Teletraffic Theory and Engineering

Introduction

A telecommunications network consists of expensive hardware (trunks,
switches, etc.) with the function of carrying telecommunications traffic (phone
calls, data packets, etc.). The physical network is fixed, but the traffic that it is
designed to carry is random. That is, the times at which calls are generated are
unpredictable (except in a statistical sense), and, similarly, the lengths of time
that the calls will last are unpredictable; yet, the network designers must decide
how many resources to provide to accommodate this random demand. If the
resources are provided too sparingly, then the quality of service will be low
(e.g., too many calls will be lost because the required resources are not available
when needed); but, if the resources are provided too generously, then the costs
will be too high. Teletraffic theory deals with the mathematical analysis of
models of telecommunications systems and with the interrelationships among
the provision of resources, the random demand, and the quality of service;
teletraffic engineering addresses the art and science of the application of this
theory to the design of real telecommunications systems.

History

The telephone was patented in 1876, and the first commercial telephone switch-
board went into operation in 1878 in New Haven, Connecticut. It consisted of a
set of subscribers who could be connected two at a time via a single path. It has
been said that the need for teletraffic theory became apparent as soon as the
number of subscribers grew to three! The first significant advance in teletraffic
theory came in 1917, when A. K. Erlang, a scientist/ mathematician/engineer
working for the Copenhagen Telephone Company, published a paper that de-
scribed a method and used it to derive some formulas that provide the basis for
much of modern teletraffic theory and engineering.

Later, with the invention of operations research during World War II, Er-
lang’s methods and models were incorporated into queueing theory, and these
two subjects (queueing, teletraffic theory) are now closely intertwined. (A queue
is a waiting line. Queueing theory is the mathematical theory of systems that
provide service to customers with arrival times and service requirements that are
random. If servers are unavailable to accommodate arriving customers, then a
queue may form, hence the name.) There is now a huge amount of literature on
queueing (and teletraffic) theory, and papers are being published in the technical
journals at an ever-increasing rate.

In this article, we survey basic teletraffic (and queueing) theory, and we discuss
both classical applications and new theory for applications that are driven by recent
advances in telecommunications technology and computer science.
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Basic Concepts

We take as our basic model a system in which calls arrive at random times, and
each call requests the use of a trunk. (In this article, we will ignore the distinc-
tion between trunks, which interconnect the switches, and lines, which connect
the subscribers to the switches.) If a trunk is available, the call holds it for a
random holding time, and if no trunk is available, the blocked call takes some
specified action, such as overflowing, retrying, or waiting in a queue. (In queue-
ing theory parlance, the calls are customers, the trunks are servers, and the
holding time is the service time.) The objective of teletraffic theory is to derive
appropriate descriptions of the random teletraffic (a description of the statisti-
cal, or stochastic, properties of the arrival times and holding times) and to derive
formulas that describe the performance of the system (e.g., the probability of
blocking, the fraction of calls that overflow, the average waiting time, etc.) as a
function of the demand and the number of trunks. This theory is then adapted
and applied to the design and administration of real telecommunications sys-
tems; that is teletraffic engineering.

The central concept of teletraffic engineering is the stochastic nature of
teletraffic, so the underlying mathematics used are probability, statistics, and
stochastic processes. Therefore, we summarize (as briefly as possible) these
mathematical processes. Then, we apply this to derive and understand the basic
formulas of teletraffic theory. To make this theory concrete and to explore
the robustness of these formulas, we describe briefly the essential concepts of
simulation, and we give pseudocode that can be used to write computer pro-
grams to simulate these models.

Birth-and-Death Process

To fix these concepts, consider the following model. Calls arrive according to a
stochastic process (described below) at a group of s identical trunks. If an
arriving call finds a trunk available, the call holds the trunk for a random
holding time (described below), after which the call drops the trunk, which then
becomes available for another call. If the arriving call finds all s trunks busy,
then the call is blocked, in which case it takes some specified action (described
below).

Suppose that P; denotes the long-run probability that the system is in state j,
that is, P; is the probability that the number of calls present (in service or, if the
model permits, waiting in the queue for a trunk to become available) is j; assume
that when the system is in state j, then the call arrival rate is \;, and the call
departure rate is u;. Then, it can be shown that, under certain conditions that
must be satisfied by the arrival process and the departure process (discussed
below), the following equations determine the state probabilities as a function
of the rates \; and y;:

NPy = pj Py (G=0,1,2,..)) (1)

and
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Po+P + -+ =1 )

Equation (1), originally derived by Erlang, can be given the following inter-
pretation: rate up from state j equals rate down from state j + 1. That is, the
term N\;P; on the left-hand side of Eq. (1) equals the fraction of time P; that
there are j calls present multiplied by the rate at which calls arrive when there
are j calls present; hence, the product \;P; equals the long-run rate (in transitions
per unit time) at which the system state jumps from level j to level j + 1.
Similarly, the right-hand term u,, ,P;,, equals the long-run rate (in transitions
per unit time) at which the system state jumps down from level j + 1tolevel j.
Therefore, if the system is to be in “equilibrium,” Eq. (1) must hold. Successive
solution of Eq. (1) for each P; in terms of the previous ones gives

AN
pj=)‘0—1_!__'p0 3)
[ R

and P, is calculated from the normalization condition, Eq. (2) (which simply
requires the sum of the fractions of time that the system spends in each state to
add to 100%).

P = 1 4)

1+&+Ml+...
13 13125

A stochastic process that is described by Eq. (1) is called a birth-and-death
process. The key technical point here is that the instantaneous rates A and y; are
assumed to depend on only the present state and are otherwise independent of
the past history of the process. The birth-and-death probabilities P; (j = 0,1,
. . . ) defined by Eq. (1) are time-average probabilities; that is, P; can be inter-
preted as the fraction of time that the system spends in state j. Also of interest
are the customer-average probabilitiesTI;(j = 0, 1, . . . ); II; can be interpreted
as the fraction of customers arriving when the system is in state j. In general,
the fraction of time that the system spends in a given state does not equal the
fraction of customers finding that state when they arrive. However, when the
customers arrive according to a Poisson process (defined below), then

L,=P (j=0,1,...) &)

The important equality Eq. (5) reflects the PASTA theorem (Poisson Arriv-
als See Time Averages). Sometimes, the P’s are called the outside observer’s
distribution (reflecting the notion that they measure the frequencies of occur-
rence of the states as seen by an outside observer passively observing the system
continuously or at random instants), and the IT’s are called the arriving custom-
er’s distribution (reflecting the notion that they measure the frequencies of
occurrence of the states as seen by the arriving customers). The PASTA theorem
says that, remarkably, a stream of Poisson arrivals will see the states with the
same frequencies as will an outside observer, even though the arrivals, in gen-



456 Teletraffic Theory and Engineering

eral, “cause” the states of the system and view the system just prior to the
instants of upward state transitions, whereas the outside observer has no causal
effect on the states of the system. (There are some situations for which non-
Poisson arrivals see time averages, but these are rather special.) We now discuss
how these results are applied to our basic teletraffic model.

Poisson Process

The usual assumption in classical teletraffic theory (and the assumption that is
most reasonable in the absence of evidence to the contrary) is that the call
arrivals follow a Poisson process. It turns out, as the following physical argu-
ment would suggest, that the Poisson assumption is consistent with data for
voice traffic when the calls are generated by a large number of independently
acting subscribers.

Assume that time is divided into equal-length intervals of length A¢ and (1)
there can be at most one arrival in each interval, (2) the probability of an arrival
in any given interval is proportional to the length At, and (3) the intervals are
statistically independent of each other.

Let the random variable X be the length of time from now (Time 0) until the
arrival time of the next call. We calculate the probability P(X > ¢) that no call
arrives in the interval (0, 7). Imagine that (0, ¢) is divided into » intervals, each
of length At = ¢/n. If we denote by A the proportionality constant assumed in
Item 2 above, then the probability that an arrival occurs in any given interval of
length At is NAt = At/n, and, hence, by Item 3, the probability of no arrivals in
any of the n Af’s that comprise the interval (0, #) is (1 — N\t/n)". We now pass
from discrete time to continuous time by imagining that A — 0 or, equiva-
lently, n = oo. That is,

P(X> 1) = lim (1 _ %) ©)

It is well known (see any calculus text) that the limit on the right-hand side
of Eq. (6) equals e™™; hence, if we let Fy(f) = P(X < ?) denote the distribution
function of X, then Eq. (6) becomes

Fx)=1—-—e™ t=20 )

A random variable with a distribution function given by Eq. (7) is said to be
exponentially distributed, and the process that describes arrivals with interar-
rival times that are iid (independent and identically distributed) with the distri-
bution function Eq. (7) is said to be a Poisson process. Thus, if the call arrival
process can be described by Items 1-3 (and what could be simpler and still make
sense?), then the calls arrive according to a Poisson process.

If we let E(X) be the expected value of X, that is,

EX) = | ®)
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where f(f) = %Fx(t) is the density function of X (see any probability text),
then substitution of Eq. (7) into Eq. (8) yields

EX) = 1/) ®

that is, A = 1/E(X), and hence the proportionality constant posited in Item 2
is the long-run arrival rate.

An important property of any random variable that is exponentially distrib-
uted [that is, with a distribution function given by the right-hand side of Eq.
(7)] is the memoryless (or Markov) property, which can be expressed as follows:
forally = Oand ¢ = 0,

PX>y+1]|X>y =PX>0 (10)

Equation (10) says that the conditional probability that an exponential variable
X lasts longer than y + ¢ if it is known to have lasted longer than y (that is,
“given” X > y) does not depend on the value of y. [Equation (10) is easily
proved using Eq. (7) and the familiar definition of the conditional probability
of occurrence of an event given the occurrence of any other event.] It can be
shown that Eq. (7) is the only continuous distribution that satisfies Eq. (10);
thus, Eqgs. (7) and (10) are equivalent characterizations of the exponential distri-
bution.

In the context of the birth-and-death process, described by Eq. (1), we see
that if the call arrivals follow a Poisson process with rate A, then the instanta-
neous birth rate A; when the system is in state j is the same for all states, and we
can take \; = A.

Let us now assume that the holding times are iid exponential random vari-
ables, with average length 7, say. This is a much less “reasonable” assumption
for holding times than for interarrival times, because the Markov property Eq.
(10) seems questionable if the random variable X is taken to represent the length
of a call (rather than the time separating a pair of arriving calls). But, it is
precisely this property of memorylessness that permits the application of Eq.
(1); so, we assume “exponential holding times” for expediency. (This modeling
assumption will turn out to be much better than might appear at this point in
the discussion.) Thus, if S represents a generic holding time, and the average
holding time is denoted by E(S) = 7, then the exponential-holding-times as-
sumption implies that F() is given by the right-hand side of Eq. (7), with the
rate A replaced by u = 1/7 (u is the service rate).

Another easily verified property of the exponential distribution is that the
minimum of a set of independent exponentially distributed variables is also
exponentially distributed, with a rate equal to the sum of the original rates.
Thus, if there are k iid exponential calls in progress simultaneously, then the
time until the shortest of them ends is exponential with rate ku, where p is the
individual service rate; that is, the aggregate instantaneous call completion rate
is kp.
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The Erlang B, Erlang C, and Engset Models

If the arrival process is Poisson with rate A and the holding times are exponential
with average length 1/u, then the state probabilities P; are determined by the
birth-and-death Eq. (1), with \; = Nand p; = ju whenj < sand y; = su when
j > s. The solution to Eq. (3) forj < sis

j
sz()\j/.'u) P, (=01,...,5) §0))]

Erlang B Model

If we assume that Blocked Calls are Cleared (BCC), then obviously P; = 0 for
all j > s, and Eq. (2) gives

Pp=——— (12)
° 5 (M) *
k=0 k!
If we let
a= My (13)

then Eqgs. (11) and (12) can be written

&
it

P, = —
i

J

(j=0,1,...,9) (14)

>¢'|Q

The set of probabilities defined in Eq. (14) is called the Erlang loss distribution
(derived by Erlang in 1917). In particular, the probability that all trunks are
busy is denoted by P, = B(s, a), the well-known Erlang B or Erlang loss for-
mula:

s!

2

B(s,a) = (15)

at
k!

The Erlang B formula is sometimes called Erlang’s first formula, denoted by
E, (a), so E, (@) = B(s, a). We now address some of the ramifications and
interpretations of Eq. (15) and then briefly discuss related models, such as
Erlang C and Engset.
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Offered and Carried Load

The parameter @ = N/p = A defined in Eq. (13) is called the offered load and
is measured in dimensionless units called erlangs. The offered load, which is a
measure of the demand on the system, equals the mean number of arrivals per
holding time. Equation (14) shows that the state probabilities P; depend on the
arrival rate A and the mean holding time 7 only through their product &; that is,
the demand is completely specified by the number of erlangs.

According to PASTA Egq. (5), the Erlang B formula gives both the fraction
of time the system will be in the blocking state and the fraction of calls that will
be lost (because they arrive when the system is in the blocking state) as a
function of the offered load @ and the number of trunks s; any two of these
values uniquely determines the third. A family of graphs of the Erlang B for-
mula is given in Fig. 1.

The carried load (in erlangs) a’ is defined as the mean number of busy
trunks. When blocked calls are cleared, then @’ = @ is given by

@scc = 2 JP; (16)

jss
Substitution of Eq. (14) into Eq. (16) gives, after some easy algebra,
apcc = a[l — B(s, a)] 17)

Equation (17) can be interpreted to say that the carried load equals the product
of the offered load a and the fraction 1 — B(s, a) of the offered load that is not
lost; that is, carried load equals offered load minus lost load:

dpcc = @ — aB(s, a) (18)

If we imagine that s = oo, then clearly B(c0, a) = 0, and Eq. (18) shows that
then apcc = a. This provides another interpretation of offered load: offered
load equals the mean number of busy trunks (that is, the mean number of
simultaneous calls in service) in a system in which no calls are lost. (This inter-
pretation is not restricted to BCC systems, as discussed below.)

The unit of offered load, defined in Eq. (13), and carried load, defined in
Eq. (16), is the erlang, a dimensionless quantity. According to Eq. (16), the
carried load (in erlangs) is the mean number of simultaneous calls in progress;
from Eq. (18), the offered load is the mean number of simultaneous calls that
would be in progress if the number of trunks were infinite; the lost load is the
difference between them. In traditional telephony, loads are often measured in
units called CCS, which stands for hundred-call-seconds per hour. This conven-
tion is based on technology; carried loads are measured by sampling the state of
a trunk every 100 seconds for 1 hour and recording the number of times the
trunk is found to be busy. Thus, if a trunk were busy continually throughout
the hour, its carried load (1 erlang) would be recorded as 36 CCS (because there
are 3600 seconds in an hour). Hence, 1 erlang of traffic equals 36 CCS (the “per
hour” is usually not stated explicitly). The load carried by the trunk group is the
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sum of the loads carried by each trunk. Obviously, the use of CCS as the unit
of traffic is highly arbitrary, and it is not used outside telephony. All of the
formulas given here require that the loads be expressed in erlangs.

In telephony, the total time during which all trunks in a group are simultane-
ously busy is called ATB (All Trunks Busy), the number of calls that arrive is
called PC (Peg Count), and the number of calls that are blocked is called O
(Overflow). Then, the probability of blocking is estimated by ATB (per hour)
and O/PC; if the arrival process is Poisson, then these measurements would be,
in principle, equal over the long run. Which measurement is a better estimator
of loss is a complicated statistical question, part of the subject of traffic mea-
surement (discussed in a separate section).

If we define the system utilization p to be the carried load per trunk, then

all — B(s,a
pace = LB 19
K
If the trunks are numbered 1, 2, . . . and each arriving call is carried by the

lowest-numbered idle trunk (ordered hunt, ordered entry), then the load carried
by (on) the jth trunk is the difference between the load aB(j — 1, a) that
overflows trunk j — 1 and the load aB(j, a) that overflows trunk j:

apec(f) = aB( — 1,4) — aB(j, a) (20)

where, of course, B(0, a) = 1. Also, az--(j) equals the utilization of the jth
trunk, that is, the fraction of time that trunk j is busy (but not the fraction of
overflow calls from trunk j — 1 that find trunk j busy, because overflow traffic
is not Poisson, and PASTA does not apply). Note that, of course,

Agec = Z apcc(J) @21

J

which follows from Eqgs. (18) and (20).
It is difficult to calculate numerical values of the Erlang B formula directly
from Eq. (15) when a or s are large. But, it is easy to show that

_ aB(n — 1, a) _ . _
B(n,a) = W+ aBn - 1.9 (in=12,...,s5;,B(0,a) =1) (22)

and to write a computer program that implements Eq. (22). This algorithm is
very fast and stable.

Insensitivity
Although the assumption of exponential holding times was tacitly used in our

application of Eq. (1), it turns out that this assumption is not necessary for the
conclusion Eq. (14) [and Eq. (15)] to be valid. Amazingly, when the blocked
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calls are cleared (and, of course, when s = o), the birth-and-death equations
remain valid; the state probabilities for the Erlang loss system are insensitive to
the form of the holding time distribution (that is, the holding times affect the
state probabilities only through their mean value). Obviously, the study of
insensitivity in stochastic systems is of great mathematical interest and practical
importance.

A consequence of this insensitivity property for the Erlang loss system is the
following theorem: If two independent Poisson streams of traffic, say a, erlangs
and a, erlangs, are offered to a group of s trunks and blocked calls are cleared,
then each stream sees the same probability of blocking, and it is given by the
Erlang B formula B(s, @) with @ = a, + a,, even if u, # p, and the holding
times of the calls from each stream have different distributions. (Clearly, this
theorem generalizes to an arbitrary number of independent Poisson streams.)

Efficiency of Large Trunk Groups

Numerical investigation [via Eq. (22), for example] of the Erlang B formula
shows that large trunk groups are more efficient than small ones. For example,
B(1, 0.8) = 0.4444, B(10, 8) = 0.1217, B(100, 80) = 0.003992, and B(1000,
800) = 10™". Likewise, B(s; + 8, @, + @) < B(s), @) + B(s;, ay).

The Erlang B is the most important and fundamental model in traditional
teletraffic engineering. In modern wireless systems, where traffic is generated
by mobile subscribers via cell phones in cars, the Erlang B remains a good model
for the provision of radios in cell sites. This is true because, despite the mobility
of the subscribers generating the calls, the assumptions (1)-(3) for the Poisson
arrival process are still met; and the insensitivity of Eq. (15) to the distribution
of holding times means that the truncation of holding times caused by hand-
overs does not negate its validity for describing the effects of mobile traffic in
which the blocked calls are cleared.

Simulation

It is instructive to study the simple simulation of a loss system, coded in simple
BASIC, in Table 1. The code implements the ordered hunt procedure for assign-
ing calls to trunks: the trunks are numbered J = 1, 2, . . . ; each arriving call is
assigned to the lowest-numbered idle trunk; and the blocked calls are cleared.
Instructions 140 and 200 specify the distribution functions of the interarrival
times and the holding times, respectively. For example, using the inverse trans-
form method (see any text on simulation), an exponential random variable
realization with mean value M is generated whenever the value —M*LOG(1 —
RND) is computed (where RND is a computer-generated random number).
Thus, the program will simulate a loss system with Poisson arrivals with rate L
and constant holding times with value T if the instructions are

140 A
200 X

—(1/L)*LOG(1 — RND)
T
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TABLE 1 Simulation of Loss System

No. Instruction Explanation

100 DIM C(50) 50 is the maximum number of trunks

110 INPUTS,N S,N = number of trunks, calls to be
simulated

120 NC=NC+1 NC = number of calls simulated so far

130 J=0

140 JA= IA = interarrival time

150 A=A+]IA A = arrival time

160 J=J+1 J = index of trunk being probed

170 IFJ=S+1THENK=K+1 K = number of calls that are blocked

180 IFJ=S+1THEN 280
190 IF A<C (J) THEN 160
200 X=

210 SX=8X+X

C(J) = completion time for trunk J

X = holding time

SX = sum of holding times for carried
calls

220 C(H=A+X

230 M=C(1)

240 FORI=2TOS

250 IF C()<M THEN M=C(I)

260 NEXTI

270 IFM>ATHEN AB=AB+M-A

M = shortest trunk-completion time

AB = cumulative time during which all
trunks are busy

280 IF NC<N THEN 120

290 PRINT K/NC, AB/A, SX/A Fraction of calls blocked, fraction of time
all trunks simultaneously busy,

carried load

It is instructive to run this simulation with different distributions specified
by 140 and 200 (but with a fixed given offered load L*T), to compare the
resulting values of K/NC (the fraction of calls that are blocked) and AB/A (the
fraction of time spent in the blocking state), and to compare these experimental
values with the predictions of teletraffic theory (such as Erlang B values,
PASTA, and insensitivity). It is easy to augment this code to include measure-
ment of other quantities (or to allow the blocked calls to wait in a queue, etc.).

Erlang C Model

We now discuss briefly some of the other basic teletraffic models. If (1) the calls
arrive according to a Poisson Process (as in Erlang B), (2) the holding times are
exponentially distributed (not required for Erlang B), and (3) the blocked calls
wait in a queue until a trunk becomes available (Blocked Calls Delayed [BCD],
different from Erlang B), then the state probabilities are determined by the
birth-and-death Eq. (1) with A\; = X (Poisson arrivals) and

._{ju (< s)
s >
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(exponential holding times). Using these values for A; and p,; in the birth-and-
death equations yields, from Eq. (3)

@
;'—Po (j=1,2...,s—1)

P, = .as (23)
s's"SPO (j=s,s+1,...)

and, if the infinite series in the denominator of Eq. (4) converges (that is, if
Nsu = a/s < 1), then

Py = (a < s) 29

§— a aS
§ k! s!(l - a/s)

Then, the probability of blocking (the fraction of time that all trunks are simul-
taneously busy, which, by PASTA, equals the fraction of arriving calls that find
all s trunks busy) is given by P, + P, + ... = C(s, a), the well-known
Erlang C or Erlang delay formula:

s

a
11—
C(s,a) = — ai ( “/:2 (a < s) (25)
2 —+

k=0 k! s1(1 — a/s)

If @ = s, in which case the infinite series in the denominator of Eq. (4) diverges,
then P, = 0 and, by Eq. (23), P; = 0 for all finite j. Physically, the condition
a = sor, equlvalently, N\ = sp means that the calls are arriving faster than the
system can serve them in the long run, so we define C(s, @) = 1 whena = s.

Eq. (25) is analogous to Eq. (15); the Erlang C formula is sometimes called
Erlang’s second formula, denoted by E, (a), so E, (@) = C(s, a). But, unlike the
Erlang B formula, the Erlang C formula requires the assumption of exponential
holding times; that is, the Erlang C model is not insensitive to the distribution
of holding times.

The carried load a’ [defined above as the mean number of busy trunks; see
Eq. (16)] is given by

j=s Jj>s (26)
s (az=s)

, X JP; + 2 sP; (a < 5)
dpcp =

Substituting Eqgs. (23) and (24) into Eq. (26) yields

, _[a (a < 5) 27
dpep = s (a = s) 27
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Equation (27) can be interpreted to say that, when @ < sin an Erlang C system,
the carried load equals the offered load (because all arriving calls are carried).
Similarly, the system utilization p, defined above [see Eq. (19)] as the carried
load per trunk, is given by

a
- (a < 5)

Pecp = {S (28)
1

(a =z 5)

As with the Erlang B formula, there is a better way to calculate the Erlang C
formula than from its definition in Eq. (25); it is easy to show that

_ sB(s, a)
C(s,a) = s all — B(s, )] (a <) (29)

It follows easily from Eq. (29) that C(s, @) > B(s, a), which is explained by the
observation that in the Erlang B system the blocked calls are cleared from the
system, whereas in its Erlang C counterpart, the blocked calls remain in the
system and thus can cause blocking for future arriving calls.

A family of graphs of the Erlang C formula is given in Fig. 2. For compari-
son with the numerical examples given above for the Erlang B formula, we give
C(, 0.8) = 0.8, C(10, 8) = 0.4092, C(100, 80) = 0.01965, and C(1000, 800)
= 5.6 X 102, Note that in each of these examples, p = 80%. This again
demonstrates that large trunk groups are more efficient than small ones.

Waiting Times

In the Erlang C model, the blocked calls wait in the queue until a trunk becomes
available. Let W be the waiting time of an arbitrary call. Then, for any order of
service, P(W > 0) = C(s, a). If the calls are served from the queue in the order
of their arrival (FIFO; First In, First Out), then, it can be shown

PW>t|W>0=e " ( =0) (30)
that is, the waiting times for blocked calls are exponentially distributed, with
mean value

1

EWW|W>0=——7
(1 — p)s

@31

Therefore, the unconditional (pertaining to a// calls) waiting times are described by

P(W > 1) = C(s, a)e ' 7 (t =0 (32)
and
C(s, a)

E(W) =H—_—p)s1 (33)
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It is important to note that Eqgs. (30) and (32) require that the service order be
FIFO, whereas Eqs. (31) and (33) hold for all orders of service that do not
depend on the service times of the calls in the queue.

All the formulas given above for the Erlang C model require that the holding
times be exponentially distributed. However, for the special (but important) case
when s = 1 trunk, we have the following well-known Pollaczek-Khintchine
formula, which gives the mean waiting time for an arbitrary specification of the
holding time distribution:

- 0_2>
By = 52— (14 (34)

where o? is the variance of the holding times. Equation (34) shows, for example,
that the mean waiting time in the case of exponential holding times (¢> = 7%) is
exactly twice as large as it is in the case of constant holding times (¢*> = 0), all
other things being held equal. Furthermore, for any distribution of holding
times, when s = 1 Eq. (32) remains true for ¢ = 0; that is,

P(W >0 =p 35)

Thus, in the single-server queue, the number of calls that are forced to wait is
insensitive to the variability of the holding times [Eq. (35)], whereas the length
of time that the blocked calls spend waiting in the queue is not insensitive, but
instead depends on the amount of variability in the holding times [Eq. (34)].
(This phenomenon is a recurring theme throughout queueing theory.)

Effects of Retrials

We have already observed that B(s, @) < C(s, @). The Erlang loss model does
not account for the effect of blocked calls that retry. Clearly, the effect of
retrials would be to increase the true probability of blocking beyond that pre-
dicted by the Erlang B formula. It is difficult to account precisely for the effect
of retrials because the retrial stream does not follow a Poisson process (because
it is not memoryless). One can take the viewpoint that, while the Erlang B
formula underestimates the true probability of blocking (because it assumes that
blocked calls never retry), the Erlang C formula overestimates the true probabil-
ity of blocking (because it assumes that the blocked calls retry continually, with
zero time between retrials, until they are served). An assumption that produces
values that lic between these extremes is blocked calls held: every call spends its
full holding time in the system whether or not it gets served. Then, the state
probabilities are given by Eq. (1) with \; = X (Poisson arrivals) and g; = ju for
all j = 0 (the aggregate call departure rate is the same whether j < sorj > s);
the solution is

P =—e" Jj=201...) (36)
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where, as before, a = A/ u is the offered load. Equation (36) defines the Poisson
distribution (not to be confused with the Poisson process). The probability of
blocking is denoted by the Poisson formula P(s, a):

® i

P(s,a) = % e (37

j=s J:

The model described by Eq. (37) seems very artificial, but it does produce
“intermediate” values,

B(s, a) < P(s, a) < C(s, a)

The Poisson formula can be viewed as a way to account for retrials, to
account for variation in the (assumed constant) arrival rate, or as a “fudge
factor” to justify the provision of additional “safety” capacity beyond that
indicated by the Erlang B formula. The Poisson formula is not used in modern
teletraffic engineering, but we have included this discussion here because its
existence in past practice often raises questions among engineers who do not
know its history.

Engset Models

The Erlang B, Erlang C, and Poisson models all assume that the call arrival
process is a Poisson process. A more general arrival process that still fits within
the framework of the birth-and-death process is quasirandom input: the calls
are generated by n independent, identical subscribers, each of which generates
calls at rate y when idle (and rate zero when waiting or in service). Then, when
the system is in state j, the aggregate instantaneous call arrival rate is (n — j)y;
that is, take \; = (n — j)y in Eq. (1). Then, one can derive formulas analogous
to the Erlang B and Erlang C (and Poisson) by making the corresponding
assignments for the service completion rates p,. These “finite-source” models are
often called Engset models after the author who first (1918) considered the
finite-source analog of the Erlang loss model.

An interesting fact about models with quasirandom input is the arrival theo-
rem: if IL[n] and P;[n] are, respectively, the arriving customer’s distribution and
the outside observer’s distribution for a birth-and-death model with n sources,
then

IL[n} = Pln — 1] (38)

Equation (38) can be interpreted to say that the arriving customer sees the
system as if he were an outside observer of the same system with himself re-
moved from the calling population.

For example, when blocked calls are cleared, then the analog of Eq. (14) is
(we assume n > s to avoid trivialities)
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(1)(2)

Plnl = —F— 7« (39)
50 (2)
k=0 \K/ \ p
and therefore the fraction of requests for service that are blocked is
(he)
] = ———~F (40)

s k
("))
k=0 k I
(including “retrials,” since blocked sources remain eligible to generate new re-
quests). This model has some interesting properties, but here we mention only
that, like the Erlang loss model, the probabilities of Eqs. (39) [and (40)] are
insensitive to the form of the holding time distribution. Moreover, these proba-
bilities are insensitive to the distribution that governs the times between calls for
each subscriber; all that is required is that the mean time between the instant a
subscriber becomes idle and the next time the subscriber makes a request for
service be 1/ for each subscriber.

It is easy to show that, in the limit as # = oo and y — 0 with the constraint
ny = \, the quasirandom input (finite-source) models converge to their Poisson
input (infinite-source) counterparts. [Thus, taking limits in Eq. (38) produces a
result consistent with PASTA.] Finite-source models are more complicated than
their infinite-source counterparts, so they are used only when the number of
subscribers is relatively small and the ratio of subscribers to trunks is relative-
ly low.

Some References

The discussion above gives the highlights of those aspects of queueing theory
that are fundamental to classical teletraffic theory. Much of this material is
covered in greater detail in Ref. 1, which is a queueing theory text with some
emphasis on teletraffic models, and Ref. 2, which is a survey with an updated
list of references. Reference 3 is a comprehensive and authoritative guide to the
classical theory, especially as developed from the time of Erlang through the
late 1950s. References 4-6 provide good treatments of background material in
probability and stochastic processes, together with material that relates directly
to queueing theory.

Traffic Measurements

The previous sections have described queueing models for which the parameters
are known. In this section, we discuss some issues that arise in making measure-
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ments on operating traffic systems and in using these measurements for estimat-
ing parameters. Most of the theory and engineering practices in the United
States were developed prior to the breakup of the Bell System in 1984 and were
focused on voice communications. Since then, data traffic has become a larger
proportion of the total traffic, and important characteristics of voice traffic
have changed. We describe the classical traffic measurements and analyses in
some detail and sketch some of the current issues that are motivating changes in
the classical measurements.

The Classical Problem

The classical traffic measurement problem occurs in the setting of the Erlang B
model. This is applicable to lines (circuits from customers to switches) and to
trunks (circuits between switching systems) for traffic that is predominantly
voice calls not overflowing from another network element. This typically justi-
fies the assumption that calls arrive according to a Poisson process. The offered
load is @ = A/u as described in Eq. (13). There are s servers, blocked calls are
cleared (BCC), and the system should block calls with probability no larger than
b, (b, is called the blocking objective and typically equals 0.01). The assumption
that the call attempts form a Poisson process is not required for the theory that
follows. Some features of the formulas are negligible for Poisson traffic, but
they may be negligible otherwise.

There is usually no difficulty in measuring s. The main issues concern mea-
surements of the offered load a and the blocking probability b. Let @ and b be
the measured values of @ and b, respectively; these measurements are called the
observed load and the observed blocking, respectively. We want to know if b <
b,, and, if not, how many more servers are needed; 4 would be used to answer
that question. In the context of the Erlang B model, these measurements are
random variables, so we need to know something about their distributions. A
consequence of the inherent randomness of measurements on a stochastic sys-
tem is that b can differ from b, even when they are theoretically equal. It is
important to distinguish statistical fluctuations in # when b < b, from a valid
indication that » > b,.

Among the decisions that have to be made are which observations to collect
and over which time periods to collect them. We consider these questions in
reverse order.

Engineering Periods

The queueing formulas that are the basis for traffic engineering assume that the
arrival rate is not changing with time. The content of formulas such as the
Erlang B and C formulas are steady-state, or long-run, probabilities. Experience
has shown that call attempts vary with time of day. There is a tendency for
peaks in the morning and afternoon due to business activity, and sometimes
there is a peak in the evening from residential activity. Therefore, we want to
use the longest interval in which the traffic parameters are constant, which is
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smaller than one day. Peaks typically last for one to two hours, so one hour has
been taken as the standard measurement unit. Measurements are taken during
peak periods (called busy hours) so that the grade of service (GoS) will be
achieved throughout the day. There is little evidence of systematic day-to-day
variation on standard workdays.

This means that busy hour measurements can be averaged over several days.
In many geographical areas, there are periods during the year when the daily
peaks are higher than normal; this is most obvious in resort areas. These are
called busy seasons. Measurements are taken during the busy season busy hour
(BSBH), typically one particular hour over five weekdays for four consecutive
weeks; this is called the engineering period. The average of these 20 measure-
ments is called the average busy season busy hour (ABSBH).

The BSBH is appropriate for measurements on network links because the
GoS for links is often expressed as a blocking objective, and blocking probabili-
ties are computed from the average load. Even for properly engineered links,
congestion occurs when there are statistical fluctuations above the average load.
Congested switching systems try to route some of their load to other switches,
so switch congestion has the potential to spread. This means that peak loads are
of more concern than average loads for components of a switching system.
Engineering periods other than the ABSBH are used for these components.
Some examples are the highest BSBH, the weekly peak hour (which may not be
a BSBH), and the average of the 10 highest BSBHs.

In the United States, the days with the most long distance telephone traffic
are Mother’s Day and Christmas. Measurements taken on these days are used
for designing and testing overload controls, not for capacity planning.

Measurements

Now we describe how @ and b are measured and give some statistical properties
of these measurements in the setting of the Erlang B model. The article by Hill
and Neal is the source for these results (7). The measurement interval (BSBH) is
denoted by (0, T]. The three measurements are

A(T) = the measured number of arrivals (peg count)
O(T) = the measured number of overflows
L(T) = the measured carried load

The carried load is the average number of busy servers, so if S(¢) is the number
of busy servers at time ¢,

LT—ISTSd 41
(T) = 2.}, S(nt (1)

Measurements are taken on n days (typically n = 20); a subscript i is used to
denote day i.
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We first discuss 4. The measured offered load on day i is the measured
carried load divided by the proportion of the arrivals that are carried, so the
measurements version of Eq. (18) is

. L(T) _
a,._._____l_oi(T) (i=12...,n) 42)

Ai(T)

Let a be the average of the daily measurements, so

a =

S 4 43)
i=1

S |-

and let Var(@) be the sample variance of the daily measurements, so
o 1 &S —\2
Var(d) = —— 2 (4, — a)
n—1 i=1

The variability in the daily measurements is attributable to day-to-day variation
in the offered load and to finite sampling effects. An analysis of empirical data
showed that a gamma distribution is a good fit to the distribution of observed
loads. The gamma distribution has a density function denoted by y( - ), where

_ BB
v(x) = TO) e (x = 0)

where I' is the gamma function defined as

]

I'(») = S " le'dt

0

When v is a positive integer, I'(¥) = (v — 1)! and the parameters » and 8 are
called the shape and scale parameters, respectively, and are nonnegative. The
mean and variance of this distribution are »/8 and »/8%, respectively, so the
mean and variance determine the distribution. The data also showed that the
variance of the measured offered load is related to the mean via

Var(@) = 0.13a° (44)

where ¢ is a parameter that describes the amount of day-to-day variation. Three
values of ¢ (1.5, 1.7, and 1.84) were chosen to describe low, medium, and high
day-to-day variation, respectively.

Probabilistic analysis yields

Var(d) = Var(a) + 2a 45)
uT
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where 1/p is the mean call holding time. The first term on the right in Eq.
(45) is the variance due to day-to-day variation, and the second term is an
approximation for variance due to the finiteness of the measurement interval.
Substituting Eq. (44) into Eq. (45), rearranging, and ensuring that Var(a) = 0
yields
2a
Var(a) = max [0, 0.13@* — — (46)
n

Equations (43) and (46) and E(a) = a are used to obtain the parameters of the
gamma distribution that describes the day-to-day variation in a.

Now we examine b. The measured blocking on day i is the proportion of the
offered load that overflows, so

_o(1)

=D (i=12...,n) (47)

Comparing Eqgs. (42) and (47) shows that 4; and b, are correlated. Let b be the
average of the daily measurements, so

~

b;

INgS

b =

S |-

i=1

it is the observed GoS. Since a large number of arrivals tends to cause a large

number of overflows, 4(T) and O(T) are positively correlated. This means

that E(b) # B(s, a) even when a is known precisely. Some lengthy analysis

yields the approximation

= B(s, a)auT — Cov(O,(T), Ai(T))
(auT)?

Eh) = | y(a)da (48)

. [B(s, a)_ =
The second term in the integrand is negative in the range of engineering interest,
so ignoring it leads to overestimates of the observed blocking. The magnitude
of this term is negligible for Poisson traffic and is significant when the peaked-
ness exceeds two. The formula for the covariance term is intricate and can be
found in the article by Neal and Kuczura (8). Numerical integration is tractable
for evaluating Eq. (48). Engineering design tools use Eq. (48) to obtain a design
that will achieve the blocking objective. The empirical content of Eq. (48) is that
this procedure makes the observed GoS agree with the designed GoS.

The Effects of Internet Calls

The classical measurement and analysis methods were developed when almost
all telephone traffic was voice communications. Measurements of call holding
times were consistent with an underlying exponential distribution, and the mean
holding time was about three minutes. These properties of call holding times
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changed on local access links when dialing the Internet became popular in about
1995.

Internet access for most users consists of a voice call from the subscriber’s
premises (using a modem) to an Internet service provider (ISP) and packet
transmission from the ISP to the Internet. The mean length of these calls is
roughly 25 minutes, and the proportion of traffic they represent is growing
rapidly. This has the effects of increasing the mean length of voice connections
on the access links and changing the distribution of holding times from exponen-
tial to a mixture of two exponentials (which is called a hyperexponential distri-
bution). The insensitivity of the Erlang B formula implies that the effect on the
distribution will not affect the calculation of the objective blocking as long as
the effect on the mean is taken into account. However, there is an effect on the
analysis of traffic measurements.

The measured carried load is defined as an integral in Eq. (41). In practice,
measurements are taken periodically (100 seconds apart is typical, yielding CCS,
which are usually translated to erlangs), and the integrand is approximated by a
step function. Numerical experiments show that this provides nearly the same
measurement values that continuous observations do. The analysis leading to
Eq. (48) uses a different representation of L(T) to make the analysis tractable.
To describe it, let h; be the holding time of the jth call on the ith day. Then,

AT

L(T) = = 2 hy 49)
j=1

This approximation includes that part of the holding time that lasts beyond T
of a call that arrives during the measurement interval and excludes the part of a
call that is in (0, T] from calls that arrive before the measurement interval
begins. This approximation is accurate when these errors are both small or when
they cancel each other out; it is unlikely to be accurate when the probability that
a call that arrives before time zero lasts beyond T. When the mean holding time
is 3 minutes and 7T is 1 hour, P{call lasts longer than T} ise™ = 2.06 x 107°,
which is negligible. When the mean holding time is 30 minutes, P{call lasts
longer than T} is e”? = 0.135, which is significant. As Internet traffic in-
creases, the validity of Eq. (49), and therefore of Eq. (48), becomes more
doubtful. The situation would be even worse if entertainment video over tele-
phone lines becomes a popular service. The modifications to Eq. (48) that are
required to mitigate the effects of these long holding time calls are not yet
known.

Broadband Traffic

Digital voice links are capable of transporting 64,000 bits per second (64 kilobits
per second [kb/s]). Broadband traffic refers to sources that transport at rates
that are at least 24 times as large (North America and Japan), that is, at least
1.544 megabits per second (Mb/s), or at least 31 times as large (Europe), that is,
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at least 2.048 Mb/s. Three examples of broadband traffic are Internet traffic,
videoconferences, and entertainment video over telephone lines. From a traffic
engineering perspective, broadband traffic is qualitatively very different from
voice traffic. The difference is caused by the way broadband traffic is carried
on a telecommunications system.

Voice traffic is circuit switched, which means there is a path from the origin
to the destination, with dedicated bandwidth that is established when the call is
initiated and torn down when the call is terminated. The mean holding time for
a subscriber is about 3 minutes, and the arrival rate is rarely more than 20 per
hour per subscriber. Low-speed data (e.g., dial-up modems and facsimiles) are
also circuit switched. When a circuit-switched call is accepted, it receives dedi-
cated network resources. Consequently, there is no need to consider finer detail
than the call level, that is, call arrival and holding times.

High-speed data are divided into packets of information, and these packets
are the units of data transport; this is called packet switching. It is not uncom-
mon for the holding time of a packet to be less than a millisecond and for
thousands to arrive in a second. This quantitative difference becomes a qualita-
tive difference in (at least) two ways. First, the interarrival times from a source
are dependent. This occurs because, when a packet arrives, the source is trans-
mitting data, so there is a greater chance (compared to independence) of another
packet arriving soon. The operational manifestation of this is that packet arriv-
als are bunched, which is called bursty traffic. Second, buffers are provided to
accommodate the temporary peaks in packet arrivals. Thus, at the packet level,
we have a BCD system, whereas circuit switching is BCC. This means that
waiting time and buffer overflow probabilities are the performance measures of
primary interest at the packet level. At the call (or connection) level, which may
be BCC, the usual circuit-switched performance measures apply.

New technologies and protocols are used to transport broadband traffic. The
asynchronous transfer mode (ATM), Ethernet, and the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite are some of these. Detailed traffic
models that describe the specific effects of each protocol are beyond the scope
of this article; we describe some general ideas.

Packet Traffic

Figure 3 shows 30-second segments of four packet data traces. Each plot shows
the arrival rate as a function of time. These traces are of traffic destined for the
Internet, a videoconference, and two codings of movies. Notice that these traces
do not resemble each other, so the application and the method of digital coding
appear to affect the traffic characteristics significantly.

The Internet traffic data are the number of bits that arrive in 100 millisec-
onds (ms) multiplied by 10 to give megabits per second. It alternates rapidly
between high and low rates, occasionally reaching zero when no packets are
sent. Motion pictures are a sequence of still pictures called frames. The data for
the three video traces are the number of bits in each frame, scaled to give
megabits per second. The details of the Motion Picture Experts Group (MPEG)
coding scheme are not important here, except to note that there is a periodic
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FIG. 3 Broadband data traces shown as 30-second segments.

feature to them. The periodicity is a dominant feature of the trace. The video-
conference and. a film were coded with an H.261 algorithm, which is another
coding scheme. The videoconference is people talking in front of a stationary
camera. A movie is a sequence of scenes, in which a scene is characterized by a
fixed camera angle and homogeneous subject matter. Video coding typically
transmits the differences of adjacent frames, so scene changes require more bits
than do frames within a scene. The film trace resembles a sequence of confer-
ences separated by spikes, and the spikes represent scene changes.

Figure 4 investigates the videoconference trace in more detail. A Poisson
process with the same rate was simulated. In the upper left plot, we see that the
videoconference trace is much more volatile than the trace of the Poisson pro-
cess. The other plots show the reason. The plots of the density functions for the
number of bits per frame show that the tails of the Poisson distribution are not
long enough; that is, there are too few observations significantly above and
below the mean. The remaining plots show the relation between the number of
bits in adjacent frames. For the videoconference, these points cluster closely
around the 45° line, indicating strong correlation. (The correlation coefficient
is 0.985.) For the Poisson process, the points appear to be uniformly spread,
which is what we expect because the number of bits in adjacent frames is



Teletraffic Theory and Engineering 477

sample paths densities

5
0.03

—— video conference
~~~~~~~~~~~ Poisson process

i
!
gl
o
5o il
o > i
E !
2 /T
o
0 5 10 15 20 25 30 0 2 4 6 8
time [sec} size {Mb]
video Poisson
o.f
§ ."i'. ,81
ods
~on
P § [N _ ¢
& ~J H
X § % X
8
8
8
100 200 300 400 100 120 140 160
X(n) Xin}

FIG. 4 Time series, density, and correlation comparisons between a videoconference and a
Poisson process.

independent. The solid line in the plot is a nonlinear fit through the points; it is
almost a horizontal straight line, indicating little empirical correlation.

Figure 4 shows that the Poisson process is not a good model for the video-
conference trace. Similar analyses will show that it is not a good model for the
other traces in Fig. 3. Several statistical models have been proposed for these
traces, but none has achieved universal acceptance in the way the Poisson pro-
cess has for first-offered voice traffic.

Effective BandWidths

The lack of a statistical model for broadband traffic notwithstanding, engineers
designing equipment to carry broadband traffic need a way to size buffers and
other traffic-sensitive components to meet quality of service (QoS) require-
ments. Two problems that need to be solved are the planning problem and the
connection admission control (CAC) problem. The former is to determine if a
proposed system can carry a given traffic mix and satisfy the QoS constraints.
The latter is to decide (in real time) if a new request for service should be
accepted. A concept called the effective bandwidth of a source is being used by
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several manufacturers of ATM equipment for CAC and has been used for
buffer sizing by at least one. A full treatment of this concept involves a consider-
able mathematical development, so only a simplified introduction is given here.

For analog signals, the bandwidth is the range of frequencies in the wave-
form. When all telephone signals were analog, the notion of bandwidth was
used to describe the transmission requirements of a signal and the capacity of a
transmission channel. A channel with capacity ¢ could transport n; signals of
type j, each having bandwidth of w;(j = 1,2, . . ., j) if, and only if,

J
> nw; < ¢ (50)
j=1

was valid. This equation can be used to solve both of the problems just men-
tioned. For broadband traffic, we would like to find an analog of w; that
collapses the statistical properties of the traffic and its QoS requirements into a
number that can be used in an equation similar to Eq. (50). When such a number
is found, it is called the effective bandwidth (EBW) of the source. Notice that
the EBW depends on the QoS, as well as the statistical properties, so the EBW
of a source may be different in different applications. Hui first obtained Eq.
(50) for a model of broadband traffic (9). Kelly surveys several EBW models
(10).

There are several ways to model packet traffic and obtain EBWs. Capturing
the bursty nature of packet traffic necessarily requires more complex stochastic
processes than are used in the sections on Erlang B, Erlang C, and Engset
models. These processes need more advanced mathematical methods to be
brought to bear on the models. We present an EBW model that is widely
applicable and relatively easy to explain (11). However, the explanation is more
sophisticated than the explanations given for the Erlang and Engset models. We
start with describing the model for a single source and extend the discussion to
multiple sources.

A single source of packets is fed to a single server that works at rate ¢. There
is a buffer of size B to handle temporary overloads. The QoS is the probability
of buffer overflow. The single source is an aggregation of many sources that are
producing packets, so the total number of packets behaves as if they flow in like
a fluid. The flow rate varies as a Markov chain; this models the changes in the
activity rates of the individual sources. Let m; be the rate (number of transitions
per unit time) that the Markov chain makes transitions from state j to state k.
When the chain is in state j, the flow rate is ;. Let M = (m;;) be the rate matrix
of the Markov chain and ¢ be the stationary distribution of M. Then, the mean
arrival rate 7 equals y/n;. To ensure stability, assume that the mean arrival rate
is less than the service rate (i.e., that 4 < ¢). The buffer will never overflow if
the arrival rate never exceeds ¢, so assume, to avoid trivialities, that (at least)
the largest arrival rate exceeds c. The following two examples illustrate the
source model.

Example 1. Assume there are »n subscribers, their connection attempts form a quasi-
random input process, and successful attempts send packets at rate » for an exponen-
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tially distributed amount of time. Then, the number of active subscribers fluctuates as
in an Engset model, and the state of the Markov chain is the number of active subscrib-
ers. Using the notation of the section on birth-and-death processes, m;;,, = \; and

m;,_; = . The arrival rate in state j is given by n;, = jn.

Example 2. The videoconference data shown in Fig. 3 has been modeled as a
Markov chain in the following way. Recall that a moving picture is a sequence of still
pictures (called frames) that (ideally) arrive equally spaced in time. Let X, be the number
of bits in the kth frame; analysis of some videoconference data has shown that the
sequence {X, X,, . . .} is consistent with Markov chain behavior. We let the number of
kilobits in the current frame be the state of the Markov chain, and m; is determined by
the way the number of bits per frame changes. The arrival rate in state j is j Kilobits per
interframe arrival time.

Let ®(B) be the steady-state probability that a buffer of size B overflows.
The performance objective is to ensure that &(B) < p, where p is typically
small. To understand when the objective will be met, we consider what happens
when

p—0 and B — o such that logp/B = ¢ < 0 (51)

the role of ¢is discussed below. It turns out that ®(B) can be expressed in terms
of the eigenvectors and eigenvalues of a certain matrix. As B gets large, the
eigenvector-eigenvalue pair, for which the eigenvalue has the largest real part
among all eigenvalues with a real part that is negative, basically determines
®(B). That eigenvalue is related to w(z), which is defined as the maximal real
eigenvalue of the matrix

A(2) =H—%M

where H is the diagonal matrix, with H; = 7,, and z is a parameter. The follow-
ing result can be proven with a substantial amount of analysis.
Proposition 1: Let Eq. (51) be valid. Then,

if w({) < ¢c,then®(B) < p
if w() > c,then ®(B) > p

Because of this property, w({) is the EBW of the aggregate source described by
H and M.

This proposition is applied to a setting with service capacity c, buffer size B,
and maximum allowable overflow probability p by setting { = logp/B, com-
puting w({) and comparing it to c. When the Markov chain has two states, w({)
can be written explicitly. Let
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« and 8 are the inverses of the expected lengths of times in States 1 and 2,
respectively. Then,

(m+a)f+a+8+Vlln + )0+ a+ BF — 4tnmf + Bul + amd)
2t

w() =

Since ¢ depends on B, the EBW implicitly depends on the buffer size. This
permits Eq. (50) to be used for buffer sizing.

Proposition 1 has been extended to cover multiple inhomogeneous sources.
There are K sources as above, each with a transition matrix M, and a diagonal
matrix of flow rates H,, k = 1, 2, ..., K. Let w,(z) be the maximal real
eigenvalue of the matrix

1
Ak(z)=Hk—2Mk (k=12,...,K)
Proposition 2: Let Eq. (51) be valid. Then,

K
if 22 w(¥) < ¢, then ®(B) < p

k=1

K
if 2 w,($) > c, then ®(B) > p
k=1

A particularly interesting special case of Proposition 2 is when there are n;
sources of type j,j = 1,2, ... ,J. Then,

J
if 2 mw;(§) < ¢, then®(B) < p
Jj=1

e

if 2, n;w;({) > c, then ®(B) > p

1

J

The traffic mix described by (n,, n,, . . . , n,;) sources of each type will violate
the GoS criterion when the sum of the EBWs is larger than ¢ and will satisfy it
when the sum of the EBWs is less than ¢, which (except for the case of equality)
solves the admission control problem and the planning problem.

There are some features of this model that are not as restrictive as a first
glance might make them seem. The proven mathematical results are limit theo-
rems as p — 0 and B — oo; simulation experiments show that Propositions 1
and 2 are good approximations for a wide variety of realistic loss probabilities
and buffer sizes. The sojourn time in any state of a continuous-time Markov
chain has an exponential distribution; this may not conform to the sources at
hand. However, by using more states, the sum or mixture of (possibly) different
exponential distributions can be formed, and then sums and mixtures of these
can be formed, and so forth. In fact, the Markov chain can be chosen to
approximate a leaky bucket traffic shaper (which is described below).
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Traffic Shaping and Policing

Some broadband services do not come with traffic limitations or performance
guarantees. The Internet is an example. Sources may send packets as fast as
they are able. The network tries to deliver the packets as soon as possible, but it
does not promise to satisfy delay or packet-loss requirements. For other services
(e.g., frame relay), the source and the network must agree on some characteris-
tics of the offered traffic and the level of service that will be provided. The latter
typically includes a minimum throughput, a maximum loss rate, and a bound
on the maximum delay. The former typically includes an upper bound on the
average arrival rate and the peak arrival rate. The obligations are expressed in a
service-level agreement. If the source were to violate the service-level agreement,
the network resources might be overloaded, causing the nonconforming source
(and perhaps other sources) to receive substandard performance. To prevent
this, the network employs a policing function to ensure compliance with the
service agreement. Similarly, a source may want to ensure conformance to avoid
service degradation, so it may shape its traffic to comply with the policing
function. The leaky-bucket algorithm is a popular policing and traffic-shaping
device; it is the subject of this section.

The leaky-bucket algorithm is very similar to a foken bank or credit manager
algorithm; the last two algorithms operate identically. The differences are slight
enough to ignore here; our description is precise for the token bank and credit
manager algorithms. How the policing algorithm works is discussed next.

Each user starts with an account of C,,,, tokens. This account is reduced by
one token every time an information unit (think of this as a packet) is sent to
the network. If a packet arrives when the account is zero, that packet is dis-
carded. (Some services, e.g., frame relay, tag the packet as “discard eligible”
and carry it when possible.) Periodically, at times A, 24, 34, . . ., say, a new
token is placed in the account, but this is suspended when the account contains
C,... tokens. Thus, the long-run sustainable throughput is 1/A packets per unit
time, and C,,, is the largest burst of packets that can be handled without loss.

Subscribers know the values of C,,,, and A, so they can implement a sending
algorithm that conforms to the policing algorithm. They can emulate the algo-
rithm, so they can always know the number of tokens in their account. When
the account is zero, they can defer sending packets to the network. One way of
doing this is to provide a buffer to hold the nonconforming packets. The buffer
can be anyplace before the packets are interrogated by the policing algorithm.
Typically, they are placed at the source, but some networks offer to provide
them.

A Model for the Token Bank

Let C(¢) be the account balance at time ¢. The realizations of C(¢) are step
functions that start at C,,,, decrease by one when a packet arrives, and in-
crease by one (as long they do not exceed C,,,) at times A, 24, « - -. LetC, =
C(nA + 0) (i.e., right after time nA), and let A, be the number of packets that
arrive in the interval (nA, (n + 1)A). When there is no buffer (as in policing),
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Cn+l = mln[(Cn - An)+ + lv Cmax] (ﬂ = Os 1’ 2’ . ) (52)

When A,, A,, ... are independent and identically distributed, Eq. (52) de-
scribes a Markov chain. When P{A4, = 0} > 0 and P{4, = k} > 0 for some
k > 0, the Markov chain is aperiodic and irreducible, so it has a steady-state
distribution. This distribution can be used to obtain the throughput, discard
probability, and other performance characteristics.

There are several interesting ways to choose the distribution of the number
of arrivals, but room does not permit exploring them here. The interested reader
should consult Ref. 12.

Equation (52) can be modified to include a buffer of size B. It can be shown
that adding the buffer to Eq. (52) is equivalent to changing C,,,, to C,,, + B
and interpreting C(¢) as the number of tokens plus the buffer content at time #.
The significance of this result is the following. Those packets that arrive when
the token bank is empty are lost, so any pair of token supply and buffer posi-
tions that have the same sum have the same lost packets. Thus, tokens and
buffer positions are interchangeable as far as the packet loss rate is concerned.
They are not interchangeable in their effect on the shape of the output of the
leaky bucket. For example, when there is one token and B — 1 buffer positions,
the spacing between the outputs is A as long as the buffer is not empty. When
there are B tokens and no buffer positions, as many as B packets can arrive and
depart during an interval of length A as long as they arrive in such a way that
the token is available at all arrival epochs (equispaced arrivals will do). The
former scheme makes the output traffic smoother than the latter scheme does.
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