Vl’f(i')il"-ﬂ(x)-’rz_; [(j+‘i—2)/(j+'i—1}]f0 pAEW jrica(2—E)dH (8). (42)
(j:2» 3, 1)

Equation (42) for the A//G/1 random-service queue corresponds to (21) for the
GI/M /s random-service queuc,
We now assume that 1W;(z) has the Maclaurin-series representation

Wi2) = 2% (@)W, (=2,3, ;WP =1) (43)

Repeated formal differentiation of (42) yields
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IV ( ) )+21+z 2[ i 3+|A1(r E) df
(44)
) SF ks Z slHEIWOED, (G288 v a8, wev)
i=0 J"‘l
where k() is the service-time density function,
hx)=(d/dz)H(z). (45)
For convenience, set .
by(x) =h{x)piz). (46)

Now set =0 in equation (44). The integral on the right-hand side vanishes,
and, since 0:” =0 when 7>k, we have

Wi = =B+ T (=2 G- DI SO WD
(.7.:2}3) =12 )

Ilquation (47) permits evaluation of the sum on the right-hand side of (43).
In principle, the required function P{W>¢W >0} can now be calculated from
(43) and (41) (assuming, of course, convergence of series and existence of deriva-
tives where required).

The caleulation of P{W >t|/W >0}, as indicated above, requires the evaluation
of the integrals on the right-hand sides of equations (40) and (41). In some cases
these integrations may be performed formally. When formal integration is diffi-
cult, numerical techniques can be used. In such cases, however, the computa-
tional difficulties may be prohibitive. The following variant of the method avoids
direct integration, although new numerical problems may be introduced.

Along with the assumption (43), we assume the Maclaurin representation of
P{W>t|[W>0}. Ior notational convenience, let F(t)=P{W>{W>0}. Then
we assume the representation

Pt = Ty (') F™, (FP=1) (48)

Lvaluation of (48) requires caleulation of the derivatives {F*}. To this end,
formal differentiation » times of equation (41) yields

'ig 1
m P =— wH(‘ +Z’ f Q; (s) Vi(t—E) dg
ey (49)
+ RIS o oW, (e, )
= ) i=ar
Now set £=01n (49). We obtain the recurrence
PO =~ A4 T [G-D/AZE QW =1,2, ) (50)
1t follows from equation (40) that
N =Qi(0)=(1/r)1y, (j=1,2,---) (31)

and

k—1
(A+l) l Z ( " )H(A—m)(ll *p(M)+Z ne *pgrilz)
T m=0

(k=1:2! "';j:172: }
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Thus, (47), (50), (51), and (52) permit formal calculation of the Maclaurin-
series representation (48) of the required conditional probability P{W >¢|W >0} =
F'(t).  This method does not require the evaluation of any integrals. Table I
gives, for the M /K,/1 random-scrvice queue, sample caleulations based on this
algorithm.

As a further example, we will use the sccond variant of the Maclaurin-series
method to ealculate P{W>¢{W >0} for the 17/} /1 random-service queue.

The service-time distribution function is the negative exponential,

H(z)=1—¢7" (53)
and the distribution {I1;*} of the number of customers in the system just after an
arbitrary service completion epoch is

;"= (1—p)p’, (7=0,1,---) (54)

TABLE I

Sampre CALCULATIONS BY Tk MAcLAURIN-SERIES METHOD FOR P{W>tW>0} ror THE
M/EL/1 Ranpom-Service Quiur

p=0.3 p=0.28

. , i

k=1 k=2 E=3 k=1 k=2 k=3
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.8487 0.8364 0.8336 0.9254 0.9166 0.9137
0.4 0.7237 0.6889 0.6766 0.8609 0.8395 0.8312
0.6 0.6199 0.5365 0.5304 0.8045 0.7709 0.7565
0.8 0.5331 0.4599 0.4261 0.7547 0.7107 0.6908
1.0 0.4602 0.3758 0.3361 0.7102 0.6578 0.6338
1.5 0.3236 0.2305 0.1894 0.617 0.551 0.521
2.0 0.2319 0.1455 0.112 0.544 0.470 0.440
2.5 0.1689 0.0945 0.072 0.483 0.407
3.0 0.1248 0.063 0.433 0.358
3.5 0.093 0.043 0.39 0.33
1.0 0.070 0.35 ‘
4.5 0.054 ‘ 0.33 ‘

Nale: {is measured in units of mean service time.

where p=A7. From (38) it follows that the distribution function H (z) of the

length of the remainder of the service interval measured from the test customer’s

arrival epoch is the same as the service-time distribution function,
H(x)=1—¢"", (55)

a result that could have been anticipated in light of the Markov property of the
negative-exponential distribution function.
For v = 1 equation (50) becomes

FO=—(1/1)+ X (G- 1)/71Q5". (56)

From (51) we have '
P =(1/7)(1=p)p"™, (7=1,2, -++) (57)

so that equation (56) can be written
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FO=—(1/)[(1=p)/pln[1/(1—p)]. (58)
For »=2, (50) becomes
F® = —(1/7)+ ZiT G- D/QP W +Q5). (59)
It follows from equation (52) that
) = —(1/7)HO [y p;1(0) + D12 I *p,-a(0)], (60)
which reduces to
QY =—(1/7)(1—p)p". (j=1,2, ). (61)
Iinally, from (47) it follows that
Wi == (1/r)+[(—2)/ (= D)1/ 7). (62)
Substitution of (57), (61), and (62) into (59) yields, after simplification,
P =(1/7')(1=p){2—[(1—p)/pln[1/(1—p)]}. (63)

Equations (58) and (63) give the coefficients of the first two nontrivial terms
in the Maclaurin expansion (48), in agreement with Riordan’s expansion (13)
with s=1 and r=p""

The Additional-Conditioning-Yariable Method

Inherent in the method of the previous section are assumptions of existence of
derivatives and convergence of series. In particular, it requires that the service-
time distribution function H(z) possess a density; this constraint precludes a
Maclaurin-series analysis of the important case of constant service times. [How-
ever, the results for the constant service-time case follow directly from equation
(42).]

In this scction we extend the concepts of Burke’s additional-conditioning-
variable method, whose application to the analysis of the GI/3 /s random service
queue is summarized above, to the analysis of the //G/1 random-service queue.
This method dispenses with the assumptions inherent in the Maclaurin-series
method.  Thus it is the more general of the two methods.  On the other hand, its
implementation requires the evaluation, either formal or numerical, of several
integrals, so that its relative utility will depend on the particular form of the service-
time distribution funetion H(x) under consideration.

As before, let 7' be the test customer’s arrival epoch, and let 7' be the first
service-completion epoch subsequent to 7'..  Let S be the sum of the first k service
times commencing at epoch 7'y, and let the additional conditioning variable 5((-1,)
be the value of the largest integer k(k=0,1, --+) such that Sp<x. We define
ﬁ’,-,k{ t) as follows:

W,ale) =P{W(Ti+0) > 2| W>0, N(T14-0) =j, X(2) =k},
(7=2,3,:-;k=0,1,---)

where, as before, N(7') is the number of customers in the system (including serv-
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ice) at any time 7', and W(T) is the remaining waiting time for service to com-
mence for a customer who is waiting at time 7.
We have that
P{X(x) =k} =H"™(x)—H*""*™(2), (k=0,1, - +;H"(x)=1;220) (64)
where H *(z) is the k-fold convolution with itself of the service-time distribution
function H{x). From the law of total probability it follows that
Wi(z) = 2428 Wia(2) P{X (2) =k}, (65)
and hence our problem will be solved if we can determine the conditional proba-
bilities W;x(t) (7=2,3, -+, k=0,1, -+ -).
Clearly
Wielx)=1. (j=2,3,--+) (66)
Let us define for k>0
H(gk, x)=P{Si=EX(x) =k}, (67)
It follows from the definition of conditional probability that
deH (g|k, 2) = P{X(2—§) =k—1)dH()/P{X(2)=k}.  (k=1,2,---) (68)

The following recurrence for k=1 is easily seen to be true:

lij.k(-C) :; [(j+i—2)/(j+f_1)]fu pi(s)lfthl,k—l(-ﬂ_E) dEH(Elk, ). (69)

(j=2s3s “'.;kzlr 21 J

The required function P{W >t/ >0} can now be determined in principle from
(41), complemented by (40), (65), (66), and (69).

As an illustration of the additional-conditioning-variable method, we now
caleulate P{W >|/W >0} for the M/D/1 random-service queue. Assume that the
service times are of constant duration 7, so that the service-time distribution func-
tion is
0, when x<r,
1, when x=r.

H(x) ={ (70)
Since H(z) does not admit a proper density function, the Maclaurin-expansion
method does not apply.  With H(x) given by (70), (40) reduces to

(1/T)]IT_1, when £,

Qf (E) :{0’ \\'ll(‘[l $>T. (j=1| 2; . ') (71)

(The stationary state distribution {11;"} for the M /D/1 queuc is given in references
11, 12, and 13.)
Then (41) becomes, for <7,

, g S G Dt -
PIW>{W>0}=1 U‘/T)+(1/7),-Z:g [(J 1):".]]11.:4];' Wi(1—§) dE, (72)
(0=st<r)

and, for {=r,

1’[”">i|”">0]:(1/7)§ [(J'—l)/jll'l?:lfQ Wit—8) de.  (r5t<») (73)
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Since ﬁfj(x) is a step function, the integrals on the right-hand sides of (72) and
(73) can be evaluated, giving

PIWSUW>0} =1—(t/7)+(t/7) 2125 [(—1) /i, (0=t<r) (74)
and

+(Tkt+|iil_:|'r)ﬁ/j(f—'r)}, (rst<®)

where [2] is defined as the largest integer not exceeding . Use of equation (75)
requires evaluation of Wi(&)(j=2,3, -+-). Since the service times are of con-
stant duration 7, independent of all other variables, we have

P{W >t|W >0} =% ijﬂnf,l{(t—[é}r)lifj(t)
i=2 ] T. (75)

H(glk, ) =H(§) ={(1’ o ol (76)

so that (69) becomes
Wia(x) = 200 [(G41—2)/ GAi— DIpd W jricaaa(z— 7).

. (77)
(7=2,3, - ;k=1,2,--+)
We have from (64) that :
7 1, when k=[t/7],
2 =5l =
PiXte) =k _{0, otherwise, (78)

In light of (78), (63) implies
Wilz)=W, @m(z). (7=2,3, ---) (79)

Therefore, if we set k=[x/7] in (77) we obtain

Wilz) = T0ze [(G+i—2)/(G+i—Dlpd r)W jpi(2—1). -
(j=2,8, - ;227)
Equation (80) is complemented by
W,(2) =1. (5=2,8, - ;2<r) (B1)

Equations (80) and (81) permit calculation of (75).

Note that (80) and (81) could have been obtained directly from the integral
equation (42), as was observed carlier.

Tt can be shown in a straightforward manncr that these results are equivalent
to those of Burke,™ who gives several useful sets of curves for the A//D/1 random-
service queue.
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