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Abstract Cloud computing looks to deliver software as a provisionedise to
end users, but the underlying infrastructure must be sefftbi scalable and robust.
In our work, we focus on large-scale enterprise cloud systend examine how
enterprises may use a service-oriented architecture ($®gdovide a streamlined
interface to their business processes. To scale up thedassprocesses, each SOA
tier usually deploys multiple servers for load distributind fault tolerance, a sce-
nario which we term horizontal load distribution. One liatibn of this approach is
that load cannot be distributed further when all serverlérstame tier are loaded. In
complex multi-tiered SOA systems, a single business peoees/ actually be im-
plemented by multiple different computation pathways agtire tiers, each with
different components, in order to provide resilience araladility. Such multiple
implementation options gives opportunities for verticald distribution across tiers.
In this chapter, we look at a novel request routing framevioriSOA-based enter-
prise computing with multiple implementation options theltes into account the
options of both horizontal and vertical load distribution.

1 Introduction

Cloud computing looks to have computation and data storageechaway from

the end user and onto servers located in data centers, yhedadying users of the
burdens of application provisioning and management [7S2ftware can then be
thought of as purely a service that is delivered and conswwedthe Internet, of-
fering users the flexibility to choose applications on-dachand allowing providers
to scale out their capacity accordingly.
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Fig. 1 Horizontal load distribution: load is distributed acrosseaver pool within the same tier.

As rosy as this picture seems, the underlying server-silasinucture must be
sufficiently robust, feature-rich, and scalable to faaiétcloud computing. In this
chapter we focus on large-scale enterprise cloud systethexamine how issues
of scalable provisioning can be met using a novel load @istion system.

In enterprise cloud systems, a service-oriented archite¢SOA) can be used to
provide a streamlined interface to the underlying busipessesses being offered
through the cloud. Such an SOA may act as a programmaticédto a variety of
building-block components distinguished as individualas and their supporting
servers (e.g. [8]). Incoming requests to the service pexviay this composite SOA
must be routed to the correct components and their respestiwers, and such
routing must be scalable to support a large number of reguest

In order to scale up the business processes, each tier irystens usually de-
ploys multiple servers for load distribution and fault t@lece. Such load distribu-
tion across multiple servers within the same tier can be &éashorizontalload
distribution, as shown in Figure 1. One limitation of horital load distribution is
that load cannot be further distributed when all serverbiéndiven tier are loaded
as a result of mis-configured infrastructures — where tooynsarvers are deployed
at one tier while too few servers are deployed at another tier
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Fig. 2 Vertical load distribution: load can be spread across mleliimplementations of the same
composite service. This figure illustrates three diffeliemlementations of the same service that
was shown in Figure 1.

An important observation is that in complex multi-tiered/AS€&ystems, a single
business process can actually be implemented by multiffiereint computation
pathways through the tiers (where each pathway may hawrelift components) in
order to provide resiliency and scalability. Such SOA-lblaseterprise computing
with multiple implementation options gives opportunitiesverticalload distribu-
tion across tiers.

Although there exists a large body of research and industmk iocused on
request provisioning by balancing load across the servieos® service [5, 17],
there has been little work on balancing load acnosstiple implementations of a
composite servicewhere each service can be implemented via pathways through
different service types.

A composite service can be represented as multiple tiersraponent invoca-
tions in an SOA-based IT infrastructure. In such a systemdifferentiatehori-
zontalload distribution, where load can be spread across mubsipteers for one
service component, fromerticalload distribution, where load can be spread across
multiple implementations of a given service. The exampl&igure 2 illustrates
these terms. Here a composite online analytic task can resepted as a call to
a Web and Application Server (WAS) to perform certain preggssing, followed
by a call from the WAS to a database server (DB) to fetch reguitata set, af-
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ter which the WAS forwards the data set to a dedicated awadgiver (AS) for
computationally-expensive data mining tasks.

This composite task can have multiple implementations irodem IT data cen-
ter. An alternative implementation may invoke a stored pduce on the database
to perform data mining instead of having the dedicated dicadgrver perform this
task. This alternative implementation providestical load distribution by allow-
ing the job scheduler to select the WAS-and-DB implementatihen the analytic
server is not available or heavily loaded. Multiple implertaions are desirable for
the purpose of fault tolerance and high flexibility for loaaldncing. Furthermore,
it is also desirable for a server to be capable of carryingnouitiple instances of
the same task for the same reasons.

Reusability is one of the key goals of the SOA approach. Dtieahigh reusabil-
ity of application components, it is possible to define a clexprorkflow in multi-
ple ways. However, it is hard to judge in advance which onkadiest implementa-
tion, since in reality the results depend on the runtimeremvnent (e.g. what other
service requests are being processed at the same time) lidleetibat having mul-
tiple implementations provides fault tolerance and sdhtigbin particular when
dealing with diverse runtime conditions and missed conédunfrastructures. In
this respect, an SOA plays an important role in enabling¢lasibility and applica-
bility of multiple implementations.

In this chapter we propose a framework for request-routimdjlaad balancing
horizontally and verticallyin SOA-based enterprise cloud computing infrastruc-
tures. We show that a stochastic search algorithm is apjptefo explore a very
large solution space.

In our experiments, we show that our algorithm and methagloszale well up
to a large scale system configuration comprising up to 100@&fleov requests to a
complex composite web services with multiple implementai We also show that
our approach that considers baibrizontal and verticaload distribution is effective
in dealing with a misconfigured infrastructure (i.e. whévere are too many servers
in one tier and too few servers in another tier).

The key contributions of this paper are the following:

e We identify the need for QoS-aware scheduling in workloads¢onsist of com-
posite web services. Our problem space lies in the reldtipnisetween con-
sumers, service types, implementation options, and sepriaviders.

e We provide a framework for handling bottorizontal and verticaload distribu-
tion.

e We provide a reference implementation of a search algorittanis able to pro-
duce optimal (or near-optimal) schedules based on a gesestich heuristic [12].

The rest of this chapter is organized as follows. In Sectipwe describe the
system architecture and terminology used in this paperebti@ 3, we describe
how we model the problem and our algorithms for scheduliagl Idistribution for
composite web services. In Section 4 we show experimergaltsg and in Section
5 we discuss related work. We conclude the paper in Section 6.
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Fig. 3 Request routing for SOA-based enterprise computing witktiphe implementation op-
tions.

2 Overview

In this section we give a system architecture overview ascisis the terms that will
be used in this paper. Consider a simplified cloud computiagwle (shown in Fig-
ure 3) in which an analytic process runs on a Web and Apptinederver (WAS),

a Database Server (DB), and a specialized Analytic Serv8j).(Ahe analytic pro-
cess can be implemented by one of three options (as showa imptter-right of the

figure):

e Executing some lightweight pre-processing at WA @nd then having the DB
to complete most of expensive analytic calculatiBg);(or

e Fetching data from the DBY;) to the WAS and then completing most of the
expensive analytic calculation at the WASg); or

e Executing some lightweight pre-processing at the WAS),(then having the
DB fetch necessary dat&d), and finally having the AS perform the remaining
expensive analytic calculatios).

The analytic process requires three differssvice typesnamely, the WAS ser-
vice type, the DB service type, and the AS service tfheSs, andSs areinstances
of the WAS service type since they are the services provigedéWAS. Similarly,
S, &, andS; are instances of the DB service type, &ds an instance of the AS
service type.

Furthermore, there are three kinds of servers: WAS serlysNl,, andMy);
DB servers K, and Ms); and AS serversMg). Although a server can typically
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support any instance of its assigned service type, in getigsais not always the
case. Our example reflects this notion: each server is atdegport all instances
of its service type, excepdl, andM, are less powerful servers so that they cannot
support computationally expensive service instanggands,.

Each server has a service level agreement (SLA) for eacliceeinstance it
supports, and these SLAs are published and available fosdheduler. The SLA
includes information such as a profile of the load versusmesptime and an upper
bound on the request load size for which a server can provigigasantee of its
response time.

The scheduler is responsible for routing and coordinatkegetion of composite
services comprising one or more implementations. A deriedl can only be de-
ployed with its corresponding routing logic. Note that tbheduler can derive SLA
and routing logic as well as handle the task of routing theiests. Alternatively,
the scheduler can be used solely for the purpose of deriMiAgeiid routing logic
while configuring a content aware routers, such as [13], fgh Iperformance and
hardware-based routing.

The scheduler can also be enhanced to perform the task ofteriogi actual
QoS achieved by workflow execution and by individual senpceviders. If the
scheduler observes failure of certain service providerthér QoS published, it
can re-compute feasible SLA and routing logic on demand &pttb the runtime
environment.

In this paper, we focus on the problem of automatically degwhe routing
logic of a composite service with consideration of bbtrizontakndvertical load
distribution options. The scheduler is required to find atinogl combination of
a set of variables illustrated in Figure 3 for a number of corent requests. We
discuss our scheduling approach next.

3 Scheduling Composite Services

3.1 Solution Space

In this section, we formally define the problem and describg We model its com-
plexity. We assume the following scenario elements:

Requests$or a workflow execution are submitted to a scheduling agent.

e The workflow can be embodied by one of sevéngblementationsso each re-
quest is assigned to one of these implementations by thelsiihg agent.

e Each implementation invokes sevesarvice typessuch as a web application
server, a DBMS, or a computational analytics server.

e Each service type can be embodied by one of sewesthncesof the service
type, where each instance can have different computingnergants. For exam-
ple, one implementation may require heavy DBMS computdsanh as through
a stored procedure) and light computational analytics,redee another imple-
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mentation may require light DBMS querying and heavy comipanal analytics.
We assume that these implementations are set up by adratoistor engineers.

e Each service type is executed oserverwithin a pool of servers dedicated to
that service type.

Each service type can be served by a pool of servers. We adbatribe servers
make agreements to guarantee a level of performance defingtelzompletion
time for completing a web service invocation. Although #&t As can be com-
plex, in this paper we assume for simplicity that the guagesitan take the form of
alinear performance degradation under load, an approatlasto other published
work on service SLAs (e.g. [8]). This guarantee is definedéneral parameters:
a is the expected completion time (for example, on the ordeecbnds) if the as-
signed workload of web service requests is less than or eéqy@lthe maximum
concurrency, and if the workload is higher thBnthe expected completion for a
workload of sizew is a + y(w— ) wherey is a fractional coefficient. In our exper-
iments we vana, 3, andy with different distributions.

We would like to ideally perform optimal scheduling to siraileously distribute
the load both vertically (across different implementatiptions) and horizontally
(across different servers supporting a particular sergyipe). There are thus two
stages of scheduling, as shown in Figure 4.

In the first stage, the requests are assigned to the impletiearg. In the second
stage each implementation has a known set of instances ofiaesty/pe, and each
instance is assigned to servers within the pool of serverthfoinstance’s service
type. The solution space of possible scheduling assigrewam be found by look-
ing at the possible combinations of these assignments.dSeghere ar® requests
andM possible implementations. There are thédR possible assignments in the
first stage. Suppose further there are on avefagervice type invocations per im-
plementation, and each of these service types can be hdndtete ofSon average
possible servers. Across all the implementations, theré¢temS’ combinations of
assignments in the second stage. It total, therd/&teS" combinations.

Clearly, an exhaustive search through this solution spapeahibitively costly
for all but the smallest configurations. In the next subsectie describe how we
use a genetic search algorithm to look for the optimal sclmglassignments.

3.2 Genetic algorithm

Given the solution space ®1R- ST, the goal is to find the best assignments of re-
guests to implementations and service type instanceswverséan order to minimize
the running time of the workload, thereby providing our dedivertical and hori-
zontal balancing. To search through the solution space,sgegenetic algorithm
(GA) global search heuristic that allows us to explore podi of the space in a
guided manner that converges towards the optimal solufit2ig9]. We note that

a GA is only one of many possible approaches for a searchstieyiothers include
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Fig. 4 The scheduling and assignment spans two stages. In thetdigst, sequests are assigned to
implementations, and in the second stage, service typanoss are assigned to servers.

tabu search, simulated annealing, and steepest-ascedirhliing. We use a GA
only as a tool.

A GA is a computer simulation of Darwinian natural selectitvat iterates
through various generations to converge toward the bestignlin the problem
space. A potential solution to the problem exists as a chsome, and in our case,
a chromosome is a specific mapping of requests-to-impleatiens and instances-
to-servers along with its associated workload executioretiGenetic algorithms
are commonly used to find optimal exact solutions or neairatapproximations
in combinatorial search problems such as the one we addtéssknown that a
GA provides a very good tradeoff between exploration of tiieteon space and ex-
ploitation of discovered maxima [9]. Furthermore, a genatjorithm does have an
advantage of progressive optimization such that a solusi@available at any time,
and the result continues to improve as more time is givengtinozation.
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Algorithm 1 Genetic Search Algorithm
. FUNCTION Genetic algorithm

BEGIN

Timet

: PopulatiorP(t) := new random Population

. while! donedo

recombine and/or mutate P(t)
evaluateR(t))

select the bes®(t + 1) from P(t)
100 t:=t+1

11: end while

12: END

COoNORWONE

Note that the GA is not guaranteed to find the optimal solusioce the recom-
bination and mutation steps are stochastic.

Our choice of a genetic algorithm stemmed from our belief tither search
heuristics (for example, simulated annealing) are alredgg the same lines as
a GA. These are randomized global search heuristics, aretigegorithms are a
good representative of these approaches. Prior reseas@hban there is no clear
winner among these heuristics, with each heuristic progdietter performance
and more accurate results under different scenarios [222l6Furthermore, from
our own prior work, we are familiar with its operations and factors that affect its
performance and optimality convergence. Additionallg thappings in our prob-
lem context are ideally suited to array and matrix repregemnts, allowing us to use
prior GA research that aid in chromosome recombinationTBgre are other algo-
rithms that we could have considered, but scheduling arigrasgnt algorithms are
a research topic unto themselves, and there is a very widengfrof approaches
that we would have been forced to omit.

Pseudo-code for a genetic algorithm is shown in Algorithiitie GA executes
as follows. The GA produces an initial random population lafoenosomes. The
chromosomes then recombine (simulating sexual reprazhjdid produce children
using portions of both parents. Mutations in the childres produced with small
probability to introduce traits that were not in either parélhe children with the
best scores (in our case, the lowest workload executiorsjirmee chosen for the
next generation. The steps repeat for a fixed number of ib@stallowing the GA
to converge toward the best chromosome. In the end it is hthy¢the GA explores
a large portion of the solution space. With each recomtonathe most beneficial
portion of a parent chromosome is ideally retained and pifssen parent to child,
so the best child in the last generation has the best mappiogsiprove the GA's
convergence, we implemented elitism, where the best chsome found so far is
guaranteed to exist in each generation.
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3.2.1 Chromosomer epresentation of a solution

We used two data structures in a chromosome to represenbétehtwo schedul-
ing stages. In the first stagB,requests are assigned kb implementations, so its
representative structure is simply an array of Sizeshere each element of the array
is in the range of1, M], as shown in Figure 5.

Fig. 5 An example chromosome representing the assignmeRt@duests td/ implementations.

The second stage where instances are assigned to servesseisomplex. In
Figure 6 we show an example chromosome that encodes onauicigeassignment.
The representation is a 2-dimensional matrix that mgpgplementation, service
type instancg to a service provider. For an implementatioutilizing service type
instancej, the (i, )" entry in the table is the identifier for the server to which the
business process is assigned.

M |36 [7 8|9 |12

Fig. 6 An example chromosome representing a scheduling assigmh@mplementation,service
type instance)- service provider. Each row represents an implementatimhgach column rep-
resents a service type instance. Here thereMan@orkflows andT service types instances. In
workflow 1, any request for service type 3 goes to server 9.

3.2.2 Chromosome recombination

Two parent chromosomes recombine to produce a new childratsome. The hope
is that the child contains the best contiguous chromosogiems from its parents.
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Fig. 7 An example recombination between two parents to producéddafohthe first stage assign-
ments. This recombination uses a 2-point crossover regatibn of two one-dimensional arrays.
Contiguous subsections of both parents are used to createstihchild.
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Fig. 8 An example recombination between two parents to produceld fdr the second stage
assignments. Elements from quadrants 1l and 1V from thegaisént and elements from quadrants
I and 11l from the second parent are used to create the new.chil

Recombining the chromosome from the first scheduling segiriple since the
chromsomes are simple 1-dimensional arrays. Two cut pametshosen randomly
and applied to both the parents. The array elements betweetut points in the
first parent are given to the child, and the array elementsaaithe cut points from
the second parent are appended to the array elements iniktheldtis is known as
a 2-point crossover and is shown in Figure 7.
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For the 2-dimensional matrix, chromosome recombinatios Wwelemented by
performing a one-point crossover scheme twice (once alang dimension). The
crossover is best explained by analogy to Cartesian spatdlass. A random
location is chosen in the matrix to be coordinate (0, 0). Matements from quad-
rants Il and IV from the first parent and elements from quaidraand 11l from the
second parent are used to create the new child. This appialémis GA best prac-
tices by keeping contiguous chromosome segments togettieepare transmitted
from parent to child, as shown in Figure 8.

The uni-chromosome mutation scheme randomly changes otteedafervice
provider assignments to another provider within the atiélaange. Other recom-
bination and mutation schemes are an area of research inAlm@munity, and
we look to explore new operators in future work.

3.2.3 GA evaluation function

The evaluation function returns the resulting workloadcexion time given a chro-
mosome. Note the function can be implemented to evaluatedhdoad in any way
so long as it is consistently applied to all chromosomessscadl generations.

Our evaluation function is shown in Algorithm 2. In lines 6 8&pit initialises
the execution times for all the servers in the chromosomknés 11-17, it assigns
reguests to implementations and service type instances\ers using the two map-
pings in the chromosome. The end result of this phase is hieahstances are ac-
cordingly enqueued the servers. In lines 19-21 the runriimgd of the servers are
calculated. In lines 24-26, the results of the servers agd tts compute the results
of the implementations. The function returns the maximuecetion time among
the implementations.

3.3 Handling online arriving requests

As mentioned earlier, the problem domain we consider is dh&iatch-arrival re-
guest routing. We take full advantage of such a scenariaigirthe use of the GA,
which has knowledge of the request population. We can fugkiend this approach
to online arriving requests, a lengthy discussion which wit dere due to space
limits. A typical approach is to aggregate the incoming esis into a queue, and
when a designated timer expires, all requests in the quetattime are sched-
uled. There may still be uncompleted requests from the pusvéxecution, so the
requests may be mingled together to produce a larger sahedlnlalternative ap-
proachis to use online stochastic optimization technigoesmonly found in online
decision-making systems [11].

First, we can continue to use the GA, but instead of havingctimaplete col-
lection of requests available to us, we can allow requestgtpegate into a queue
first. When a periodic timer expires, we can run the GA on tliegeests while ag-
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Algorithm 2 GA evaluation function

1: FUNCTION evaluate

2: IN: CHROMOSOME a representation of the assignments of requests to implaien and
service type instances to servers

: OUT: runningtime the running time of this workload

BEGIN

: for (eachservere CHROMOSOME do
setservefs running time to 0
end for

10: {Loop over each request and its implementatjons
11: for (eachrequestce CHROMOSOMIEdo

12: implementation=request%s implementation

13: for (eachinstancec implementatiopdo

14: server:=implementatiois server
15: Enqueue this job @erver

16: end for

17: end for

18:

19: for (eachserve) do
20:  Compute the running time sérver
21: end for

23: {Now compute the running time of the implementatipns

24: for (eachimplementatiore CHROMOSOMIEdo

25:  Aggregate the running time of thimplementatioracross its instances
26: end for

28: runningtime:= maximum running time of each implementation
29: return runningtime
30: END

gregating any more incoming requests into another queuee @ GA is finished
with the first queue, it will process the next queue when théde timer expires
again. If the request arrival rate is faster than the GA<pssing rate, we can take
advantage of the fact that the GA can be run as an incomplede;aptimal search
heuristic: we can go ahead and let the timer interrupt the @&, the GA will have
*some* solutions that, although sub-optimal, is probatiially better than a greedy
solution. This typical methodology is also shown in [20],exd requests for broad-
cast messages are queued, and the messages are optintabyteid through the
use of an evolutionary strategies algorithm (a close coofsingenetic algorithm).
Second (and unrelated to genetic algorithms), we can ugegeostbchastic opti-
mization techniques to serve online arrivals. This appi@gproximates the offline
problem by sampling historical arrival data in order to méke best online deci-
sion. A good overview is provided in [19]. In this techniqtiee online optimizer
receives an incoming sequence of requests, gets histdatabver some period of
time from a sampling function that creates a statisticatitistion model, and then



14 Thomas Phan and Wen-Syan Li

calculates and returns an optimized allocation of requiests/ailable resources.
This optimization can be done on a periodic or continuougsbas

4 Experiments and Results

We ran experiments to show how our system compared to otHekm@vn algo-
rithms with respect to our goal of providing request routimigh horizontal and
vertical distribution. Since one of our intentions was tondastrate how our system
scales well up to 1000 requests, we used a synthetic workladallowed us to
precisely control experimental parameters, includingrtheber of available im-
plementations, the number of published service types, tneber of service type
instances per implementation, and the number of serversgpeice type instance.
The scheduling and execution of this workload was simulat#dg a program we
implemented in standard C++. The simulation ran on an afghelf Red Hat Linux
desktop with a 3.0 GHz Pentinum IV and 2GB of RAM.

In these experiments we compared our algorithm againsllening alterna-
tives:

e A round-robinalgorithm that assigns requests to an implementation awitse
type instances to a server in circular fashion. This wetivkn approach provides
a fast and simple scheme for load-balancing.

e A random-proportionalalgorithm that proportionally assigns instances to the
servers. For a given service type, the servers are rankdtwbyguaranteed com-
pletion time, and instances are assigned proportionathygservers based on the
servers’ completion time. (We also tried a proportionaitheme based on both
the completion times and maximum concurrency but attaihedsame results,
so only the former scheme’s results are shown here.) Totéestiie behavior of
this proportionality scheme in the second phase of the sdimeg we always as-
signed the requests to the implementations in the first plisiag a round-robin
scheme.

e A purely randonmalgorithm that randomly assigns requests to an implementat
and service type instances to a server in random fashiom. éfeaice was made
with a uniform random distribution.

e A greedyalgorithm that always assigns business processes to tfieesprovider
that has the fastest guaranteed completion time. Thisitigorepresents a naive
approach based on greedy, local observations of each warlfithout taking
into consideration all workflows.

In the experiments that follow, all results were averagedss20 trials, and to
help normalize the effects of any randomization used duimgof the algorithms,
each trial started by reading in pre-initialized data fraskdIln Table 1 we list our
experimental parameters for our baseline experiments.afjfetkiese parameters in
other experiments, as we discuss later.
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[Experimental parameter [Comment |
Requests 1 to 1000

Implementations 5, 10, 20

Service types used per implementatiomform random: 1 - 10
Instances per service type uniform random: 1 - 10

Servers per service type uniform random: 1 - 10

Server completion timex() uniform random: 1 - 12 seconfds

Server maximum concurrency) uniform random: 1 - 12
Server degradation coefficient)( uniform random: 0.1 - 0.9
GA: population size 100

GA: number of generations 200

Table1 Experiment parameters.

4.1 Baseline configuration results

In Figures 9, 10, and 11 we show the behavior of the algoritasnthey schedule
requests against 5, 10, and 20 implementations, resplgciiveeach graph, the x-
axis shows the number of requests (up to 1000), and the yisaaiserage response
time upon completing the workload. This response time isithkesparnthe metric
commonly used in the scheduling community and calculatedeasraximum com-
pletion time across all requests in the workload. As thd tatenber of implementa-
tions increases across the three graphs, the total numbenadte types, instances,
and servers scaled as well in accordance to the distrilzitibthese variables from
Table 1. In each of the figures, it can be see that the GA is alpjeaduce a better
assignment of requests to implementations and servicerigfnces to servers than
the other algorithms. The GA shows a 45% improvement oveeitssest competitor
(typically the round-robin algorithm) with a configuratioh5 implementations and
1000 requests and a 36% improvement in the largest configanatth 20 imple-
mentations and 1000 requests.

The relative behavior of the other algorithms was consistiime greedy algo-
rithm performed the worst while the random-proportionad @andom algorithms
were close together. The round-robin came the closest G e

To better understand these results, we looked at the indiVidehavior of the
servers after the instance requests were assigned to theffigure 12 we show
the percentage of servers that were saturated among thersénat were actually
assigned instance requests. These results were from the Hasimplementation
experiment from Figure 10. For clarity, we focus on a regidthwp to 300 requests.

We consider a server to be saturated if it was given more stg/tiean its max-
imum concurrency parameter. From this graph we see the Kesvime that the
GA is able to find assignments well enough to delay the onssttfration un-
til 300 requests. The greedy algorithm, as can be expediedysi targets the best
server from the pool available for a given service type arididyicauses these cho-
sen servers to saturate. The round robin is known to be a Guidkeasy way to
spread load and indeed provides the lowest saturation opghr60 requests. The
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random-proportional and random algorithms reach saturgtints between that of
the greedy and GA algorithms.

4.2 Effect of service types

We then varied the number of service types per implememtatiodeling a scenario
where there is a heavily skewed number of different web sesvavailable to each
of the alternative implementations. Intuitively, in a d@ghentwhere there is a large
number of services types to be invoked, the running timeeétrerall workload will
increase.

In Figure 13 we show the results where we chose the numbeesdts types
per implementation from a Gaussian distribution with a me&2.0 service types;
this distribution is in contrast to the previous experinsenhere the number was
selected from a uniform distribution in the inclusive rarafel to 10. As can be
seen, the algorithms show the same relative performanoe frior results in that
the GA is able to find the scheduling assignments resultirthenowest response
times. The worst performer in this case is the random algoritin Figure 14 we
skew the number of service types in the other direction wiiaassian distribution
with a mean of 8.0. In this case the overall response timeasas for all algorithms,
as can be expected. The GA still provides the best respanse ti

Workload running time with 5 implementations
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Greedy ---x---
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Fig. 9 Response time with 5 implementations.
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Fig. 10 Response time with 10 implementations.
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Fig. 11 Response time with 20 implementations.

4.3 Effect of service type instances

700 800 900

1000

In these experiments we varied the number of instances pacsdype. We im-

plemented a scheme where each instance incurs a diffenemihgutime on each
server; that is, a unique combination of instance and se@rides a different
response time, which we put into effect by a Gaussian randamber generator.
This approach models our target scenario where a given meiéation may run
an instances that performs more or less of the work assdaidth the instance’s
service type. For example, although two implementationg require the use of a
DBMS, one implementation’s instance of this DBMS task mayuiee less compu-
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o i .
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Fig. 12 Percentage of servers that were saturated. A saturateer serone whose workload is
greater than its maximum concurrency.

Workload running time with skewed distribution of service types per implementation
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Fig. 13 Average response time with a skewed distribution of sertypes per implementation.
The distribution was Gaussiaa € 2.0,0 = 2.0 service types).

tation than the other implementation due to the offload obeest procedure in the
DBMS to a separate analytics server. Our expectation ishlndahg more instances
per service type allows a greater variability in perforn@aper service type.

Figure 15 shows the algorithm results when we skewed the auofbnstances
per service type with a Gaussian distribution with a mean®fristances. Again, the
relative ordering shows that the GA is able to provide thedsiworkload response
among the algorithms throughout. When we weight the numbieistances with a
mean of 8.0 instances per service type, as shown in Figured 8an see that the
the GA again provides the lowest response time resultsidriatger configuration,



Vertical Load Distribution for Cloud Computing via Multipllmplemention Options 19

Workload running time with skewed distribution of service types per implementation
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Fig. 14 Average response time with a skewed distribution of sertypes per implementation.
The distribution was Gaussiaa € 8.0,0 = 2.0 service types).

Workload running time with skewed distribution of instances per service type
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Fig. 15 Average response time with a skewed distribution of ingarger service type. The dis-
tribution was Gaussiam\(= 2.0, 0 = 2.0 instances).

the separation between all the algorithms is more evidahttive greedy algorithm
typically performing the worst; its behavior is again due fact that it assigns jobs
only to the best server among the pool of servers for a setyjme
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Workload running time with skewed distribution of instances per service type
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Fig. 16 Average response time with a skewed distribution of ingarger service type. The dis-
tribution was Gaussiam\(= 8.0, 0 = 2.0 instances).

4.4 Effect of servers (horizontal balancing)

Here we explored the impact of having more servers availatitee pool of servers
for the service types. This experiment isolates the efféttonizontal balancing.
Increasing the size of this pool will allow assigned regsiéstbe spread out and
thus reduce the number of requests per server, resultirgvier Iresponse times for
the workload. In Figures 17 and 18 we show the results withsGian distributions
with means of 2.0 and 8.0, respectively. In both graphs thea@gears to provide
the lowest response times. Furthermore, it is interestingpte that in the random,
random-proportional, and round-robin algorithms, theultssdid not change sub-
stantially between the two experiments even though therlattperiment contains
four times the average number of servers. We believe thidtnesy be due to the
fact that the first-stage scheduling of requests to impleatiems is not taking suf-
ficient advantage of the second-stage scheduling of setypee instances to the
increased number of servers. Since the GA is able to betmomxall combina-
tions across both scheduling stages, it is able to prodtségiter results. We will
explore this aspect in more detail in the future.

4.5 Effect of server performance

In this subsection we look at the impact on the servers’ iddial performance
on the overall workload running time. In previous sectiores described how we
modeled each server with variables for the response tim&iid the concurrency



Vertical Load Distribution for Cloud Computing via Multipllmplemention Options 21

Workload running time with skewed distribution of servers per service type
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Fig. 17 Average response time with a skewed distribution of serpersservice type. The distri-
bution was Gaussian (= 2.0,0 = 2.0 instances).

Workload running time with skewed distribution of servers per service type
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Fig. 18 Average response time with a skewed distribution of serpgersservice type. The distri-
bution was Gaussian\ (= 8.0,0 = 2.0 instances).

(B. Here we skewed these variables to show how the algorithmisrpeed as a
result.

In Figures 19 and 20 we skewed the completion times with Gasisstributions
with means of 2.0 and 9.0, respectively. It can be seen teatetative orderings of
the algorithms are roughly the same in each, with the GA liagi best perfor-
mance, the greedy algorithm giving the worst, and the otlgarighms running in
between. Surprisingly, the difference in response timeséeh the two experiments
was much less than we expected, although there is a sligigase in all the al-
gorithms except for the GA. We believe that the lack of a drigemése in overall
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‘Workload running time with skewed distribution of servers' completion time
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Fig. 19 Average response time with a skewed distribution of sereermpletion time. The distri-
bution was Gaussian (= 2.0,0 = 2.0 seconds).

Workload running time with skewed distribution of servers' completion time
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Fig. 20 Average response time with a skewed distribution of serearspletion time. The distri-
bution was Gaussian (= 9.0,0 = 2.0 seconds).

response time is due to whatever load balancing is beingpeed by the algo-
rithms (except the greedy algorithm).

We then varied the maximum concurrency variable for theessnusing Gaussian
distributions with means of 2.0 and 9.0, as shown in Figuflearitl 22. From these
results it can be observed that the algorithms react well ait increasing degree
of maximum concurrency. As more requests are being assignia servers, the
servers respond with faster response times when they aga giore headroom to
run with these higher concurrency limits.
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Workload running time with skewed distribution of servers’ maximum concurrency
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Fig. 21 Average response time with a skewed distribution of serveaximum concurrency. The
distribution was Gaussiai (= 4.0,0 = 2.0 jobs).

Workload running time with skewed distribution of servers’ maximum concurrency
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Fig. 22 Average response time with a skewed distribution of serveaximum concurrency. The
distribution was Gaussiai (= 11.0,0 = 2.0 jobs).

4.6 Effect of response variation control

We additonally evaluated the effect of having the GA minientize variation in the
requests’ completion time. As mentioned earlier, we hawnliren calculating the
workload completion as the maximum completion time of thpuessts in that work-
load. While this approach has been effective, it producekewariation between
the requests’ completion times due to the stochastic pgakinequests by the GA.
This variation in response time, knownjdéter in the computer networking commu-
nity, may not be desirable, so we further provided an alt@ra@bjective function
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that minimizes the jitter (rather than minimizing the war&tl completion time).
In Figure 23 we show the average standard deviations regitom these different
objective functions (using the same parameters as in Fig)réVith variation min-
imization on, the average standard deviation is alwaysdo$, and with variation
minimization off, we observe an increasing degree of vammafThe results in Figure
24 show that the reduced variation comes at the cost of laegpeonse times.

Standard deviation of request response time

Request response time standard deviation, with/without variation minimization
25

T

T T T T
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GA, variation off
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100 200 300 400 500 600 700 800 900 1000
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Fig. 23 Average standard deviation from the mean response for tfferefit objective functions.
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Fig. 24 Average response time for two different objective funcsion
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Workload running time with 10 implementations, with and without SLA-based routing
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Fig. 25 Response time with 10 implementations with configurati@msSLA and without SLA.

4.7 Effect of routing against conservative SLA

We looked at the GA behavior when its input parameters wet¢heoservers’ ac-
tual parameters but rather the parameters provided by &oa@iive SLA. In some
systems, SLAs may be defined with a safety margin in mind sodrents of the
service do not approach the actual physical limits of theeulythg service. In that
vein, we ran an experiment similar to that shown in Figuredl®jn this configura-
tion we used parameters for the underlying servers withentfie expected response
time and half the available parallelism, mirroring a poksitbnservative SLA. As
can be seen in Figure 25, the GA converges towards a schgdutiare the extra
slack given by the conservative SLA results in a slower raspdime.

4.8 Summary of experiments

In this section we evaluated our GA reference implemeniatioa scheduler that
performs request-routing for horizontal and vertical lalistribution. We showed

that the GA consistently produces lower workload respoinse than its competi-

tors. Furthermore, as can be expected, the scheduler igigetsa number of pa-

rameters, including the number of service types in eachémphtation, the number
of service type instances, the number of servers, the peersgerformance, the de-
sired degree of variation, and the tightness of the SLA patars.
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5 Related Work

[23] described a distributed quality of service (QoS) mamagnt architecture and
middleware that accommodates and manages different diomsnand measures
of QoS. The middleware supports the specification, maimemand adaptation
of end-to-end QoS (including temporal requirements) mediby the individual

components in complex real time application systems. U§i0§ negotiation, the
middleware determines the quality levels and resourceaiions of the application
components. This work focused on analysis tradeoff betwgh and cost instead
of ensuring QoS requirements in our paper.

[30] presented two algorithms for finding replacement sswin autonomic dis-
tributed business processes when web service providér® faésponse or meet
the QoS requirement: following alternative predefined esudr finding alternative
routes on demand. The algorithms give the QoS brokeragéseault tolerance
capability and is complementary to our work.

In [31, 32, 33], Yu et. al developed a set of algorithms for Véelvices se-
lection with end-to-end QoS constraints. A key differeneséa®en our work and
theirs is that they simplify and reduce the complexity speaesiderably, some-
thing which we do not do. They take all incoming workflows, eegate them into
one singe workflow, and then schedule that one workflow orgaitiderlying ser-
vice providers. We do not do this aggregation, and therefarexpproach provides
a higher degree of scheduling flexibility.

Workflow 2 E—>E—>
Fig. 26 Aggregation of Service Workflows

Consider the two workflows shown on the left of Figure 26 wheaieh task in
the workflow invokes a particular service type. In their wottkey aggregate the
workflows into a single function graph, resulting in a sirfipll form shown on the
right of Figure 26.

Each service type is then mapped onto a service provideeohiosm the pool
of service providers for that type. It is important to notattkach service type is
assigned to the same chosen provider, even though thedestahthat service type
are different. For example, because batbrkflow 1andworkflow 2useS3, both
instances are mapped to the same provider.

In our work, we do not do this aggregation to reduce the corilylspace. We
consider unique combinations §fvorkflow, service typgé and map these to a ser-
vice provider. Thus, in our works3 in workflow 1may map to a different provider
thanS3 in workflow 2 This distinction allows for more flexible scheduling and po
tentially better turnaround time than their work.
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In the work [27], the GA algorithm was used for load distributfor database
cluster. In this work, the analytic workloads are distrémiicross a database clus-
ter. The load distribution algorithm needs to consideramdtion of MQTs (i.e.
materialized views) with queries which can utilize themnprove performance,
collocation of MQTs and the base tables which are neededrstieet the MQTS,
and minimizing the execution time of the whole workload oe thatabase cluster.
This work is a kind ofhorizontalload distribution. Similarly, the GA algorithm is
also used in [26] to schedule query execution and view nadization sequence for
minimal overall execution time.

Our work is related to prior efforts in web service compasitiweb service
scheduling, and job scheduling. A web service’s interfacexpressed in WSDL,
and given a set of web services, a workflow can be specified awddihguage such
as BPEL4AWS [1] or WSCI [15]. Several research projects hawkdd to provide au-
tomated web services composition using high-level ruleg @~low [4], SWORD
[18]). Our work is complementary to this area, as we scheldusgness processes
within multiple, already-defined workflows to the underlyiservice providers.

In the context of service assignment and scheduling, [34lam&eb service calls
to potential servers but their work is concerned with magpinly single workflows;
our principal focus is on scalably scheduling multiple witims (up to one thou-
sand). [28] presents a dynamic provisioning approach thed both predictive and
reactive techniques for multi-tiered Internet applicatitelivery. However, the pro-
visioning techniques do not consider the challenges fat¢eshthere are alternative
query execution plans and replicated data sources. [24Fpts a feedback-based
scheduling mechanism for multi-tiered systems with bae#f-@gatabases, but unlike
our work, it assumes a tighter coupling between the systenpooents.

The work in [14] creates end-to-end paths for services (ssdhanscoding) and
assigns servers on a hop-by-hop basis by minimising netlateficy between hops.
Our work is complementary in that service assignment isdasebusiness value
metrics defined by agreed-upon service level agreements.

An SLA can be complex, requiring IT staff to translate frora tegal document
level description to system-specific requirement for dgmplent and enforcement.
[29] proposed a framework for configuring extensible SLA ag&ment systems. In
this work, an SLA is represented in XML format. In [3], an SLReeution manager
(SAM) is proposed to manage cross-SLA execution that magiwevan SLA with
different terms. The work provides metadata managemermtifumality for SLA
aware scheduling presented in this paper. Thus, it is comgaiéary to our work.

[25, 10] applied peer-to-peer technology for support reaétservices, such as
data dissemination across internet with QoS assuranckeindontext, they create
an application-layer network route across multiple serviodes in order to provide
some end-to-end service. This routing occurs in two stéyesuser’s high-level re-
quest is mapped to a service template, and then the temgplai@gped to a route of
servers. This approach is similar to ours in that our busipescesses request ser-
vice from the service types, and the service types mustritiatad by assigning the
business processes to an underlying server. The key diffeseare that: (1) their
work is constrained by the topology of the application-fagetwork. Their work
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looks at pipelines of service nodes in a line. The problemmifig routes through
a network by adapting Dijkstra’s algorithm for finding shest path whereas our
problem is assigning business processes to servers; Théirlaoks at pipelines
of service nodes in a line; whereas our work looks at a morébflexvorkflow
condition that may involve branches, including AND and ORY) their primary
metrics are availability and latency, whereas we use a mexéié and general-
izable business value to evaluate assignments. Furthermor work supports an
infrastructure where a server can support multiple sertipes (c.f. our scenario
is that business processes within a workflow must be schedul® web service
providers). The salient differences are that the machiaergpoocess only one job at
atime (we assume servers can multi-task but with degradéarpsgnce and a max-
imum concurrency level), tasks within a job cannot simwtausly run on different
machines (we assume business processes can be assigngdtaitable server),
and the principal metric of performance is tmakespanwhich is the time for the
last task among all the jobs to complete. As we showed, opitigion the makespan
is insufficient for scheduling the business processes sséating different metrics.

6 Conclusion

Cloud computing aims to do the dirty work for the user: by nmaMssues of mange-
ment and provisioning away from the end consumer and intséneer-side data
centers, users are given more freedom to pick and choos@pteations that suit
their needs. However, computing in the clouds depends lyeavihe scalablity and
robustness of the underlying cloud architecture.

We discussed enterprise cloud computing where enterprisgsuse a service-
oriented architecture to publish a streamlined interfacieéir business processes.
In order to scale up the number of business processes, eaahtie provider's ar-
chitecture usually deploys multiple servers for load disttion and fault tolerance.
Such load distribution across multiple servers within thme tier can be viewed
ashorizontalload distribution. One limitation of this approach is thaadl cannot
be distributed further when all servers in the same tier allg foaded. Another
approach for providing resiliency and scalabilty is to haudtiple implementation
optionsthat give opportunities forertical load distribution across tiers.

We described in detail a request routing framework for S@&du enterprise
cloud computing that takes into account both these optionsdrizontalandverti-
cal load distribution. Experiments showed that our algorithrd emethodology can
scale well up to a large-scale system configuration commgyisp to 1000 workflow
requests directed to a complex composite service with pialinplementation op-
tions available. The experimental results also demomstratt our framework is
more agile in the sense that it is effective in dealing witls4twnfigured infrastruc-
tures in which there are too many or too few servers in one Aigra result, our
framework can effectively utilize available multiple ingwhentations to distribute
loads across tiers.
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