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Teletraffic Theory and Engineering

Robert B. Cooper and Daniel P. Heyman

I. INTRODUCTION

A telecommunications network consists of expensive hardware (trunks, switches, etc.)
with the function of carrying telecommunications traffic (phone calls, data packets,
etc.). The physical network is fixed, but the traffic that it is designed to carry is random.
That is, the times at which calls are generated are unpredictable (except in a statistical
sense), and, similarly, the lengths of time that the calls will last are unpredictable; yet,
the network designers must decide how many resources to provide to accommodate
this random demand. If the resources are provided too sparingly, then the quality of
service will be low (e.g., too many calls will be lost because the required resources are
not available when needed); but, if the resources are provided too generously, then the
costs will be too high.Teletraffic theory deals with the mathematical analysis of models
of telecommunications systems and with the interrelationships among the provision of
resources, the random demand, and the quality of service; teletraffic engineering
addresses the art and science of the application of this theory to the design of real
telecommunications systems.
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II. HISTORY

The telephone was patented in 1876, and the first commercial telephone switchboard
went into operation in 1878 in New Haven, Connecticut. It consisted of a set of
subscribers who could be connected two at a time via a single path. It has been said
that the need for teletraffic theory became apparent as soon as the number of
subscribers grew to three! The first significant advance in teletraffic theory came in
1917, when A. K. Erlang, a scientist/mathematician/engineer working for the Co-
penhagen Telephone Company, published a paper that described a method and used
it to derive some formulas that provide the basis for much of modern teletraffic
theory and engineering.

Later, with the invention of operations research during World War II, Erlang’s
methods and models were incorporated into queueing theory, and these two subjects
(queueing, teletraffic theory) are now closely intertwined. (A queue is a waiting line.
Queueing theory is the mathematical theory of systems that provide service to cus-
tomers with arrival times and service requirements that are random. If servers are
unavailable to accommodate arriving customers, then a queue may form, hence the
name.) There is now a huge amount of literature on queueing (and teletraffic)
theory, and papers are being published in the technical journals at an ever-increasing
rate.

In this article, we survey basic teletraffic (and queueing) theory, and we discuss
both classical applications and new theory for applications that are driven by recent
advances in telecommunications technology and computer science.

III. BASIC CONCEPTS

We take as our basic model a system in which calls arrive at random times, and each
call requests the use of a trunk. (In this article, we will ignore the distinction between
trunks, which interconnect the switches, and lines, which connect the subscribers to the
switches.) If a trunk is available, the call holds it for a random holding time, and if no
trunk is available, the blocked call takes some specified action, such as overflowing,
retrying, or waiting in a queue. (In queueing theory parlance, the calls are customers,
the trunks are servers, and the holding time is the service time.) The objective of
teletraffic theory is to derive appropriate descriptions of the random teletraffic (a
description of the statistical, or stochastic, properties of the arrival times and holding
times) and to derive formulas that describe the performance of the system (e.g., the
probability of blocking, the fraction of calls that overflow, the average waiting time,
etc.) as a function of the demand and the number of trunks. This theory is then adapted
and applied to the design and administration of real telecommunications systems; that
is teletraffic engineering.

The central concept of teletraffic engineering is the stochastic nature of teletraffic,
so the underlying mathematics used are probability, statistics, and stochastic processes.
Therefore, we summarize (as briefly as possible) these mathematical processes. Then,
we apply this to derive and understand the basic formulas of teletraffic theory. To
make this theory concrete and to explore the robustness of these formulas, we describe
briefly the essential concepts of simulation, and we give pseudocode that can be used to
write computer programs to simulate these models.
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A. Birth-and-Death Process

To fix these concepts, consider the following model. Calls arrive according to a sto-
chastic process (described below) at a group of s identical trunks. If an arriving call
finds a trunk available, the call holds the trunk for a random holding time (described
below), after which the call drops the trunk, which then becomes available for another
call. If the arriving call finds all s trunks busy, then the call is blocked, in which case it
takes some specified action (described below).

Suppose thatPj denotes the long-run probability that the system is in state j, that
is, Pj is the probability that the number of calls present (in service or, if the model
permits, waiting in the queue for a trunk to become available) is j; assume that when
the system is in state j, then the call arrival rate is Ej, and the call departure rate is lj.
Then, it can be shown that, under certain conditions that must be satisfied by the
arrival process and the departure process (discussed below), the following equations
determine the state probabilities as a function of the rates Ej and lj:

EjPj ¼ lj þ 1Pj þ 1 ð j ¼ 0; 1; 2; . . .Þ ð1Þ

and

P0 þ P1 þ : : : ¼ 1 ð2Þ

Equation (1), originally derived by Erlang, can be given the following inter-
pretation: rate up from state j equals rate down from state j + 1. That is, the term
EjPj on the left-hand side of Eq. (1) equals the fraction of time Pj that there are j calls
present multiplied by the rate at which calls arrive when there are j calls present;
hence, the product EjPj equals the long-run rate (in transitions per unit time) at
which the system state jumps from level j to level j + 1. Similarly, the right-hand
term lj+1Pj+1 equals the long-run rate (in transitions per unit time) at which the
system state jumps down from level j + 1 to level j. Therefore, if the system is to be in
‘‘equilibrium,’’ Eq. (1) must hold. Successive solution of Eq. (1) for each Pj in terms
of the previous ones gives

Pj ¼
E0E1

: : : Ej�1

l1l2
: : : lj

P0 ð3Þ

and P0 is calculated from the normalization condition, Eq. (2) (which simply requires
the sum of the fractions of time that the system spends in each state to add to 100%).

P0 ¼ 1

1 þ E0

l1

E0E1

l1l2

þ : : : ð4Þ

A stochastic process that is described by Eq. (1) is called a birth-and-death
process. The key technical point here is that the instantaneous rates Ej and lj are
assumed to depend on only the present state and are otherwise independent of the past
history of the process. The birth-and-death probabilities Pj ( j = 0, 1, . . .) defined by
Eq. (1) are time-average probabilities; that is, Pj can be interpreted as the fraction of
time that the system spends in state j. Also of interest are the customer-average
probabilities Cj ( j = 0, 1, . . .); Cj can be interpreted as the fraction of customers
arriving when the system is in state j. In general, the fraction of time that the system

Teletraffic Theory and Engineering 3



spends in a given state does not equal the fraction of customers finding that state
when they arrive. However, when the customers arrive according to a Poisson process
(defined below), then

Cj ¼ Pj ð j ¼ 0; 1; . . .Þ ð5Þ

The important equality Eq. (5) reflects thePASTA theorem (Poisson Arrivals See
Time Averages). Sometimes, the P’s are called the outside observer’s distribution
(reflecting the notion that they measure the frequencies of occurrence of the states
as seen by an outside observer passively observing the system continuously or at
random instants), and the C’s are called the arriving customer’s distribution (reflecting
the notion that they measure the frequencies of occurrence of the states as seen by the
arriving customers). The PASTA theorem says that, remarkably, a stream of Poisson
arrivals will see the states with the same frequencies as will an outside observer, even
though the arrivals, in general, ‘‘cause’’ the states of the system and view the system
just prior to the instants of upward state transitions, whereas the outside observer has
no causal effect on the states of the system. (There are some situations for which non-
Poisson arrivals see time averages, but these are rather special.) We now discuss how
these results are applied to our basic teletraffic model.

B. Poisson Process

The usual assumption in classical teletraffic theory (and the assumption that is most
reasonable in the absence of evidence to the contrary) is that the call arrivals follow a
Poisson process. It turns out, as the following physical argument would suggest, that
the Poisson assumption is consistent with data for voice traffic when the calls are
generated by a large number of independently acting subscribers.

Assume that time is divided into equal-length intervals of length Dt and (1) there
can be at most one arrival in each interval, (2) the probability of an arrival in any given
interval is proportional to the length Dt, and (3) the intervals are statistically
independent of each other.

Let the random variable X be the length of time from now (Time 0) until the
arrival time of the next call. We calculate the probability P(X > t) that no call arrives
in the interval (0, t). Imagine that (0, t) is divided into n intervals, each of lengthDt= t/
n. If we denote by E the proportionality constant assumed in Item 2 above, then the
probability that an arrival occurs in any given interval of length Dt is EDt= Et/n, and,
hence, by Item 3, the probability of no arrivals in any of the n Dt’s that comprise the
interval (0, t) is (1 � Et/n)n. We now pass from discrete time to continuous time by
imagining that Dt! 0 or, equivalently, n!l. That is,

PðX > tÞ ¼ lim
n!l

1 � Et

n

� �n

ð6Þ

It is well known (see any calculus text) that the limit on the right-hand side of Eq.
(6) equals e�Et; hence, if we let FX(t) u P(XV t) denote the distribution function of X,
then Eq. (6) becomes

FXðtÞ ¼ 1 � e�Et t z 0 ð7Þ

A random variable with a distribution function given by Eq. (7) is said to be
exponentially distributed, and the process that describes arrivals with interarrival times
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that are iid (independent and identically distributed) with the distribution function
Eq. (7) is said to be a Poisson process. Thus, if the call arrival process can be described
by Items 1–3 (and what could be simpler and still make sense?), then the calls arrive
according to a Poisson process.

If we let E(X ) be the expected value of X, that is,

EðXÞ ¼
Rl

0

tfXðtÞdt ð8Þ

where fX ðtÞ ¼ d dtFX ðtÞ= is the density function of X (see any probability text), then
substitution of Eq. (7) into Eq. (8) yields

EðXÞ ¼ 1=E ð9Þ

that is, E = 1/E(X ), and hence the proportionality constant posited in Item 2 is the
long-run arrival rate.

An important property of any random variable that is exponentially distributed
[that is, with a distribution function given by the right-hand side of Eq. (7)] is the
memoryless (or Markov) property, which can be expressed as follows: for all yz 0 and
t z 0,

PðX > yþ t j X > yÞ ¼ PðX > tÞ ð10Þ

Equation (10) says that the conditional probability that an exponential variableX lasts
longer than y + t if it is known to have lasted longer than y (that is, ‘‘given’’ X > y)
does not depend on the value of y. [Equation (10) is easily proved using Eq. (7) and the
familiar definition of the conditional probability of occurrence of an event given the
occurrence of any other event.]. It can be shown that Eq. (7) is the only continuous
distribution that satisfies Eq. (10); thus, Eqs. (7) and (10) are equivalent character-
izations of the exponential distribution.

In the context of the birth-and-death process, described by Eq. (1), we see
that if the call arrivals follow a Poisson process with rate E, then the instantaneous
birth rate Ej when the system is in the state j is the same for all states, and we can
take Ej = E.

Let us now assume that the holding times are iid exponential random variables,
with average length � , say. This is a much less ‘‘reasonable’’ assumption for holding
times than for interarrival times, because the Markov property Eq. (10) seems
questionable if the random variable X is taken to represent the length of a call (rather
than the time separating a pair of arriving calls). But, it is precisely this property of
memorylessness that permits the application of Eq. (1); so, we assume ‘‘exponential
holding times’’ for expediency. (This modeling assumption will turn out to be much
better than might appear at this point in the discussion.) Thus, if S represents a generic
holding time, and the average holding time is denoted by E(S) = � , then the
exponential-holding-times assumption implies that Fs(t) is given by the right-hand
side of Eq. (7), with the rate E replaced by l = 1/� (l is the service rate).

Another easily verified property of the exponential distribution is that the
minimum of a set of independent exponentially distributed variables is also exponen-
tially distributed, with a rate equal to the sum of the original rates. Thus, if there are k
iid exponential calls in progress simultaneously, then the time until the shortest of
them ends is exponential with rate kl, where l is the individual service rate; that is, the
aggregate instantaneous call completion rate is kl.
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IV. THE ERLANG B, ERLANG C, AND ENGSET MODELS

If the arrival process is Poisson with rate E and the holding times are exponential with
average length 1/l, then the state probabilities Pj are determined by the birth-and-
death Eq. (1), with Ej = E and lj = jl when jV s and lj = sl when j> s. The solution
to Eq. (3) for j V s is

Pj ¼
ðE=lÞ j

j!
P0 ð j ¼ 0; 1; . . . ; sÞ ð11Þ

A. Erlang B Model

If we assume that Blocked Calls are Cleared (BCC), then obviously Pj = 0 for all
j > s, and Eq. (2) gives

P0 ¼ 1Xs
k¼0

ðE=lÞk

k!

ð12Þ

If we let

a ¼ E=l ð13Þ
then Eqs. (11) and (12) can be written

Pj ¼
a j

j!Xs
k¼0

ak

k!

ð j ¼ 0; 1; . . . ; sÞ ð14Þ

The set of probabilities defined in Eq. (14) is called the Erlang loss distribution
(derived by Erlang in 1917). In particular, the probability that all trunks are busy
is denoted by Ps u B(s, a), the well-known Erlang B or Erlang loss formula:

Bðs; aÞ ¼
as

s!Xs
k¼0

ak

k!

ð15Þ

The Erlang B formula is sometimes called Erlang’s first formula, denoted by
E1,s(a), so E1,s(a) u B(s, a). We now address some of the ramifications and
interpretations of Eq. (15) and then briefly discuss related models, such as Erlang
C and Engset.

1. Offered and Carried Load

The parameter a = E/l = E� defined in Eq. (13) is called the offered load and is
measured in dimensionless units called erlangs. The offered load, which is a measure of
the demand on the system, equals the mean number of arrivals per holding time.
Equation (14) shows that the state probabilities Pj depend on the arrival rate E and the
mean holding time � only through their product a; that is, the demand is completely
specified by the number of erlangs.

According to PASTA Eq. (5), the Erlang B formula gives both the fraction of
time the system will be in the blocking state and the fraction of calls that will be lost
(because they arrive when the system is in the blocking state) as a function of the
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offered load a and the number of trunks s; any two of these values uniquely determines
the third. A family of graphs of the Erlang B formula is given in Fig. 1.

The carried load (in erlangs) a V is defined as the mean number of busy trunks.
When blocked calls are cleared, then a V u a VBCC is given by

a VBCC ¼
X
jV s

jPj ð16Þ

Substitution of Eq. (14) into Eq. (16) gives, after some easy algebra.

a VBCC ¼ a½1 � Bðs; aÞ	 ð17Þ

Equation (17) can be interpreted to say that the carried load equals the product of the
offered load a and the fraction 1 � B(s, a) of the offered load that is not lost; that is,
carried load equals offered load minus lost load:

a VBCC ¼ a� aBðs; aÞ ð18Þ

If we imagine that s=l, then clearlyB(l, a) = 0, and Eq. (18) shows that then a VBCC
= a. This provides another interpretation of offered load: offered load equals the mean
number of busy trunks (that is, the mean number of simultaneous calls in service) in a
system in which no calls are lost. (This interpretation is not restricted to BCC systems,
as discussed below.)

The unit of offered load, defined in Eq. (13), and carried load, defined in Eq. (16),
is the erlang, a dimensionless quantity. According to Eq. (16), the carried load (in
erlangs) is the mean number of simultaneous calls in progress; from Eq. (18), the
offered load is the mean number of simultaneous calls that would be in progress if
the number of trunks were infinite; the lost load is the difference between them. In
traditional telephony, loads are often measured in units called CCS, which stands for
hundred-call-seconds per hour. This convention is based on technology; carried loads
are measured by sampling the state of a trunk every 100 seconds for 1 hour and
recording the number of times the trunk is found to be busy. Thus, if a trunk were busy
continually throughout the hour, its carried load (1 erlang) would be recorded as 36
CCS (because there are 3600 seconds in an hour). Hence, 1 erlang of traffic equals 36
CCS (the ‘‘per hour’’ is usually not stated explicitly). The load carried by the trunk
group is the sum of the loads carried by each trunk. Obviously, the use of CCS as
the unit of traffic is highly arbitrary, and it is not used outside telephony. All of the
formulas given here require that the loads be expressed in erlangs.

In telephony, the total time during which all trunks in a group are simulta-
neously busy is called ATB (All Trunks Busy), the number of calls that arrive is
called PC (Peg Count), and the number of calls that are blocked is called O
(Overflow). Then, the probability of blocking is estimated by ATB (per hour) and
O/PC; if the arrival process is Poisson, then these measurements would be, in
principle, equal over the long run. Which measurement is a better estimator of loss is
a complicated statistical question, part of the subject of traffic measurement
(discussed in a separate section).

If we define the system utilization q to be the carried load per trunk, then

qBCC ¼ a½1 � Bðs; aÞ	
s

ð19Þ

If the trunks are numbered 1, 2, . . . and each arriving call is carried by the lowest-
numbered idle trunk (ordered hunt, ordered entry), then the load carried by (on) the jth

Teletraffic Theory and Engineering 7



F
ig

u
re

1
G

ra
p

h
s

o
f

th
e

E
rl

a
n

g
B

fo
rm

u
la

.

Cooper and Heyman8



trunk is the difference between the load aB( j� 1, a) that overflows trunk j� 1 and the
load aB( j, a) that overflows trunk j:

a VBCCð jÞ ¼ aBð j� 1; aÞ � aBð j; aÞ ð20Þ

where, of course, B(0, a) = 1. Also, a VBCC( j) equals the utilization of the jth trunk, that
is, the fraction of time that trunk j is busy (but not the fraction of overflow calls from
trunk j� 1 that find trunk j busy, because overflow traffic is not Poisson, and PASTA
does not apply). Note that, of course,

a VBCC ¼
X
j

a VBCCð jÞ ð21Þ

which follows from Eqs. (18) and (20).
It is difficult to calculate numerical values of the Erlang B formula directly from

Eq. (15) when a or s are large. But, it is easy to show that

Bðn; aÞ ¼ aBðn� 1; aÞ
nþ aBðn� 1; aÞ ðn ¼ 1; 2; . . . ; s; Bð0; aÞ ¼ 1Þ ð22Þ

and to write a computer program that implements Eq. (22). This algorithm is very fast
and stable.

2. Insensitivity

Although the assumption of exponential holding times was tacitly used in our appli-
cation of Eq. (1), it turns out that this assumption is not necessary for the conclusion
Eq. (14) [and Eq. (15)] to be valid. Amazingly, when the blocked calls are cleared (and,
of course, when s = l), the birth-and-death equations remain valid; the state prob-
abilities for the Erlang loss system are insensitive to the form of the holding time
distribution (that is, the holding times affect the state probabilities only through their
mean value). Obviously, the study of insensitivity in stochastic systems is of great
mathematical interest and practical importance.

A consequence of this insensitivity property for the Erlang loss system is the
following theorem: If two independent Poisson streams of traffic, say a1 erlangs and a2

erlangs, are offered to a group of s trunks and blocked calls are cleared, then each
stream sees the same probability of blocking, and it is given by the Erlang B formula
B(s, a) with a = a1 + a2, even if l1 p l2 and the holding times of the calls from each
stream have different distributions. (Clearly , this theorem generalizes to an arbitrary
number of independent Poisson streams.)

3. Efficiency of Large Trunk Groups

Numerical investigation [via Eq. (22), for example] of the Erlang B formula shows
that large trunk groups are more efficient than small ones. For example, B(1, 0.8) =
0.4444, B(10, 8) = 0.1217, B(100, 80) = 0.003992, and B(1000, 800) = 10�12. Like-
wise, B(s1 + s2, a1 + a2)< B(s1, a1) + B(s2, a2).

The Erlang B is the most important and fundamental model in traditional
teletraffic engineering. In modern wireless systems, where traffic is generated by mobile
subscribers via cell phones in cars, the Erlang B remains a good model for the provision
of radios in cell sites. This is true because, despite the mobility of the subscribers
generating the calls, the assumptions (1)–(3) for the Poisson arrival process are still
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met; and the insensitivity of Eq. (15) to the distribution of holding times means that
the truncation of holding times caused by handovers does not negate its validity for
describing the effects of mobile traffic in which the blocked calls are cleared.

4. Simulation

It is instructive to study the simple simulation of a loss system, coded in simple BASIC,
in Table 1. The code implements the ordered hunt procedure for assigning calls to
trunks: the trunks are numbered J = 1, 2, . . . ; each arriving call is assigned to the
lowest-numbered idle trunk; and the blocked calls are cleared. Instructions 140 and
200 specify the distribution functions of the interarrival times and the holding times,
respectively. For example, using the inverse transform method (see any text on simu-
lation), an exponential random variable realization with mean value M is generated
whenever the value – M*LOG(1 � RND) is computed (where RND is a computer-
generated random number). Thus, the program will simulate a loss system with
Poisson arrivals with rate L and constant holding times with value T if the instruc-
tions are

140 IA ¼ �ð1=LÞ*LOGð1 � RNDÞ

200 X ¼ T

It is instructive to run this simulation with different distributions specified by 140
and 200 (but with a fixed given offered load L*T), to compare the resulting values of

Table 1 Simulation of Loss System

No. Instruction Explanation

100 DIM C(50) 50 is the maximum number of trunks
110 INPUT S,N S,N = number of trunks, calls to be

simulated
120 NC=NC+1 NC = number of calls simulated so far
130 J=0

140 IA= IA = interarrival time
150 A=A+IA A = arrival time
160 J=J+1 J = index of trunk being probed

170 IF J=S+1 THEN K=K+1 K = number of calls that are blocked
180 IF J=S+1 THEN 280
190 IF A<C (J) THEN 160 C(J) = completion time for trunk J
200 X= X = holding time

210 SX=SX+X SX = sum of holding times for carried calls
220 C(J)=A+X
230 M=C(1) M = shortest trunk-completion time

240 FOR 1=2 TO S
250 IF C(1)<M THEN M=C(I)
260 NEXT I

270 IF M>A THEN AB=AB+M-A AB = cumulative time during which all
trunks are busy

280 IF NC<N THEN 120

290 PRINT K/NC, AB/A, SX/A Fraction of calls blocked, fraction of time all
trunks simultaneously busy, carried load
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K/NC (the fraction of calls that are blocked) and AB/A (the fraction of time spent in
the blocking state), and to compare these experimental values with the predictions of
teletraffic theory (such as Erlang B values, PASTA, and insensitivity). It is easy to
augment this code to include measurement of other quantities (or to allow the blocked
calls to wait in a queue, etc.).

B. Erlang C Model

We now discuss briefly some of the other basic teletraffic models. If (1) the calls arrive
according to a Poisson Process (as in Erlang B), (2) the holding times are exponentially
distributed (not required for Erlang B), and (3) the blocked calls wait in a queue until a
trunk becomes available (Blocked Calls Delayed [BCD], different from Erlang B), then
the state probabilities are determined by the birth-and-death Eq. (1) with Ej = E
(Poisson arrivals) and

lj ¼
jl ð jV sÞ

sl ð j > sÞ

8<
:

(exponential holding times). Using these values for Ej and lj in the birth-and-death
equations yields, from Eq. (3)

Pj ¼

a j

j!
P0 ð j ¼ 1; 2; . . . ; s� 1Þ

a s

s!sj�s
P0 ð j ¼ s; sþ 1; . . .Þ

8>><
>>: ð23Þ

and, if the infinite series in the denominator of Eq. (4) converges (that is, if E/sl = a/s
< 1), then

P0 ¼ 1Xs�1

k¼0

ak

k!
þ as

s!ð1 � a=sÞ

ða < sÞ ð24Þ

Then, the probability of blocking (the fraction of time that all trunks are simulta-
neously busy, which, by PASTA, equals the fraction of arriving calls that find all s
trunks busy) is given by Ps + Ps+1 +. . .uC (s, a), the well-known Erlang C or Erlang
delay formula:

Cðs; aÞ ¼
as

s!ð1�a=sÞXs�1

k¼0

ak

k!
þ as

s!ð1 � a=sÞ

ða < sÞ ð25Þ

If a z s, in which case the infinite series in the denominator of Eq. (4) diverges, then
P0 = 0 and, by Eq. (23), Pj = 0 for all finite j. Physically, the condition a z s or,
equivalently, E z sl means that the calls are arriving faster than the system can serve
them in the long run, so we define C(s, a) = 1 when a z s.

Eq. (25) is analogous to Eq. (15); the Erlang C formula is sometimes called Er-
lang’s second formula, denoted by E2,s(a), so E2,s(a) uC(s, a). But, unlike the Erlang B
formula, the Erlang C formula requires the assumption of exponential holding times;
that is, the Erlang C model is not insensitive to the distribution of holding times.
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The carried load a V [defined above as the mean number of busy trunks; see Eq.
(16)] is given by

a VBCD ¼

X
jV s

jPj þ
X
j> s

sPj ða < sÞ

s ða z sÞ

8<
: ð26Þ

Substituting Eqs. (23) and (24) into Eq. (26) yields

a VBCD ¼
a ða < sÞ

s ðaz sÞ

8<
: ð27Þ

Equation (27) can be interpreted to say that, when a < s in an Erlang C system, the
carried load equals the offered load (because all arriving calls are carried). Simlarly,
the system utilization q, defined above [see Eq. (19)] as the carried load per trunk, is
given by

qBCD ¼
a
s ða < sÞ

1 ðaz sÞ

8<
: ð28Þ

As with the Erlang B formula, there is a better way to calculate the Erlang C
formula than from its definition in Eq. (25); it is easy to show that

Cðs; aÞ ¼ sBðs; aÞ
s� a½1 � Bðs; aÞ	 ða < sÞ ð29Þ

It follows easily from Eq. (29) that C(s, a) > B(s, a), which is explained by the
observation that in the Erlang B system the blocked calls are cleared from the system,
whereas in its Erlang C counterpart, the blocked calls remain in the system and thus
can cause blocking for future arriving calls.

A family of graphs of the Erlang C formula is given in Fig. 2. For comparison
with the numerical examples given above for the Erlang B formula, we giveC(1, 0.8) =
0.8, C(10, 8) = 0.4092, C(100, 80) = 0.01965, and C(1000, 800) = 5.6 
 10�12. Note
that in each of these examples, q = 80%. This again demonstrates that large trunk
groups are more efficient than small ones.

1. Waiting Times

In the Erlang C model, the blocked calls wait in the queue until a trunk becomes
available. LetW be the waiting time of an arbitrary call. Then, for any order of service,
P(W > 0) = C(s, a). If the calls are served from the queue in the order of their arrival
(FIFO; First In, First Out), then, it can be shown

PðW > t j W > 0Þ ¼ e�ð1�qÞslt ðt z 0Þ ð30Þ

that is, the waiting times for blocked calls are exponentially distributed, with mean
value

E ðWjW > 0Þ ¼ 1

ð1 � qÞs � ð31Þ

Cooper and Heyman12
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Therefore, the unconditional (pertaining to all calls) waiting times are described by

PðW > tÞ ¼ Cðs; aÞe�ð1�qÞslt ðt z 0Þ ð32Þ

and

EðW Þ ¼ Cðs; aÞ
ð1 � qÞs � ð33Þ

It is important to note that Eqs. (30) and (32) require that the service order be FIFO,
whereas Eqs. (31) and (33) hold for all orders of service that do not depend on the
service times of the calls in the queue.

All the formulas given above for the Erlang C model require that the holding
times be exponentially distributed. However, for the special (but important) case when
s = 1 trunk, we have the following well-known Pollaczek-Khintchine formula, which
gives the mean waiting time for an arbitrary specification of the holding time
distribution:

EðW Þ ¼ q�
2ð1 � qÞ 1 þ r2

�2

� �
ð34Þ

where r2 is the variance of the holding times. Equation (34) shows, for example, that
the mean waiting time in the case of exponential holding times (r2 = �2) is exactly twice
as large as it is in the case of constant holding times (r2 = 0), all other things being held
equal. Furthermore, for any distribution of holding times, when s= 1 Eq. (32) remains
true for t = 0; that is,

PðW > 0Þ ¼ q ð35Þ

Thus, in the single-server queue, the number of calls that are forced to wait is in-
sensitive to the variability of the holding times [Eq. (35)], whereas the length of time
that the blocked calls spend waiting in the queue is not insensitive, but instead depends
on the amount of variability in the holding times [Eq. (34)]. (This phenomenon is a
recurring theme throughout queueing theory.)

2. Effects of Retrials

We have already observed that B(s, a) < C(s, a). The Erlang loss model does not
account for the effect of blocked calls that retry. Clearly, the effect of retrials would be
to increase the true probability of blocking beyond that predicted by the Erlang B
formula. It is difficult to account precisely for the effect of retrials because the retrial
stream does not follow a Poisson process (because it is not memoryless). One can take
the viewpoint that, while the Erlang B formula underestimates the true probability of
blocking (because it assumes that blocked calls never retry), the Erlang C formula
overestimates the true probability of blocking (because it assumes that the blocked
calls retry continually, with zero time between retrials, until they are served). An
assumption that produces values that lie between these extremes is blocked calls held:
every call spends its full holding time in the system whether or not it gets served. Then,
the state probabilities are given by Eq. (1) with Ej= E (Poisson arrivals) and lj = jl for
all j z 0 (the aggregate call departure rate is the same whether j V s or j > s); the
solution is

Pj ¼
a j

j!
e�a ð j ¼ 0; 1; . . .Þ ð36Þ

Cooper and Heyman14



where, as before, a = E/l is the offered load. Equation (36) defines the Poisson
distribution (not to be confused with the Poisson process). The probability of blocking
is denoted by the Poisson formula P(s, a):

Pðs; aÞ ¼
Xl
j¼s

a j

j!
e�a ð37Þ

The model described by Eq. (37) seems very artificial, but it does produce ‘‘inter-
mediate’’ values,

Bðs; aÞ < Pðs; aÞ < Cðs; aÞ

The Poisson formula can be viewed as a way to account for retrials, to account
for variation in the (assumed constant) arrival rate, or as a ‘‘fudge factor’’ to justify the
provision of additional ‘‘safety’’ capacity beyond that indicated by the Erlang B
formula. The Poisson formula is not used in modern teletraffic engineering, but we
have included this discussion here because its existence in past practice often raises
questions among engineers who do not know its history.

C. Engset Models

The Erlang B, Erlang C, and Poisson models all assume that the call arrival pro-
cess is a Poisson process. A more general arrival process that still fits within the
framework of the birth-and-death process is quasirandom input: the calls are gen-
erated by n independent, identical subscribers, each of which generates calls at rate
c when idle (and rate zero when waiting or in service). Then, when the system is
in state j, the aggregate instantaneous call arrival rate is (n � j)c; that is, take Ej =
(n � j)c in Eq. (1). Then, one can derive formulas analogous to the Erlang B and
Erlang C (and Poisson) by making the corresponding assignments for the service
completion rates lj. These ‘‘finite-source’’ models are often called Engset models
after the author who first (1918) considered the finite-source analog of the Erlang
loss model.

An interesting fact about models with quasirandom input is the arrival theorem:
if Cj[n] and Pj[n] are, respectively, the arriving customer’s distribution and the outside
observer’s distribution for a birth-and-death model with n sources, then

Cj½n	 ¼ Pj½n� 1	 ð38Þ

Equation (38) can be interpreted to say that the arriving customer sees the system as if
he were an outside observer of the same system with himself removed from the calling
population.

For example, when blocked calls are cleared, then the analog of Eq. (14) is (we
assume n > s to avoid trivialities)

Pj½n	 ¼

n

j

� �
c
l

� �j

Xs
k¼0

n

k

	 
 c
l

� �k
ð39Þ
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and therefore the fraction of requests for service that are blocked is

Cs½n	 ¼

n� 1
s

� �
c
l

	 
s
Xs
k¼0

n� 1

k

� �
c
l

� �k
ð40Þ

(including ‘‘retrials,’’ since blocked sources remain eligible to generate new requests).
This model has some interesting properties, but here we mention only that, like the
Erlang loss model, the probabilities of Eqs. (39) [and (40)] are insensitive to the form of
the holding time distribution. Moreover, these probabilities are insensitive to the
distribution that governs the times between calls for each subscriber; all that is
required is that the mean time between the instant a subscriber becomes idle and the
next time the subscriber makes a request for service be 1/c for each subscriber.

It is easy to show that, in the limit as n!l and c! 0 with the constraint nc = E,
the quasirandom input (finite-source) models converge to their Poisson input (infinite-
source) counterparts. [Thus, taking limits in Eq. (38) produces a result consistent with
PASTA.] Finite-source models are more complicated than their infinite-source
counterparts, so they are used only when the number of subscribers is relatively small
and the ratio of subscribers to trunks is relatively low.

D. Some References

The discussion above gives the highlights of those aspects of queueing theory that are
fundamental to classical teletraffic theory. Much of this material is covered in greater
detail in Ref. 1, which is a queueing theory text with some emphasis on teletraffic
models, and Ref. 2 which is a survey with an updated list of references. Reference 3 is a
comprehensive and authoritative guide to the classical theory, especially as developed
from the time of Erlang through the late 1950s. References 4–6 provide good treat-
ments of background material in probability and stochastic processes, together with
material that relates directly to queueing theory.

V. TRAFFIC MEASUREMENTS

The previous sections have described queueing models for which the parameters are
known. In this section, we discuss some issues that arise in making measurements on
operating traffic systems and in using these measurements for estimating parameters.
Most of the theory and engineering practices in the United States were developed prior
to the breakup of the Bell System in 1984 and were focused on voice communications.
Since then, data traffic has become a larger proportion of the total traffic, and im-
portant characteristics of voice traffic have changed. We describe the classical traffic
measurements and analyses in some detail and sketch some of the current issues that
are motivating changes in the classical measurements.

A. The Classical Problem

The classical traffic measurement problem occurs in the setting of the Erlang B model.
This is applicable to lines (circuits from customers to switches) and to trunks (circuits
between switching systems) for traffic that is predominantly voice calls not overflowing
from another network element. This typically justifies the assumption that calls arrive
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according to a Poisson process. The offered load is a = E/l as described in Eq. (13).
There are s servers, blocked calls are cleared (BCC), and the system should block calls
with probability no larger than bo (bo is called the blocking objective and typically
equals 0.01). The assumption that the call attempts form a Poisson process is not
required for the theory that follows. Some features of the formulas are negligible for
Poisson traffic, but they may be negligible otherwise.

There is usually no difficulty in measuring s. The main issues concern measure-
ments of the offered load a and the blocking probability b. Let â and b̂ be the measured
values of a and b, respectively; these measurements are called the observed load and
the observed blocking, respectively. We want to know if b̂V bo, and, if not, how many
more servers are needed; â would be used to answer that question. In the context of
the Erlang B model, these measurements are random variables, so we need to know
something about their distributions. A consequence of the inherent randomness of
measurements on a stochastic system is that b̂ can differ from bo even when they are
theoretically equal. It is important to distinguish statistical fluctuations in b̂ when bV
bo from a valid indication that b > bo.

Among the decisions that have to be made are which observations to collect
and over which time periods to collect them. We consider these questions in reverse
order.

1. Engineering Periods

The queueing formulas that are the basis for traffic engineering assume that the arrival
rate is not changing with time. The content of formulas such as the Erlang B and C
formulas are steady-state, or long-run, probabilities. Experience has shown that call
attempts vary with time of day. There is a tendency for peaks in the morning and
afternoon due to business activity, and sometimes there is a peak in the evening from
residential activity. Therefore, we want to use the longest interval in which the traffic
parameters are constant, which is smaller than one day. Peaks typically last for one to
two hours, so one hour has been taken as the standard measurement unit. Measure-
ments are taken during peak periods (called busy hours) so that the grade of service
(GoS) will be achieved throughout the day. There is little evidence of systematic day-
to-day variation on standard workdays.

This means that busy hour measurements can be averaged over several days. In
many geographical areas, there are periods during the year when the daily peaks are
higher than normal; this is most obvious in resort areas. These are called busy seasons.
Measurements are taken during the busy season busy hour (BSBH), typically one
particular hour over five weekdays for four consecutive weeks; this is called the
engineering period. The average of these 20 measurements is called the average busy
season busy hour (ABSBH).

The BSBH is appropriate for measurements on network links because the GoS
for links is often expressed as a blocking objective, and blocking probabilities are
computed from the average load. Even for properly engineered links, congestion oc-
curs when there are statistical fluctuations above the average load. Congested switch-
ing systems try to route some of their load to other switches, so switch congestion
has the potential to spread. This means that peak loads are of more concern than
average loads for components of a switching system. Engineering periods other than
the ABSBH are used for these components. Some examples are the highest BSBH,
the weekly peak hour (which may not be a BSBH), and the average of the 10 highest
BSBHs.
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In the United States, the days with the most long distance telephone traffic are
Mother’s Day and Christmas. Measurements taken on these days are used for
designing and testing overload controls, not for capacity planning.

2. Measurements

Now we describe how â and b̂ are measured and give some statistical properties of
these measurements in the setting of the Erlang B model. The article by Hill and Neal is
the source for these results (7). The measurement interval (BSBH) is denoted by (0,T ].
The three measurements are

A(T ) = the measured number of arrivals (peg count)
O(T ) = the measured number of overflows
L(T ) = the measured carried load

The carried load is the average number of busy servers, so if S(t) is the number of busy
servers at time t,

LðT Þ ¼ 1

T
mT

0
SðtÞdt ð41Þ

Measurements are taken on n days (typically n = 20); a subscript i is used to denote
day i.

We first discuss â. The measured offered load on day i is the measured carried
load divided by the proportion of the arrivals that are carried, so the measurements
version of Eq. (18) is

âi ¼
LiðTÞ

1 � OiðTÞ
AiðTÞ

ði ¼ 1; 2; . . . ; nÞ ð42Þ

Let a be the average of the daily measurements, so

a ¼ 1

n

Xn
i¼1

âi ð43Þ

and let Var(â) be the sample variance of the daily measurements, so

VarðâÞ ¼ 1

n� 1

Xn
i¼1

ðâi � aÞ2

The variability in the daily measurements is attributable to day-to-day variation in the
offered load and to finite sampling effects. An analysis of empirical data showed that a
gamma distribution is a good fit to the distribution of observed loads. The gamma
distribution has a density function denoted by c(�), where

cðxÞ ¼ bðbxÞv�1

GðvÞ e�bx ðxz 0Þ

where G is the gamma function defined as

GðvÞ ¼
Z l

0

tv�1e�tdt

When v is a positive integer, G(v) = (v � 1)! and the parameters v and b are called the
shape and scale parameters, respectively, and are nonnegative. The mean and variance
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of this distribution are v/b and v/b2, respectively, so the mean and variance determine
the distribution. The data also showed that the variance of the measured offered load is
related to the mean via

VarðâÞ ¼ 0:13a/ ð44Þ

where / is a parameter that describes the amount of day-to-day variation. Three values
of / (1.5, 1.7, and 1.84) were chosen to describe low, medium, and high day-to-day
variation, respectively.

Probabilistic analysis yields

VarðâÞ ¼ VarðaÞ þ 2a

lT
ð45Þ

where 1/l is the mean call holding time. The first term on the right in Eq. (45) is the
variance due to day-to-day variation, and the second term is an approximation for
variance due to the finiteness of the measurement interval. Substituting Eq. (44) into
Eq. (45), rearranging, and ensuring that Var(a) z 0 yields

VarðaÞ ¼ max 0; 0:13a/ � 2a

lT

" #
ð46Þ

Equations (43) and (46) and E(a) = a are used to obtain the parameters of the gamma
distribution that describes the day-to-day variation in a.

Now we examine b̂. The measured blocking on day i is the proportion of the
offered load that overflows, so

b̂i ¼
OiðTÞ
AiðTÞ

ði ¼ 1; 2; . . . ; nÞ ð47Þ

Comparing Eqs. (42) and (47) shows that âi and b̂i are correlated. Let b be the average
of the daily measurements, so

b ¼ 1

n

Xn
i¼1

b̂i

it is the observed GoS. Since a large number of arrivals tends to cause a large number of
overflows, Ai (T ) and Oi (T ) are positively correlated. This means that E(b) p B(s, a)
even when a is known precisely. Some lengthy analysis yields the approximation

EðbÞB
Z l

0

Bðs; aÞ ¼ Bðs; aÞalT� CovðO1ðTÞ;A1ðTÞÞ
ðalTÞ2

" #
cðaÞda ð48Þ

The second term in the integrand is negative in the range of engineering interest, so
ignoring it leads to overestimates of the observed blocking. The magnitude of this term
is negligible for Poisson traffic and is significant when the peakedness exceeds two. The
formula for the covariance term is intricate and can be found in the article by Neal and
Kuczura (8). Numerical integration is tractable for evaluating Eq. (48). Engineering
design tools use Eq. (48) to obtain a design that will achieve the blocking objective. The
empirical content of Eq. (48) is that this procedure makes the observed GoS agree with
the designed GoS.
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B. The Effects of Internet Calls

The classical measurement and analysis methods were developed when almost all
telephone traffic was voice communications. Measurements of call holding times were
consistent with an underlying exponential distribution, and the mean holding time was
about three minutes. These properties of call holding times changed on local access
links when dialing the Internet became popular in about 1995.

Internet access for most users consists of a voice call from the subscriber’s
premises (using a modem) to an Internet service provider (ISP) and packet trans-
mission from the ISP to the Internet. The mean length of these calls is roughly 25
minutes, and the proportion of traffic they represent is growing rapidly. This has the
effects of increasing the mean length of voice connections on the access links and
changing the distribution of holding times from exponential to a mixture of two
exponentials (which is called a hyperexponential distribution). The insensitivity of the
Erlang B formula implies that the effect on the distribution will not affect the
calculation of the objective blocking as long as the effect on the mean is taken into
account. However, there is an effect on the analysis of traffic measurements.

The measured carried load is defined as an integral in Eq. (41). In practice,
measurements are taken periodically (100 seconds apart is typical, yielding CCS,
which are usually translated to erlangs), and the integrand is approximated by a step
function. Numerical experiments show that this provides nearly the same measure-
ment values that continuous observations do. The analysis leading to Eq. (48) uses a
different representation of L(T) to make the analysis tractable. To describe it, let hij be
the holding time of the jth call on the ith day. Then,

LiðTÞB
1

T

XAiðTÞ

j¼1

hij ð49Þ

This approximation includes that part of the holding time that lasts beyond T of a
call that arrives during the measurement interval and excludes the part of a call that
is in (0, T ] from calls that arrive before the measurement interval begins. This ap-
proximation is accurate when these errors are both small or when they cancel each
other out; it is unlikely to be accurate when the probability that a call that arrives
before time zero lasts beyond T. When the mean holding time is 3 minutes and T is
1 hour, P {call lasts longer than T} is e�20 = 2.06 
 10�9, which is negligible. When
the mean holding time is 30 minutes, P {call lasts longer than T} is e�2 = 0.135,
which is significant. As Internet traffic increases, the validity of Eq. (49), and there-
fore of Eq. (48), becomes more doubtful. The situation would be even worse if en-
tertainment video over telephone lines becomes a popular service. The modifications
to Eq. (48) that are required to mitigate the effects of these long holding time calls are
not yet known.

VI. BROADBAND TRAFFIC

Digital voice links are capable of transporting 64,000 bits per second (64 kilobits per
second [kb/s]). Broadband traffic refers to sources that transport at rates that are at
least 24 times as large (North America and Japan), that is, at least 1.544 megabits per
second (Mb/s), or at least 31 times as large (Europe), that is, at least 2.048 Mb/s. Three
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examples of broadband traffic are Internet traffic, videoconferences, and entertain-
ment video over telephone lines. From a traffic engineering perspective, broadband
traffic is qualitatively very different from voice traffic. The difference is caused by the
way broadband traffic is carried on a telecommunications system.

Voice traffic is circuit switched, which means there is a path from the origin to the
destination, with dedicated bandwidth that is established when the call is initiated and
torn down when the call is terminated. The mean holding time for a subscriber is about
3 minutes, and the arrival rate is rarely more than 20 per hour per subscriber. Low-
speed data (e.g., dial-up modems and facsimiles) are also circuit switched. When a
circuit-switched call is accepted, it receives dedicated network resources. Conse-
quently, there is no need to consider finer detail than the call level, that is, call arrival
and holding times.

High-speed data are divided into packets of information, and these packets are
the units of data transport; this is called packet switching. It is not uncommon for the
holding time of a packet to be less than a millisecond and for thousands to arrive in a
second. This quantitative difference becomes a qualitative difference in (at least) two
ways. First, the interarrival times from a source are dependent. This occurs because,
when a packet arrives, the source is transmitting data, so there is a greater chance
(compared to independence) of another packet arriving soon. The operational
manifestation of this is that packet arrivals are bunched, which is called bursty traffic.
Second, buffers are provided to accommodate the temporary peaks in packet arrivals.
Thus, at the packet level, we have a BCD system, whereas circuit switching is BCC.
This means that waiting time and buffer overflow probabilities are the performance
measures of primary interest at the packet level. At the call (or connection) level, which
may be BCC, the usual circuit-switched performance measures apply.

New technologies and protocols are used to transport broadband traffic. The
asynchronous transfer mode (ATM), Ethernet, and the Transmission Control Proto-
col/Internet Protocol (TCP/IP) suite are some of these. Detailed traffic models that
describe the specific effects of each protocol are beyond the scope of this article; we
describe some general ideas.

A. Packet Traffic

Figure 3 shows 30-second segments of four packet data traces. Each plot shows the
arrival rate as a function of time. These traces are of traffic destined for the Internet, a
videoconference, and two codings of movies. Notice that these traces do not resemble
each other, so the application and the method of digital coding appear to affect the
traffic characteristics significantly.

The Internet traffic data are the number of bits that arrive in 100 milliseconds
(ms) multiplied by 10 to give megabits per second. It alternates rapidly between high
and low rates, occasionally reaching zero when no packets are sent. Motion pictures
are a sequence of still pictures called frames. The data for the three video traces are the
number of bits in each frame, scaled to give megabits per second. The details of the
Motion Picture Experts Group (MPEG) coding scheme are not important here, except
to note that there is a periodic feature to them. The periodicity is a dominant feature of
the trace. The videoconference and a film were coded with an H.261 algorithm, which
is another coding scheme. The videoconference is people talking in front of a
stationary camera. A movie is a sequence of scenes, in which a scene is characterized
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by a fixed camera angle and homogeneous subject matter. Video coding typically
transmits the differences of adjacent frames, so scene changes require more bits than
do frames within a scene. The film trace resembles a sequence of conferences separated
by spikes, and the spikes represent scene changes.

Figure 4 investigates the videoconference trace in more detail. A Poisson process
with the same rate was simulated. In the upper left plot, we see that the video-
conference trace is much more volatile than the trace of the Poisson process. The other
plots show the reason. The plots of the density functions for the number of bits per
frame show that the tails of the Poisson distribution are not long enough; that is, there
are too few observations significantly above and below the mean. The remaining plots
show the relation between the number of bits in adjacent frames. For the video-
conference, these points cluster closely around the 45j line, indicating strong corre-
lation. (The correlation coefficient is 0.985.) For the Poisson process, the points appear
to be uniformly spread, which is what we expect because the number of bits in adjacent

Figure 3 Broadband data traces shown as 30-second segments.
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frames is independent. The solid line in the plot is a nonlinear fit through the points; it
is almost a horizontal straight line, indicating little empirical correlation.

Figure 4 shows that the Poisson process is not a good model for the video-
conference trace. Similar analyses will show that it is not a good model for the other
traces in Fig. 3. Several statistical models have been proposed for these traces, but none
has achieved universal acceptance in the way the Poisson process has for first-offered
voice traffic.

B. Effective Bandwidths

The lack of a statistical model for broadband traffic notwithstanding, engineers
designing equipment to carry broadband traffic need a way to size buffers and other
traffic-sensitive components to meet quality of service (QoS) requirements. Two
problems that need to be solved are the planning problem and the connection

Figure 4 Time series, density, and correlation comparisons between a videoconference and

a Poisson process.
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admission control (CAC) problem. The former is to determine if a proposed system
can carry a given traffic mix and satisfy the QoS constraints. The latter is to decide (in
real time) if a new request for service should be accepted. A concept called the effective
bandwidth of a source is being used by several manufacturers of ATM equipment for
CAC and has been used for buffer sizing by at least one. A full treatment of this
concept involves a considerable mathematical development, so only a simplified
introduction is given here.

For analog signals, the bandwidth is the range of frequencies in the waveform.
When all telephone signals were analog, the notion of bandwidth was used to describe
the transmission requirements of a signal and the capacity of a transmission channel. A
channel with capacity c could transport nj signals of type j, each having bandwidth of
wj ( j = 1, 2,. . ., j) if, and only if,

XJ
j¼1

njwj V c ð50Þ

was valid. This equation can be used to solve both of the problems just mentioned. For
broadband traffic, we would like to find an analog of wj that collapses the statistical
properties of the traffic and its QoS requirements into a number that can be used in an
equation similar to Eq. (50). When such a number is found, it is called the effective
bandwidth (EBW) of the source. Notice that the EBW depends on the QoS, as well as
the statistical properties, so the EBW of a source may be different in different
applications. Hui first obtained Eq. (50) for a model of broadband traffic (9). Kelly
surveys several EBW models (10).

There are several ways to model packet traffic and obtain EBWs. Capturing the
bursty nature of packet traffic necessarily requires more complex stochastic processes
than are used in the sections on Erlang B, Erlang C, and Engset models. These
processes need more advanced mathematical methods to be brought to bear on the
models. We present an EBW model that is widely applicable and relatively easy to
explain (11). However, the explanation is more sophisticated than the explanations
given for the Erlang and Engset models. We start with describing the model for a single
source and extend the discussion to multiple sources.

A single source of packets is fed to a single server that works at rate c. There is a
buffer of size B to handle temporary overloads. The QoS is the probability of buffer
overflow. The single source is an aggregation of many sources that are producing
packets, so the total number of packets behaves as if they flow in like a fluid. The flow
rate varies as a Markov chain; this models the changes in the activity rates of the
individual sources. Let mjk be the rate (number of transitions per unit time) that the
Markov chain makes transitions from state j to state k. When the chain is in state j,
the flow rate is gj. Let M = (mij) be the rate matrix of the Markov chain and w be the
stationary distribution of M. Then, the mean arrival rate g equals Awjgj. To ensure
stability, assume that the mean arrival rate is less than the service rate (i.e., that g< c).
The buffer will never overflow if the arrival rate never exceeds c, so assume, to avoid
trivialities, that (at least) the largest arrival rate exceeds c. The following two examples
illustrate the source model.

Example 1. Assume there are n subscribers, their connection attempts form a
quasirandom input process, and successful attempts send packets at rate g for an
exponentially distributed amount of time. Then, the number of active subscribers
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fluctuates as in an Engset model, and the state of the Markov chain is the number of
active subscribers. Using the notation of the section on birth-and-death processes,
mj, j+1 = Ej and mj, j�1 = lj. The arrival rate in state j is given by gj = jg.

Example 2. The videoconference data shown in Fig. 3 has been modeled as a
Markov chain in the following way. Recall that a moving picture is a sequence of still
pictures (called frames) that (ideally) arrive equally spaced in time. Let Xk be the
number of bits in the kth frame; analysis of some videoconference data has shown that
the sequence {X1,X2,. . .} is consistent with Markov chain behavior. We let the number
of kilobits in the current frame be the state of the Markov chain, andmij is determined
by the way the number of bits per frame changes. The arrival rate in state j is j kilobits
per interframe arrival time.

Let �(B) be the steady-state probability that a buffer of size B overflows. The
performance objective is to ensure that �(B) V p, where p is typically small. To
understand when the objective will be met, we consider what happens when

p ! 0 and B ! l such that logp=B ! f < 0 ð51Þ

the role of f is discussed below. It turns out that �(B) can be expressed in terms of the
eigenvectors and eigenvalues of a certain matrix. As B gets large, the eigenvector-
eigenvalue pair, for which the eigenvalue has the largest real part among all
eigenvalues with a real part that is negative, basically determines �(B). That ei-
genvalue is related to w(z), which is defined as the maximal real eigenvalue of the
matrix

AðzÞ ¼ H� 1

z
M

where H is the diagonal matrix, with Hjj = gj, and z is a parameter. The following
result can be proven with a substantial amount of analysis.

Proposition 1: Let Eq. (51) be valid. Then,

if w(~)<c, then �(B)<p

if w(~)>c, then �(B)>p

Because of this property,w(f) is the EBW of the aggregate source described byH
and M.

This proposition is applied to a setting with service capacity c, buffer size B, and
maximum allowable overflow probability p by setting f = logp/B, computingw(f) and
comparing it to c. When the Markov chain has two states, w(f) can be written
explicitly. Let

M ¼
�� �

b �b

0
@

1
A

� and b are the inverses of the expected lengths of times in States 1 and 2, respectively.
Then,

wðfÞ ¼
ðg1 þ g2Þf þ �þ b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðg1 þ g2Þf þ �þ b	2 � 4ðg1g2f

2 þ bg1f þ �g2fÞ
q

2f
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Since f depends on B, the EBW implicitly depends on the buffer size. This permits Eq.
(50) to be used for buffer sizing.

Proposition 1 has been extended to cover multiple inhomogeneous sources.
There are K sources as above, each with a transition matrix Mk and a diagonal matrix
of flow ratesHk, k= 1, 2, . . . ,K. Letwk(z) be the maximal real eigenvalue of the matrix

AkðzÞ ¼ Hk �
1

z
Mk ðk ¼ 1; 2; . . . ;KÞ

Proposition 2: Let Eq. (51) be valid. Then,

if
XK
k¼1

wkðfÞ < c; then FðBÞ < p

if
XK
k¼1

wkðfÞ > c; then FðBÞ > p

A particularly interesting special case of Proposition 2 is when there are nj sources of
type j, j = 1, 2, . . . , J. Then,

if
XJ
j¼1

njwjðfÞ < c; then FðBÞ < p

if
XJ
j¼1

njwjðfÞ > c; then FðBÞ > p

The traffic mix described by (n1, n2, . . . , nj) sources of each type will violate the GoS
criterion when the sum of the EBWs is larger than c and will satisfy it when the sum of
the EBWs is less than c, which (except for the case of equality) solves the admission
control problem and the planning problem.

There are some features of this model that are not as restrictive as a first glance
might make them seem. The proven mathematical results are limit theorems as p! 0
and B ! l; simulation experiments show that Propositions 1 and 2 are good
approximations for a wide variety of realistic loss probabilities and buffer sizes. The
sojourn time in any state of a continuous-time Markov chain has an exponential
distribution; this may not conform to the sources at hand. However, by using more
states, the sum or mixture of (possibly) different exponential distributions can be
formed, and then sums and mixtures of these can be formed, and so forth. In fact, the
Markov chain can be chosen to approximate a leaky bucket traffic shaper (which is
described below).

C. Traffic Shaping and Policing

Some broadband services do not come with traffic limitations or performance
guarantees. The Internet is an example. Sources may send packets as fast as they are
able. The network tries to deliver the packets as soon as possible, but it does not
promise to satisfy delay or packet-loss requirements. For other services (e.g., frame
relay), the source and the network must agree on some characteristics of the offered
traffic and the level of service that will be provided. The latter typically includes a
minimum throughput, a maximum loss rate, and a bound on the maximum delay. The
former typically includes an upper bound on the average arrival rate and the peak
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arrival rate. The obligations are expressed in a service-level agreement. If the source
were to violate the service-level agreement, the network resources might be over-
loaded, causing the nonconforming source (and perhaps other sources) to receive
substandard performance. To prevent this, the network employs a policing function to
ensure compliance with the service agreement. Similarly, a source may want to ensure
conformance to avoid service degradation, so it may shape its traffic to comply with
the policing function. The leaky-bucket algorithm is a popular policing and traffic-
shaping device; it is the subject of this section.

The leaky-bucket algorithm is very similar to a token bank or credit manager
algorithm; the last two algorithms operate identically. The differences are slight
enough to ignore here; our description is precise for the token bank and credit
manager algorithms. How the policing algorithm works is discussed next.

Each user starts with an account of Cmax tokens. This account is reduced by one
token every time an information unit (think of this as a packet) is sent to the network. If
a packet arrives when the account is zero, that packet is discarded. (Some services, e.g.,
frame relay, tag the packet as ‘‘discard eligible’’ and carry it when possible.) Periodi-
cally, at times D, 2D, 3D, . . . , say, a new token is placed in the account, but this is
suspended when the account contains Cmax tokens. Thus, the long-run sustainable
throughput is 1/D packets per unit time, and Cmax is the largest burst of packets that
can be handled without loss.

Subscribers know the values of Cmax and D, so they can implement a sending
algorithm that conforms to the policing algorithm. They can emulate the algorithm, so
they can always know the number of tokens in their account. When the account is zero,
they can defer sending packets to the network. One way of doing this is to provide a
buffer to hold the nonconforming packets. The buffer can be anyplace before the
packets are interrogated by the policing algorithm. Typically, they are placed at the
source, but some networks offer to provide them.

1. A Model for the Token Bank

Let C(t) be the account balance at time t. The realizations of C(t) are step functions
that start at Cmax, decrease by one when a packet arrives, and increase by one (as long
they do not exceedCmax) at times D, 2D,: : : . LetCn =C(nD + 0) (i.e., right after time
nD), and let An be the number of packets that arrive in the interval (nD, (n + 1)D).
When there is no buffer (as in policing)

Cnþ1 ¼ min½ðCn � AnÞþ þ 1;Cmax	 ðn ¼ 0; 1; 2; . . .Þ ð52Þ

When A1, A2, . . . are independent and identically distributed, Eq. (52) describes a
Markov chain. WhenP{A0 = 0} > 0 andP{A0 = k} > 0 for some k> 0, the Markov
chain is aperiodic and irreducible, so it has a steady-state distribution. This distribu-
tion can be used to obtain the throughput, discard probability, and other performance
characteristics.

There are several interesting ways to choose the distribution of the number of
arrivals, but room does not permit exploring them here. The interested reader should
consult Ref. 12.

Equation (52) can be modified to include a buffer of size B. It can be shown that
adding the buffer to Eq. (52) is equivalent to changing Cmax to Cmax + B and
interpreting C(t) as the number of tokens plus the buffer content at time t. The
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significance of this result is the following. Those packets that arrive when the token
bank is empty are lost, so any pair of token supply and buffer positions that have the
same sum have the same lost packets. Thus, tokens and buffer positions are
interchangeable as far as the packet loss rate is concerned. They are not interchange-
able in their effect on the shape of the output of the leaky bucket. For example, when
there is one token and B � 1 buffer positions, the spacing between the outputs is D as
long as the buffer is not empty. When there are B tokens and no buffer positions, as
many as B packets can arrive and depart during an interval of length D as long as they
arrive in such a way that the token is available at all arrival epochs (equispaced
arrivals will do). The former scheme makes the output traffic smoother than the latter
scheme does.
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