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Abstract

We consider a system of N queues served by a single server in cyclic order. Each queue has
its own distinct Poisson arrival stream and its own distinct general service-time distribution
(asymmetric queues); and each queue has its own distinct distribution of switchover time
(the time required for the server to travel from that queue to the next). We consider
two versions of this classical polling model: In the first, which we refer to as the zero-
switchover-times model, it is assumed that all switchover times are zero and the server
stops traveling whenever the system becomes empty. In the second, which we refer to as
the nonzero-switchover-times model, it is assumed that the sum of all switchover times
in a cycle is nonzero and the server does not stop traveling when the system is empty.
After providing a new analysis for the zero-switchover-times model, we obtain, for a host of
service disciplines, transform results that completely characterize the relationship between
the waiting times in these two, operationally-different, polling models. These results can
be used to derive simple relations that express (all) waiting-time moments in the nonzero-
switchover-times model in terms of those in the zero-switchover-times model. Our results,
therefore, generalize corresponding results for the expected waiting times obtained recently

by Fuhrmann [8] and Cooper, Niu, and Srinivasan [4].

Key words. Polling models, cyclic queues, waiting times, decomposition, switchover times,
vacation models.



1 Introduction

A polling model is a system of multiple queues attended by a single server that travels
from queue to queue in some prescribed manner. Polling models have many important
applications (computer networks, telephone switching systems, materials handling, etc.)
and, in general, they are extremely complicated. Consequently, there is a huge literature
dealing with various versions of these models and their numerical analysis (see, for example,
Takagi [16, 17]).

In this paper, we assume that the queues are attended by the server in cyclic order,
and we consider two versions of the polling model: the zero-switchover-times model and the
nonzero-switchover-times model. In the former model, it is assumed that the switchover
times (i.e., the times required for the server to travel between queues) are equal to zero;
the server stops switching whenever the system becomes empty, and then instantaneously
switches to the queue where the next customer arrives, to begin service on this customer.
In the latter model, the switchover times are assumed to be arbitrarily-distributed random
variables, and the server continues traveling even when the system is empty. In each case,
the queue discipline at each queue is First-In-First-Out (FIFO).

In most of the existing literature on polling models, the zero-switchover-times model
and the nonzero-switchover-times model are considered separately. This tradition is closely
related to the confusing fact, first noted by Eisenberg [5] (p. 441), that since the sum of
all switchover times in a cycle (i.e., the elapsed time between two successive visits to a
queue by the server) must remain nonzero in the latter model, corresponding results for the
former model cannot be duplicated. (Also see Eisenberg [6], where he revisits this issue and
analyzes several models in which the server stops when the system is empty.)

Our purpose in this paper is to uncover, for a host of service disciplines, simple trans-
form results that characterize the relationship between the waiting times in these two,
operationally different, models. Understanding this relationship is important, because it is
clearly desirable to be able to translate back and forth between these two models. In relating
these models, our primary objectives are: (1) to establish continuity, in distribution, of the
waiting times, and (2) to do so in a way that reveals the underlying “link” between these
models. With respect to these objectives, it must be emphasized that not all functionals
of these models are continuous. For example, it is well known that the average cycle times
in these models are not continuous. That is, if one lets the sums of the switchover times
in a sequence of nonzero-switchover-times models converge to zero, then the corresponding
average cycle times will converge to zero, since each time the system becomes empty, the
server will execute, in the limit, an infinite number of cycles in any ensuing positive finite
time interval; and this limit clearly is not consistent with the zero-switchover-times model
defined above. For the waiting times, continuity has either been assumed or investigated
only numerically in most of the previous work; see, for example, Garner [10], Levy and
Kleinrock [14], Takagi [16] (p. 294), and Tayur and Sarkar [18]. Our transform results,



which are established via two separate, but parallel, analyses of these two models, can be
used to provide a rigorous proof of the continuity (in distribution) of the waiting times.

Our work is a continuation of two recent papers by Fuhrmann [8] and by Cooper,
Niu, and Srinivasan [4]. In Fuhrmann [8], it is shown that, for constant switchover times,
the population of customers present (represented by a vector whose components are the
numbers of waiting customers at each queue) in the nonzero-switchover-times model enjoys
a stochastic decomposition at certain points in time. This leads to a simple decomposition
relationship between the expected waiting times in the zero- and nonzero-switchover-times
models. Using a different argument, Cooper, Niu, and Srinivasan [4] obtain the same
decomposition for constant switchover times, and further show that, with an appropriate
modification of the service-time variances, the decomposition holds, in fact, even when the
switchover times are arbitrarily-distributed random variables. These analyses, however, do
not extend to the higher moments of waiting times. Our transform results can be used
to derive, in a straightforward manner, higher-moment generalizations of these expected-
waiting-times results.

Our transform results will be derived via a new analysis of the zero-switchover-times
model. The zero-switchover-times model was originally studied in Cooper and Murray [3]
and Cooper [1] for a system with either exzhaustive service at all queues (that is, the server
switches from a queue only when it is empty), or gated service at all queues (the server
closes a “gate” behind the waiting customers when it arrives at a queue and switches to the
next queue upon completion of service of all customers in front of the gate). In particular,
the FIFO waiting-time distribution for the exhaustive-service system was derived in Cooper
[1] (eq. (27), p. 407) based on the idea that, from the viewpoint of a particular queue, the

” This formulation

time spent serving the other queues can be interpreted as a “vacation.
led to a decomposition of the waiting times into a sum of two independent variables: the
waiting time in the standard M/G/1 queue without vacations, and an additional time
that depends only on the duration of the vacation. This decomposition was subsequently
generalized by Fuhrmann and Cooper [9] (Propositions 3 and 4, pp. 1125 and 1126) to
cover disciplines other than exhaustive service. Our analysis in this paper will also be
based on these decompositions: We will study the durations of vacations using the concept
of “descendant set,” as explicated recently by Konheim, Levy, and Srinivasan [12] for the
analysis of the nonzero-switchover-times model. (See also Fuhrmann [7].) For expositional
ease, we will first present our results assuming that the service discipline (at every queue)
is exhaustive. Subsequently, we will show that our method easily extends to polling models
with gated service, and to many other cases.

In Section 2, we summarize notation and preliminaries. In Section 3, we focus on the
zero-switchover-times model with exhaustive service at all queues. In Section 4, we establish
a transform result that relates the waiting times in the zero- and nonzero-switchover-time
models with the exhaustive-service discipline; in particular, we show that in the nonzero-
switchover-times model, if the switchover times are all constants, then the waiting-time



distribution depends only on the sum of the switchover times, and not on their individual
values. In Section 5, we extend our analysis to the gated-service case, and to other disciplines
as well. In Section 6, we develop a new computational technique for calculating all waiting-
time moments in the zero-switchover-times model; and from this we derive several explicit
expressions that relate these moments to those of the nonzero-switchover-times model.

2 Notation and Preliminaries

A single server serves in cyclic order a sequence of N infinite-capacity queues. The arrival
process to queue ¢ is Poisson at rate A;, the time required to serve a customer at queue ¢ is
denoted by B;, and a switchover time (possibly of zero duration) at queue ¢ (i.e., the time
required for the server to travel from queue i to queue 7 4 1) is denoted by R;. The arrival
processes, service times, and switchover times are all mutually independent.

Unless otherwise stated, the Laplace-Stieltjes transform (LST) of a nonnegative ran-

dom variable A, defined as Elexp(—sA)], is denoted by A(s); and when A is discrete, its
probability-generating function (PGF), defined as E[24], is denoted by A(z). Multivariate
LSTs and PGFs are defined similarly. It is assumed that the index used for a summation
over the queues is (a) reset to 1 if it increases to N + 1 and (b) reset to N if it decreases to
0. We adopt the convention that an empty product equals 1 and an empty sum equals 0.
The total arrival rate to the system is denoted by A = Zf\;l Ai, and the sum of the
switchover times by R = Zf\; R;. The traffic intensity at queue 7 is denoted by p; =

M E[B;], and the server utilization by p = Zf\; p;. For the polling system to be stable,
p must be less than 1, and this is assumed to be the case. A busy period generated by
a single customer at queue ¢ is denoted by ©;. The waiting times at queue 7 in the zero-
and nonzero-switchover-times models are denoted by W? and W;, respectively. The waiting
time in the standard M/G/1 queue with arrival rate A; and service times distributed as B;
is denoted by W.

We conclude this section with the statements of two elementary results that will be used
repeatedly later. Consider a random interval of duration S. For each ¢ = 1, ---, n, let A;
denote the number of arrivals during S of a Poisson process at rate A;. Suppose these n
Poisson processes are independent of each other and of S. Then, the (multivariate) PGF of

(Aq1,---,A,) is given by
E [ﬁ z;‘i] =5 (zn: Ai(1 — zi)) : (1)

Next, consider a random vector (Q1,---,Q,) with PGF f(z,---,2,). For each i = 1,

-y, let {K;;, 7 =1,2,--} be a corresponding sequence of i.i.d. random variables, each
with PGF ¢;(z); and let Q; = E?:’l K;; (that is, replace the “jth count” in @); by the
cardinality K;; of a corresponding “batch”). Suppose the n sequences {K;;, j = 1,2,---}



are independent of each other and of (Q1,---,@Q,). Then, the PGF of (Ql, -, Q) is given
by

E [ﬁ Z?l] :f(gl(zl)vvgn(zn)) (2)

These two results are multivariate extensions of, e.g., equation (6.10), p. 199, and Exercise
4, p. 30, in Cooper [2].

3 The Zero-Switchover-Times Model

The starting point of the analysis in [3] and [1] is a Markov chain embedded at a set of
switch points, defined as the time epochs at which the server finishes service (if any) at a
queue and is ready to switch from that queue to the next. Our objective in this section is
to develop (for this zero-switchover-times model with exhaustive service) a parallel analysis
that is based on an embedding at polling epochs, defined as the time epochs at which the
server arrives at a queue. We are motivated to work with this different set of embedding
epochs because most existing analyses for the nonzero-switchover-times model are based on
polling epochs. As will be seen in Section 4, a unified embedding scheme greatly simplifies
comparison of results for these two models.

Define a time interval during which the server is away from queue ¢ as a vacation from
queue 7, and consider the time epoch at which the server returns to that queue after a
randomly-selected (or “tagged”) vacation. We will call such an epoch an i-polling epoch.
Let G;(z1,---, zn) denote the PGF of the numbers of customers waiting for service at the
various queues at this polling epoch, and note that, in particular, the PGF of the number
of customers waiting at queue ¢ is given by G;(1,---,1,%,1,---,1). Then, it is shown in
[1] (eq. (18), p. 404) that the LST of the waiting time of a randomly-selected departing

customer from queue ¢ has the following decomposition:

WO() 1-G (1, 1,1 =5/, 1,---, 1) s(1 = pi)
“(s) = 4 ,
‘ (S//\i)G;(lv"'7172i717"'71) |zl‘:1 s — /\z‘l’/\sz(S)

(3)

where the second term is the well-known Pollaczek-Khintchine transform for the waiting
time in the standard M/G/1 queue. Tt follows from (3) that W2(s) can be calculated once
Gi(1,--+,1,2,1,--+,1) is given.

We will focus on queue 1 and thus address the problem of determining G'y(z1,1,---,1).
Consider a randomly-selected 1-polling epoch, and call it the reference point. Let Y, denote
the number of waiting customers at queue 1 at the reference point; then, ¥; has PGF
Gi(z1,1,---,1).

Define a cycle as the elapsed time between two successive 1-polling epochs; and let the
reference point correspond to the initiation of a cycle with cycle index ¢ = —1. Clearly,

every waiting customer (if any) at queue 1 at the reference point contributes a count of



exactly 1 in Y7, and none of the waiting customers at the other queues contributes any
count in Y;. (Note that the system is never empty at a polling epoch.) Thus, with L; 4
denoting the “contribution” to Y; from each waiting customer at queue i at the reference
point and with L; _q(z) denoting the PGF of L; _y, we have Ly _; =1, with Ly _1(2) = z,
and L; _y =0, with L; _4(z) = 1, for ¢ > 1. Therefore, it follows from (2), by first replacing
each z; in Gy(z1, -+, 2n) by L; —1(%;) and then setting all z;s to z;, that

GI(LI,—I(ZI)7 L27_1(2’1)7 . '7LN7_1(2’1)) = Gl(Zh 17 trty 1) . (4)

This key observation (the starting point of the descendant-set approach in [12]) suggests
that we can evaluate G'q(z1,1,---,1) by considering, recursively, contributions to Y7 from
waiting customers at all queues at each of the past polling epochs, working backward from
the reference point.

Look backward in time and consider the c¢th cycle prior to the reference point, where
c=0,1, - Let C; . be a customer (if any) served at queue ¢ during the cth cycle. Define
the immediate children of C;. as the set of all customers arriving to the system (at all
queues) during the service to C; ., and define the descendant set of C; . as the set consisting
of C; ., its children (if any), and the descendants of its children. Let L; . be the number
of waiting customers at queue 1 at the reference point that are also in the descendant set
of C; ., and let L; .(2) denote its PGF. As is the case for L; _q, we will say that L; . is the
contribution to Y; from customer C; ..

For ¢ > 0, the PGF of L; . can be expressed in terms of the PGFE of the contributions to
Y1 made by customers who arrive during the service to C; ., as follows. Customers arriving
during this service at a queue j > ¢ are served in the current cycle; these are, by definition,
C;.. customers, and hence each has a contribution with PGF L;.(z). Similarly, customers
arriving at a queue j < 7 are served in the next cycle; these are, by definition, C;._;
customers, and hence each has a contribution with PGF L;._;(z). Therefore, it follows
from (1) (with S = B;) and (2) (similar to (4)) that

N i—1
Li.(2) = B; (Z A= Lje(2)]+ A1~ Lj,c—l(Z)]) : (5)
=i =1
fori=1,---, N and ¢ > 0.

To see how (5) relates to the calculation of Gi(z1,1,---,1), we consider the i-polling
epoch during the cth cycle, where ¢ = -1, 0, 1, ---. Let G; (2, -, 2n) be the PGF
of the numbers of waiting customers at the various queues at this epoch and note, in
particular, that Gy _1(2z1,- -+, 2n) = G1(21,- -+, zn). Then, an argument similar to that for
(4) immediately yields that the PGF of the total contributions to ¥; made by these waiting

customers is given by

Gi,c(Ll,c—l(Z)7 oty Li—l,c—1(2)7 Li,c(2)7 ity LN,C(Z)) 3 (6)



where the PGFs L; .(2), i =1,---, N and ¢ > 0, are determined by the recursion (5), with

the initial condition
(LL—l(Z)v LQ,—I(Z)v e '7LN7—1(2)) = (Zv Leeey 1) . (7)

The idea, then, is to calculate the PGF G4 _1(z,1,---,1) by relating it recursively to the
Gic()s in (6) for ¢ = 1, -+, N and ¢ > 0, via a Markov chain embedded at polling
epochs, monitoring the numbers of waiting customers at the various queues. Note that by
stationarity, we have, for all ¢ > 0,

Gi,c(Ll,c—l(Z)7 Ty Li—l,c—1(2)7 Li,c(Z)v Ty LN,C(Z)) =

Gi—1(L1e—1(2), -y Licyc—1(2), Lio(2), -+ Ly o(2)) (8)

a fact that will be needed later.
Define a server-departure epoch from queue ¢ as a time epoch at which the server has

just completed service (if any) at queue 7 and is ready to leave that queue. (The set of
server-departure epochs includes, as a subset, the set of switch points used in [3]. The
difference between the two sets occurs when the system becomes empty at the time the
server completes service at a queue. This results in a single switch point, and a server-
departure epoch will be registered at this instant as well; however, this will be followed by
the simultaneous registration of a random number of server-departure epochs when the next
customer arrives.) With 0 denoting a vector of zeros, let P; .(0) be the probability that the
system is empty at the server-departure epoch at queue ¢ during the c¢th cycle. Note that,
again by stationarity, P; .(0) is independent of ¢. The following lemma gives a recursion for

the PGFs in (6).
Lemma 1 Fori=1,---, N and ¢ > —1,
Gi,c(Ll,c—l(Z)v Ty Li—l,c—1(2)7 Li,c(Z)v Ty LN,C(Z)) =

Gi—l,c(Ll,c—l(Z)7 Ty Li—2,c—1(2)7 Li—l,c(Z)v Ty LN,C(Z))

N 1—1
= Pi1,(0) (Z a; 1= Lie()]+ 3 a;[1 - Lj7c_1(z)]) : (9)
where a; = X;/A.

We note that if ¢ = 1 on the left-hand side of (9), then the corresponding indices ¢
and ¢ on the right-hand side need to be replaced by N + 1 and ¢ + 1 respectively (that is,
the 1-polling epoch in the cth cycle can be thought of as the (N + 1)-polling epoch in the
(c+ 1)th cycle); and that if ¢ = —1, then L; . (2) is defined as 1 for any j =1, ---, N.

Lemma 1 is proved as follows. Consider the server-departure epoch from queue 7 — 1 in

the cth cycle, and let D;_4 o(21, -+, 2n5) be the PGF of the numbers of waiting customers at



the various queues at this epoch. Then, similar to (6), the PGF of the total contributions

to Y7 made by these waiting customers is given by
Di—l,c(Ll,c—l(Z)7 Ty Li—2,c—1(2)7 17 Li,c(Z)v Ty LN,C(Z)) . (10)

If the entire system is not empty at this epoch, then this epoch coincides with the subsequent
i-polling epoch; and hence (10) gives the PGE of the total contributions to Y; from waiting
customers at the subsequent ¢-polling epoch as well. On the other hand, if the system is
empty at this server-departure epoch, then the server waits at queue ¢ — 1 for the next
arrival, say at queue j, which occurs with probability a; = A;/A; and as soon as the arrival
takes place, the server cycles around to that queue in zero time, even if j = ¢ — 1, in the
order i, ---, j — 1, j, registering (simultaneously) a polling epoch at each of these queues,
including in particular an ¢-polling epoch at queue 2. At this i-polling epoch, the new
arrival, a “supercustomer” (see [1]), will contribute either L; . or L;._1 to Y;, depending
on whether j > 7 or j < 4. Since P;_; .(0) equals the probability that the system is empty
at this server-departure epoch, and since the PGF of 0 equals 1, it follows that

Gi,c(Ll,c—l(Z)v Ty Li—l,c—1(2)7 Li,c(Z)v Ty LN,C(Z)) =
Di—l,c(Ll,c—l(Z)7 Ty Li—2,c—1(2)7 17 Li,c(Z)v Ty LN,C(Z)) - B—I,C(O) -1

N i—1
+ Pi_1,.(0) (Z_: a;jLj.(2) + Z_: aij,c—l(Z)) 7 (11)

with the last two terms accounting for the needed “correction” between the PGFs G .(+)
and D;_1 .(-), due to the potential arrival of a supercustomer.
We next relate D;_q () to Gi_1 (). After replacing z,_y in G;_1c (21, -+, Zi—1,- -+, 2N)

by ©;-1(3" -1 Aj(1 = 2;)), we obtain (from a further extension of (2), with possibly mul-

tivariate K;s for each @)

Di—l,c(zlv Cty Zi—2, 17 iyttt ZN) -

Gi—l,c (217"'7Zi—27éi—1 ( Z A](1_ Z])) 7Zi7"'7ZN) . (12)

J#Fi-1
In [12] (eq. (3.6), p. 1248), using arguments similar to that used to derive (5), it is shown
that Lio(2) = 0; (T A [1 = Lye(2)] + T2 A [1 = Lyeoa(2)]), for i = 1, N and
¢ > 0. Hence, by first replacing each zj in (12) with either Ly ._1(2) or Ly (2), depending
on whether k < i—1or k> i— 1, and then using this recursion for L; .(2), it follows that

Di—l,c(Ll,c—l(Z)7 Ty Li—2,c—1(2)7 17 Li,c(Z)v Ty LN,C(Z)) =



Gi—l,c(Ll,c—l(Z)7 Tty Li—2,c—1(2)7 Li—l,c(Z)v Tty LN,C(Z)) . (13)

More directly, (13) can also be seen as a consequence of the simple observation that the two
PGF's of the total contributions to ¥} made by waiting customers at the i-polling epoch in
the cth cycle and at the subsequent server-departure epoch from queue ¢ must be the same,
because the system stays nonempty between these two epochs. Finally, substitution of (13)
into (11), with the PGF of 0 in (11) rewritten as Zé\le a; (which can be interpreted as the
PGF of the contribution to Y; from a “null” customer, located at queue j with probability
a;), yields (9); and this proves Lemma 1.

Now, with ¢ =1 in (9), we have

GI,C(LI,C(Z)7 Ty LN,C(Z)) = GN,C—I—I(LI,C(Z)7 Ty LN—I,C(Z)7 LN,C—I—I(Z))

2)]; (14)

— Pn.c+1(0)

e
%Q

and recursively applying (9) N times, we obtain

Gl,c (LI,C(Z)7 Ty LN,C(Z)) = Gl,c—l—l (Ll,c—l—l(Z)v Ty LN,C—I—I(Z))

N N
- Z ]Di,c-|—1(0) ( Z a; [ ],c-l—l ‘|’ Z a] ic ]) . (15)

j=it1
Continuing to express G _1(L1,-1(2), -+, Ln,—1(2)) in terms of G o(L1,0(2),- -, Lno(2)),
and Gy o(L10(2), -+, Lno(2)) in terms of Gy 1(L1,1(2), -+, Ln(2)), and so on, using (15)

with ¢ = —1, ¢ = 0, etc., we obtain
G1,—1 (L1,—1(Z)7 e '7LN,—1(Z)) = Gl,oo (Ll,oo(z)v e '7LN,OO(Z))
oo N N
- Z Zpi,c-l—l (0) Z a;[1 = Ljetr(2 Za] Lj(2)]] - (16)
c=—11i=1 J=1+1

Since P, .(0) is independent of ¢, the last term on the right-hand side of (16) simplifies,

after an interchange of the order of summation, as follows:

oo N N
> D Pieta(0) ( > a1 = Ljcyi(z —I—Za] e ])

c=—11=1 j=t+1
N o0
= ZB (Z Z aj[1— Ljer1(2)]+ Z Zay Je ])
=1 c=—1j7=141 c=—1j5=1
o~ N
= Z Z a] J.¢ ] s (17)
c=—1j=1



where P(0) = SN, Pi(0) = YN, P..(0), and where the last equality is true because
1—-L; _1(2) =0for j > 1. Now, in the limit as ¢ — o0, it can be shown from (5) (similar to
[3], Section VI) that L; .(2) = L; . (2) = 1 (i.e., the contribution to Y; made by a customer
who is served ¢ cycles ago tends to 0 as ¢ tends to infinity). After substituting (17) into
(16), setting G'1(-) = G ¢(+) for all ¢ (see (8)), and noting that G4(1,---,1) = 1, we obtain
the following key result.

Lemma 2

Gi(z,1,-+,1) =1 - P(0) Hy(z), (18)

where

ZZ@Z — L; (2)] - (19)

c=—11¢=1
From (18) and (19), we have
o N
Gi(z,1, -, 1) == = P(0) H{(2) |.=1= P(0) >_ > i, (20)
c=—11:=1

where (; . = a;F[L; ). 1t is easily shown from (5) that

N i—1
= pi [Z bie + Z@yc—ll : (21)
=i i=1

fori=1,---, N and ¢ > 0. After summing over ¢ from 0 to oo and 7 from 1 to N in (21)
and simplifying (similar to (17)), we obtain

oo i—1
Zzzzc—zpz [ZZK‘L ‘|‘ZZ£},C 1] szzzzﬁ +sza17
c=01i=1 c=0 j7=1 c=07=1 = c=0j5=1

where we have used the fact that E§:1 ;4 = ay forall k =1, ---, N (which follows
because {; _; = ay and {; _y = 0 for ¢ > 1). Thus,

Pi — L1
R =1
c=0:=1 1 -P
Adding "X, ¢; -1 = a; to the above equation, we obtain 3222 | SN 0 o= ay(1—p1)/(1 -
p), which, together with (20), leads to the following lemma.

Lemma 3
Gi(2,1, 1) o= /\1% (1—p1) - (22)



Lemma 3 can also be argued directly, independent of (5). Since G(z,1,---,1) |.,=1
is the expected number of customers waiting at queue 1 when the server returns from a
vacation V' away from that queue, it follows from an application of formula (3) in Wolff [19]
(p. 226) that G (2,1,---,1) |.=1= M E[V{] (note that although V;° and the arrival process
are dependent, Wolff’s lack-of-anticipation assumption holds). To calculate F[V}], observe
that P(0)/X equals the expected amount of time in a cycle the server is idle, and let C' be
the length of a cycle. Then, an application of “H = AG” (see, e.g., Heyman and Stidham
[11]), with “H” = 1—p, “A” = 1/E[C], and “G” = P(0)/A, yields E[C] = P(0)/[A(1 - p)];
and since E[VY] = F[C](1 — p1) (similar to, e.g., (3.2) and (3.3) in [16], pp. 277-278), this
again proves Lemma 3.

Finally, by combining (3), Lemma 2, and Lemma 3 (and cancelling P(0) in (18) and
(22)), we obtain the following result.

Theorem 1 Under the exhaustive-service discipline, the LST of the wailing time in the
zero-switchover-times model is

A1 =p) Hi(1=5s/A1)] ..
s . Wi(s). (23)

Wlo(s) =

Formula (23), which we believe is new, complements formula (27), p. 407, in [1]. As
noted at the beginning of this section, the latter formula was derived based on a Markov
chain embedded at switch points, whereas ours is based on a Markov chain embedded at
polling epochs. It can be shown, via a proper “translation” between the solutions to these
two embedded chains, that these formulas are equivalent.

4 A Transform Result

The vacation-model decomposition (3) also constitutes the basis for the derivation of the
waiting-time distribution in the nonzero-switchover-times model: Define the reference point
as a randomly-selected 1-polling epoch, let X; be the number of waiting customers at the
reference point, and let F;(z) be the PGFE of X;. Then (for instance, see [16], eqs. (3.17a)
and (3.3)),

1 -F(-5/M)

W) = L (). (21)
where
B = 110 (1= pu), (25)

the expected duration of a vacation V; away from queue 1.
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Again, define a cycle as the elapsed time between two successive 1-polling epochs. Then,
it is shown in [12] that

X, = i i Ri, (26)

c=01i=1

where R;. denotes the total contribution to X; from customers (or “originators”) who
arrived (a) in the cth cycle prior to the reference point and (b) during the switchover time
from queue ¢. Noting that the variables {R;.: i =1,---, N and ¢ > 0} are independent of
one another, the representation (26) leads (upon taking PGFs) to

oo N
Fi(z) =[] Rie(2) (27)

c=0:=1

where (see (3.4a) and (3.4b) in [12]), for ¢ =1, .-+, N and ¢ > 0,

N 7
Ri.(2) = R; ( DN = Lie(2)] + Z Al = Lj,c—l(Z)]) ; (28)

j=1+1

and the PGFs L; .(z) satisfy the same recursion (5) (which is equivalent to (3.6) in [12]),
with the same initial condition (7) for the zero-switchover-times model. Hence, we see that
the set of variables {L;.: ¢=1, -+, N and ¢ > —1} provides the underlying link between
(i.e., serves as the common “input” to) these models; indeed, our analysis in Section 3
overcomes, with the recursion (9), the difficulty with the fact that a simple counterpart of
(26) does not exist for the zero-switchover-times model.

Comparison of (23) with (24) and (25) leads to the following transform result.

Theorem 2 Under the exhaustive-service discipline,

~ _ 1—F1(1—8/A1)

WI(S) — Hl(l _ 5//\1) /\E[R] WIO(S) . (29)

Theorem 2 gives a simple relation between the LSTs of the waiting times in the two models.
In Section 6, on computational issues, we will demonstrate that Theorem 2 also has an
important practical significance: It allows one to compute any desired waiting-time mo-
ments in the nonzero-switchover-times model for a given set of switchover times with O (V)
computations, once the corresponding waiting-time moments have been computed for the

zero-switchover-times model.
Now consider the special case where the switchover times are all constants (not neces-

sarily equal). In this case, we obtain a strikingly simple relation between the LSTs of the
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waiting times in the two models. From (27) and (28), we have

oo N N 7
Fi(z) = [[IIexp [— ( Yo Nl = Lie(=)]+ Z At = Lj,c—l(Z)]) B[R]

c=0:=1 7=1+1

N 0 N 7
= 1:[ exp [— > ( D A= Lije(2)] + Z_: At = Lj,c—l(Z)]) B[R]

c=0 \j=1+1

Next, an argument similar to (17) yields

N
Fi(z) = [[ exp {~=Hi(2) AE[R]} = exp (— H(2) AE[R]). (30)

From (29) and (30), we then obtain the following results.

Theorem 3 If the switchover times are all constants, then under the exhaustive-service
discipline,
_ l—exp(=Hi(1 - s/M)AE[R])

Wi (s) Hy(1—-s/A1) AE[R]

WP(s). (31)

Corollary 1 When the switchover times are all constants, the waiting-time distribution in
the nonzero-switchover-times model depends only on the sum of the switchover times, and
not on the individual switchover times.

The relation (31) can be used, for example, to obtain simple relationships between these
two models for the expectations and variances of the waiting times, when the switchover
times are all constants. By differentiating (31) once and twice and simplifying the resulting

expressions (using (25)), we obtain

B = £+ 20 32)
and
Varl] = Varlw{] + P00 g (v - £0v7)) (33)

More generally, it can be shown that when the switchover times are all constants, the
nth waiting-time moment for the nonzero-switchover-times model can be expressed in terms
of the nth and lower moments of the waiting time in the zero-switchover-times model; if
these moments for the latter model have already been computed, then the computational
effort involved is only O(1).

It can be shown from Theorem 3 that a simple application of L’Hopital’s rule verifies that
lim gR)—0 Wi(s) = WP(s), thus establishing continuity for the case of constant switchover

times. For the case of general, not necessarily constant, switchover times, such limiting
procedures can similarly be provided. It is important to note, however, that our theorems
render such procedures unnecessary.
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5 Extension

The basis of our analysis in Section 3 is the decomposition formula (3), which is a particular
case of decomposition (for the exhaustive-service polling model) in vacation models. To
extend our analysis to cover disciplines other than exhaustive service, we begin with the

more general decomposition formula in [9] (Propositions 3 and 4, pp. 1125 and 1126):
WP (s) = xi(L—s/X) Wi(s), (34)

where x;(-) is the PGF of K;, defined as the number of waiting customers at queue 7 as

seen by a randomly-selected customer who arrives at queue 7 during a vacation from queue
i. In Wolff [20] (eq. (75), p. 460), it is shown that

P{T; <k, T; +U; >k}

P{K; =k} = G 7

(35)

where T; is the number of waiting customers at queue ¢ at the start of a vacation from
queue 7, and U; (possibly dependent on 7T;) is the number of customers that arrive at
queue ¢ during the ensuing vacation. (In fact, Wolff’s argument shows that (35) is valid
independent of the vacation-model context.) Upon writing P{T; < k, T; + U; > k} as
P{T;+U; >k} — P{T; > k} and taking PGFs, it is easily shown that (35) leads to

1 ] {1 - F {ZTH_U’} 1-F {le} } | (36)

1—=2 1—=2

Substituting (36) into (34) and simplifying yields the following result:

WO(S):Dz(l "'7171_S/Ai717"'71)_Gi(17"'7171_8/Ai717"'

K3

) e

(s/3) [GI(L, Lz, 1) — DAL, - 1,20, L, -, 1)] |Zl:1) Wits),  (37)
where D;(-) denotes the PGF of the numbers of waiting customers at the various queues at
a randomly-selected server-departure epoch at queue 1.

Formula (37) is a very useful generalization of (3). In the polling-models context, it
allows one to reduce the calculation of waiting times to that of the pair of PGFs G;(+) and
D; (). Since for a wide variety of service disciplines, the PGF D;(-) can be easily related
to G4(-), the problem again reduces, as in Section 3, to one of finding G;(-). As explicit

examples, we have D; (1,---,1,1—s/A;,1,---,1) = 1 for the exhaustive-service case; and
Di(1,-+-,1,1—s/A, 1, -+, 1) = G (1,---,1,1??:2»(5),1,---,1) (38)

for the gated-service case. Clearly, combinations of these and many other cases can be

handled similarly (for related discussion, see [8], Section 5).
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With (37), our analysis in Sections 3 and 4 extends easily. Note that the recursion (9)
remains valid, as stated. To see this, simply replace the argument 1 in (10), (11), and (13)
by L;_1.-1(2) (because customers, if any, left behind at queue 7 — 1 at the server-departure
epoch at that queue during the cth cycle are, by definition, C;_; .1 customers, each having
a contribution of L;_; ._; to Y;). Therefore, only (5) (the common input) needs to be

revised. For instance, for the gated case, using arguments similar to that used to obtain
(5), we have (also, see [12])

N 7
Lio(2) = B ( SN =Lic(2)]+ > N1- Lj,c—l(Z)]) ; (39)
j=i+1 j=1

fore =1,---, N and ¢ > 0. The corresponding analogues of Theorems 1, 2, and 3 for the
gated-service discipline are:

Theorem 4 Under the gated-service discipline, the LST of the waiting time in the zero-
switchover-times model is

ML= p) Hi(1=s/M) = Hi(Bi(s))

W) = | 5= . Wi (s). (40)
Theorem 5 Under the gated-service discipline,
. Fi(Bi(s)) — Fi(1—s/A .
Wi(s) = — DD = BUZ5/2) o). (a1)

[Hi(1—s/A) — Hi(By(s))] \E[R]

Theorem 6 If the switchover times are all constants, then under the gated-service disci-
pline,

W (s) = exp(—Hl(Bl(s)) AE[R]) —exp(—H1(1 — s/A1) AE[R]) Wo(s) (42)
N [Hi(1 = s/\) — Hy(Bi(s))] AE[R] s

The functions Hq(-) and Fj(-) in the above theorems are still given by (19) and (27),
respectively. Note that Corollary 1 holds for the gated-service discipline as well.

6 Computation

In this section, we first develop a technique for computing waiting-time moments in the zero-
switchover-times model, and discuss its computational complexity. Next we demonstrate
how waiting-time moments for the nonzero-switchover-times model with variable switchover
times can be obtained with O (V) computations, once the corresponding moments have been

computed for the zero-switchover-times model. (As indicated in Section 4, the special case
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of constant switchover times leads to much simpler computations.) For ease of presentation,
we restrict attention to the first two moments of the waiting time in a polling model in which
all queues are served according to the exhaustive-service discipline.

Differentiating (23) twice with respect to s and evaluating the result at s = 0, we obtain

e = B+ (43)
EW?Y] = E{W¥] + ——— 43
' P oaa
and
0\2 *\ 2 * 0 * h(13)
E[(Wy)7] = E[(WY) ]+2E[W1](E[W1]—E[W1])+m7 (44)
1"
where from (19),
hl = %Hl(Z) |Z:1: — Z Z(M@LZ”C(Z) |Z:1 . (45)

c=—11i=1

Since the moments of the waiting time in the standard M/G//1 queue are easily obtained
(see, for example, Takdcs [15]), computing the moments of W} involves computing the

derivatives of Hj(z) with respect to z. This, in turn, involves the computation of the

moments of {L;.: ¢=1,---, N and ¢ > 0}. Let wl(z) denote the nth factorial moment of
L; ., that is,
m_ 4"
wz,c dzm Zvc(Z) |Z=17
and let
o = Z(/\iw}}c))Q, 8; = Z(/\iw}}c))?’, and Vi = Z(/\iwl(}c))(/\iwﬁ)) .
c=0 c=0 c=0

The wl(z) terms are obtained from equation (5). Substituting these values in equation (45),

we obtain the following expressions for {h(ln) :n=1,2,3}.

1 — A(l — p) 3 (46)
1 X NE[BY
pl2 — _ a; = = 47
! A1 - p) ; p? 7
and
1 A E[BY ANE[BA\? A E[B
AR : —3 ( d 1 3 NS 48
! A(l—p);{ﬂ p? p? T 48)




These expressions are obtained in a manner similar to that used to derive Lemma 3, and
the details of the algebra are omitted.
Although o4, 8; and v; are infinite sums, the iteration does not have to be carried out for

(n)

a very large value of ¢, since w; . quickly decreases to 0 as ¢ increases. The computational
?

effort required to obtain any moment of the waiting time, in general, can be shown to be

O(N log, €) where ¢ is the order of accuracy required, just as in the case of the descendant-set

technique presented in [12] for the nonzero-switchover-times model.

It is also of interest to compare the computational effort required by the above ap-
proach to that required by techniques presented in the past for the zero-switchover-times
model. The technique proposed in [1] requires the solution of a system of O(N?) equations

(which involves O(N®) arithmetic operations) to evaluate the expected waiting times. Ob-
taining higher moments of the waiting time with this technique requires considerably more
computational effort.

We now consider the nonzero-switchover-times model. In Section 4, we observed that
if the switchover times are all constants, then the waiting-time moments for this model
are readily obtained once the corresponding moments for the zero-switchover-times model
have been computed. We will now demonstrate that the waiting-time moments for the
nonzero-switchover-times model can be simply related to the corresponding moments for
the zero-switchover-times model, even when the switchover times are not constants. Similar
to the expressions for the zero-switchover-times model, the first two moments are obtained
from (24) as

N
E[W,] = E[W[]+ 2/\1f1(1) (49)
and
(3)
W) = BIOV)2 + 2B (] - BV + 2 (50)
3N S

where fl(n) = jz—nnFl(z) l.=1.
Let Var[R;] and T[R;] denote the variance and the third central moment of R;. It is
well known (Kuehn [13]) that E[C] = E[R]/(1 — p), where C' denotes the length of a cycle.

For notational ease, define

/\iE B 1% R;_ /\iE B? T Ri_
ZE%E[CH‘%’ and /CZ'E%E[CH’%

Then, from (27), we obtain the following expressions for {fl(n) :n=1,2,3}.

Y = NEC(1-p), (51)
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N
1 = NV ar(Ba] + Y i, (52

=1

and

N , 2
17 =300 1 =201 + T RN + 3 {ﬂz’ [’Cz’ - 3“3;%[59]4 + S%m} SNGE)

=1 7

Observe that the bulk of the computational effort required in (51) and (53) is devoted
to computing «;, 3;, and «;. These terms have to be computed in order to obtain the
first two moments of the waiting time for the zero-switchover-times model. Therefore, if
these terms have already been determined, computing the corresponding moments in the

nonzero-switchover-times model requires only O(N) arithmetic operations.
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