
QUEUEING THEORY 
 
A queue is a waiting line (like customers waiting at a supermarket checkout counter); 
queueing theory is the mathematical theory of waiting lines.  More generally, queueing 
theory is concerned with the mathematical modeling and analysis of systems that provide 
service to random demands.  A queueing model is an abstract description of such a 
system.  Typically, a queueing model represents (1) the system's physical configuration, 
by specifying the number and arrangement of the servers, which provide service to the 
customers, and (2) the stochastic (that is, probabilistic or statistical) nature of the 
demands, by specifying the variability in the arrival process and in the service process.   
 
For example, in the context of computer communications, a communications channel 
might be a server, and the messages the customers; the (random) times at which messages 
request the use of the channel would be the arrival process, and the (random) lengths of 
service time that the messages hold the channel while being transmitted would constitute 
the service process. Another example is a computer system where a programmer 
(customer) sitting at a terminal requests access to a CPU (server) for the processing of a 
transaction; both the arrival time of the request for access and the amount of processing 
time requested are random.  Then, the mathematical analysis of the models would yield 
formulas that presumably relate the physical and stochastic parameters to certain 
performance measures, such as average waiting time, server utilization, throughput, 
probability of buffer overflow, etc.  The art of applied queueing theory is to construct a 
model that is simple enough so that it yields to mathematical analysis, yet contains 
sufficient detail so that its performance measures reflect the behavior of the real system. 
      
Queueing theory was born in the early 1900s with the work of A. K. Erlang of the 
Copenhagen Telephone Company, who derived several important formulas for teletraffic 
engineering that today bear his name.  The range of applications has grown to include not 
only telecommunications and computer science, but also manufacturing, air traffic 
control, military logistics, design of theme parks, and many other areas that involve 
service systems whose demands are random.  Queueing theory is considered to be one of 
the standard methodologies (together with linear programming, simulation, etc.) of 
operations research and management science, and is standard fare in academic programs 
in industrial engineering, manufacturing engineering, etc., as well as in programs in 
telecommunications, computer engineering, and computer science.  There are dozens of 
books and thousands of papers on queueing theory, and they continue to be published at 
an ever-increasing rate.  But, despite its apparent simplicity (customers arrive, request 
service, and leave or wait until they get it), the subject is one of some depth and subtlety.  
We will illustrate this by briefly visiting some of the most important models, and 
describing along the way some of the obvious features and some of the subtleties. 
 
The essence of queueing theory is that it takes into account the randomness of the arrival 
process and the randomness of the service process.  The most common assumption about 
the arrival process is that the customer arrival epochs follow a Poisson process.  One way 
to describe a Poisson arrival process is to imagine that time is divided into small intervals 
of length ∆τ.  Assume that in each interval either an arrival occurs (with probability λ·∆τ, 



say, where the proportionality constant λ is the arrival rate) or it doesn't, independently of 
the occurrence or nonoccurrence of arrivals in the other intervals.  Finally, imagine that 
∆τ→0 (that is, take limits to pass from discrete time to continuous time).  Then the 
arrivals are said to follow a Poisson process; and one of the properties of the Poisson 
process is that the times between arrivals (the interarrival times) are exponentially 
distributed.  (A random variable X is said to be exponentially  distributed if its 
distribution function Fx(t) is given by Fx(t)=1-e-λt for all t≥0, where 1/λ is the average 
value of X.  There are many textbooks that cover probability and stochastic processes.  
We recommend some specific ones below.) 
 
One of the most important queueing models is the Erlang loss model; it assumes that the 
arrivals follow a Poisson process, and that the blocked customers (those who find all 
servers busy) are cleared (that is, they are denied entry into the system, so the blocked 
customers are lost).  The fraction of arriving customers who find all the servers busy (the 
probability of blocking, or loss probability) is given by the famous Erlang loss (or Erlang 
B) formula, 
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where  s  is the number of servers and  a=λτ  is the offered load  in erlangs, where λ is 
the arrival rate and τ is the average service time.  An important theorem is that formula 
(1) applies for any distribution of service times; this mathematically surprising and 
practically important result is an example of the phenomenon of insensitivity.  Formula 
(1) is hard to calculate directly from its right-hand side when s and a are large, but is easy 
to calculate numerically using the following iterative scheme: 
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For example, it is easy to write a program that implements (2), and to verify that B(1, 0.8) 
= 0.4444, B(10, 8) = 0.1217, B(100, 80) = 0.003992, and B(1000, 800) = 10-12.  (This 
means, for example, that when 8 erlangs of Poisson traffic is offered to 10 servers, then 
about 12% of the arrivals will be blocked.)  Also, it can be shown that 
B(s1+s2,a1+a2)<B(s1, a1) + B(s2,a2).  These examples illustrate the important fact that 
large systems are more efficient than small ones.  The Erlang loss model is one of the 
fundamental models of teletraffic engineering (the "customers" are telephone calls and 
the "servers" are trunks, and the blocked calls are cleared from the system and thus are 
"lost" calls). 
 



The Erlang delay model (also called M/M/s in queueing theory parlance1) is similar to the 
Erlang loss model, except that now it is assumed that the blocked customers will wait in a  
queue as long as necessary for a server to become available.  In this model, the 
probability of blocking (the fraction of customers who will find all s servers busy and 
must wait in the queue) is given by the famous Erlang delay (or Erlang C) formula, 
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The quantity ρ defined by (4) equals the server utilization (the fraction of time, on 
average, that a server is busy), and C(s,a)=1 when ρ=1.   The Erlang C formula (3) is 
easily calculated by combining the iteration scheme (2) with the formula 
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Using (5) and (2), it is easy to calculate C(s,a) and to compare its values with the 
corresponding values of B(s,a) computed earlier; the results are C(1, 0.8) = 0.8, C(10,8) 
= 0.4092, C(100,80) = 0.01965, and C(1000,800) = 5.6 x 10-12 .  In each case the server 
utilization is ρ=80%, again showing that large systems are more efficient than small 
ones.  Also, note that in each case, C(s,a)> B(s,a).   This can be explained by observing 
that in the Erlang B model the blocked customers are cleared from the system, whereas in 
the Erlang C model the blocked customers enter the system (and wait in the queue), 
thereby increasing the probability that future arrivals will find all the servers busy. 
 
If the blocked customers are served in FIFO order (First In, First Out), then the 
probability P(t) that a customer will wait in the queue more than t before beginning 
service is 

                                                           
1 M/M/s denotes Memoryless (exponential) distribution of interarrival times/Memoryless distribution of 
service times/s servers. 
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where µ=1/τ is the service rate.   For example, in a 10-server system operating at 80% 
utilization, the fraction of customers who will wait longer than one average service time 
is given by the right-hand side of (6) with s=10, ρ=80%  (and therefore a=8 and C(s,a) = 
C(10, 8) = 0.4092) and t= τ = 1/µ: P(τ)=0.05538. 
 
Formula (3) (or (5)) predicts how many customers (more precisely, what fraction of 
arriving customers) will have to wait.  Formulas (6) and (7) below predict how long the 
customers will have to wait; that is, if w denotes the average waiting time, then 
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Significantly, although (6) is based on the assumption of FIFO service, (7) remains 
correct even when service is not FIFO, for example, LIFO (L= Last) or SIRO (Service In 
Random Order).  This is true because interchanging statistically identical customers 
waiting in the queue does not change the number of customers or the amount of work 
waiting to be served, so average waiting time remains the same. 
 
It is important to note that the Erlang delay model does not have the insensitivity property 
enjoyed by its Erlang loss counterpart; the Erlang C formula is derived under the 
assumption that the service times (like the interarrival times) are exponentially 
distributed.  If the service times are not exponentially distributed, then results 
corresponding to (3), (6) and (7) are difficult to obtain, except in one very important case,  
the single-server (s=1) queue.  This fundamental model is often referred to as M/G/1 (the 
G denotes general distribution of service times).  When s=1 the analogue of formula (7) 
is the celebrated Pollaczek-Khintchine formula, 
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where σ2 is the variance (a measure of variability or "spread") of the service times.  For 
example, when service times are exponential, then σ2=τ2 and (8) coincides with (7) 
(when s=1).  When service times are constant, then σ2=0 and (8) shows that, all other 
things being equal, average waiting times are twice as long when service times are 
exponential as when they are constant.  Remarkably, when s=1 formula (3) remains valid 
for all service-time distributions. 
 
These examples were chosen to illustrate the richness of queueing theory: simple models 
accurately describe real systems and often yield surprising insights.  There is much more 
to this useful and mathematically interesting subject.   
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