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ABSTRACT 
Today, world is rapidly turning to high definition multimedia. 
From engineering and programming point of view, this usually 
means more computation is needed and more memory space is 
required to achieve these higher qualities. In this paper we explore 
the use of parallelization opportunities in graphics processors to 
accelerate video encoding. We evaluate the NVIDIA CUDA[1] 
toolkit and evaluate the performance of motion estimation in 
video encoding. The main goal of this paper is to evaluate the 
capabilities of NVIDIA/CUDA and develop a process for 
implementing video/multimedia applications. We have discovered 
that the difference in performance when CUDA is not used 
properly can be over 100x. We show how we were able to use 
CUDA capabilities to reduce the motion estimation time from 
7000 milli seconds to 70 milli seconds.  

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Parallel programming. B.8.2 [Performance and Reliability]: 
Performance Analysis and Design Aids.  

General Terms 
Algorithms, Management, Measurement, Documentation, 
Performance, Experimentation. 

Keywords 
Compute Unified Device Architecture (CUDA), Graphics 
Processing Unit (GPU), Video coding, motion estimation, Parallel 
Processing. 
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1. INTRODUCTION 
In this paper we present the application of NVIDIA CUDA toolkit 
for video coding applications [1]. The CUDA toolkit makes 
develop parallel programs on the NVIDIA GPUs easier and 
enables access to the large scale parallelism offered by the GPU. 
Video processing applications are especially suited for the 
NVIDIA platform because of the data parallel nature of the 
problem. In this paper we explore the tools available in CUDA 
and apply them tot he motion estimation problem. Motion 
estimation is widely studied and is the computationally expensive 
part of video coding. Working on a well understood domain 
allows us to explore the CUDA features better and allows readers 
to understand the intricacies of CUDA better. 

1.1 Motion Estimation 
Motion estimation is a widely known process. It is explained 
briefly in this section. Motion estimation is a computationally 
expensive process and is a key component for video processing 
operations such as encoding, segmentation and edge detection. 
The motion estimation engine that we are developing is part of the 
larger project for optimizing encoder implementation for High 
Efficiency Video encoding projects that are currently under way 
in MPEG. 
Many fast motion estimation algorithms have been proposed in 
[2], but they may not be suitable for optimal used in CUDA. 
Thus, in this paper we focus on exploring and optimizing basic 
integer full search and exhaustive full search motion estimation 
algorithms. Motion estimation engine developed implements full 
search algorithm that exhaustively searches for a block match in a 
previous frame. The best match is selected based on the minimum 
sum of absolute differences. A half-pixel search algorithm is also 
implemented using the H.264 6-tap filter for half-pixel 
interpolation. The goal of this paper is not to develop a better 
motion estimation algorithm but to understand CUDA in the 
context of the well understood motion estimation problem. 

1.2 CUDA architecture 
Although a few GPU-based motion estimation methods have been 
proposed [3-6], CUDA architecture needs a new algorithm to 
fully utilize its features [7]. In the quest for maximum speed, 
NVIDIA's GPUs (Graphics Processing Units) have evolved far 
beyond single processors [8]. Modern NVIDIA GPUs are not 
single processors but rather are parallel supercomputers on a chip 
that consist of very many, very fast processors. Contemporary 
NVIDIA GPUs range from 16 to 256 stream processors per card, 
delivering incredibly powerful computing bandwidth. Those GPU 
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boards have become so powerful that the scientific computing 
community has begun using them for general purpose computing. 
It turns out that many mathematical computations, such as matrix 
multiplication and transposition, which are required for complex 
visual and physics simulations in games are also exactly the same 
computations that must be performed in a wide variety of 
scientific computing applications. 
Because of this, CUDA has been developed - to allow application 
developers to write code that can be uploaded into an NVIDIA-
based card for execution by NVIDIA's massively parallel GPUs. 
This allows applications developers to plug in a 500 gigaflop, 
256-processor, NVIDIA-based card and upload applications to 
run within the NVIDIA GPU at far greater speed than possible on 
even the fastest general purpose CPU on the motherboard. A 
comparison of computing capabilities between GPUs and CPUs 
are given in the figure 1, taken from [1]. 

 
Figure 1.Compared compute capability measured in GFLOPs 

CUDA allows developers to use C as a high-level programming 
language. Using already well established high level language and 
subtly adding additional, CUDA specific features (implemented in 
a way that they follow C programmer’s way of thinking as close 
as possible) provides extremely user friendly environment. 

GPU is specialized for compute-intensive, highly parallel 
computation because of the sole purpose of the GPU in the first 
place – graphics rendering. Because of that GPU and CPU differs 
in a way that more GPU transistors are devoted to data processing 
rather than data cashing and flow control. This makes them 
excellent candidates to be used to solve highly arithmetically 
intensive problems. And when we take into consideration that 
CUDA enabled GPU’s are many core systems, conclusion arises 
that the CUDA architecture is best suited for solving highly 
arithmetic problems that can be done on many data elements in 
parallel – data parallelism. Or differently said, CUDA architecture 
provides best performance when every available core performs 
same set of arithmetic computation on a different data element. If 
there are no data dependencies between data elements, true 
parallelism can be accomplished – every core doing its work 
independently of one another just on a different set of data 
elements. 

2. CUDA ARCHITECTURE 
CUDA comes with user friendly environment, and one of the 
most important features is ability to write code that can be 
executed on a device mainly focusing on what the program is 
doing not how hardware is organized. Of course there are 
restrictions and rules needed to be followed by software because 

of the hardware limitations. Because of that, both software and 
hardware organization will be described shortly. 

2.1 Software implementation 
When a CUDA programmer starts developing CUDA software he 
needs to understand what is different from regular C code and 
what is similar [9]. Biggest difference is that CUDA code is 
divided into two parts, host code and device code. Host code is a 
code that runs on CPU, and it is in charge of everything, including 
when to run a device code. Device code is code that will run on 
GPU. Device code is organized as a function with a special name 
– kernel and special way of declaring. That is about all the 
difference between regular C function and CUDA function. As 
long as developer follows these special rules for declaring CUDA 
functions, he can simply regard them as a regular C function. 
CUDA function or kernel represents portion of code that will be 
executed on GPU device. Since idea is to perform some 
calculations represented in kernel on different, mutually 
independent data elements basically that kernel will be executed 
as many times as there are data elements needed to be processed. 
So far this seems similar as running functions on CPU using 
simple for loop for example. But since there are many cores 
available on the GPU, every available core will do all calculations 
for different data element, and since calculations are on different 
data element they are done in parallel. For example, if there is a 
need to process K data elements, K kernel executions have to 
happen to process all of them. If GPU has N cores that means that 
N out of K kernels can be executed in parallel. So kernels become 
independent threads assigned to some core to be executed. 
Developer has to know how many threads he needs to process all 
the data before calling his kernel. Because number of threads 
needs to be specified there are special arguments assigned to 
every kernel, and there lies the difference between normal C 
function and kernel, in those additional arguments needed to be 
provided. 
Every thread has to know on what data element it has to work on. 
Usually data elements that need to be processed in these situations 
are arranged in one dimensional arrays or more dimensional 
arrays. Since that is the case, simplest and most practical 
approach would be to organize threads in a way to closely match 
organization of data elements. That way thread would fetch 
appropriate data element, depending on its position among other 
threads. Every thread is provided with group of variables that  
tells that thread its ID.(position in thread organization)If both data 
element ID and thread ID matches, or closely matches(meaning 
that it is easy to compute data element ID using thread ID) than 
choosing right data element for thread becomes easy or in some 
cases trivial. 
General organization of the treads is: threads are grouped in a 
thread blocks, thread blocks are grouped in a grid of thread 
blocks. For user convenience threads within a block can be 
organized in a one, two or three dimensional way. Tread blocks 
can be also organized in such a way, although three-dimensional 
organization of grid is mentioned as existing by NVIDIA, but still 
not possible to implement.(as discovered while exploring different 
CUDA options for these paper) We are quite sure that in later 
improvements that dimension will be available because adding 
one more dimension can open completely new development 
horizons to a developer and make  his life much easier. For now, 
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because of the hardware organization there are some limitations 
concerning number of threads per block – 512 maximum threads 
in one block, and 65535 blocks in a block grid. Calculating 
maximum number of threads that GPU can manage per one kernel 
call gives incredible number of 33553920 threads. One simple 
example how threads can be organized is given on the figure 2 
[1]. 

 
Figure 2.Example of thread organization 

The way developer would like to organize his threads needs to be 
provided to a kernel, and it is done by passing two arguments to a 
kernel, one for thread block organization, other one for grid 
organization. Third argument that can be passed to kernel is 
optional while previous two are required, and it tells kernel how 
much of a shared memory every thread is going to use. Shared 
memory will be discussed in hardware implementation. 

2.2 Hardware implementation 
Main parts of graphics card are GPU and device memory. There 
are more parts that provide synchronization and scheduling 
among cores and memory but our focus of explanation will be on 
this two parts. 
GPU consists of certain number of multiprocessors, which 
number depends of graphics card generation and price of course. 
What is important to understand is that every multiprocessor 
consists of 8 single processors who actually execute threads on 
them. When execution of a kernel starts every multiprocessor is 
assigned with a thread block to execute and every thread in that 
thread block will be executed on one of the .Thread blocks waits 
in a queue for available multiprocessor to execute on. Special 
scheduler is assigning thread blocks to appropriate multiprocessor 
and it is making sure that multiprocessors are constantly fed and 
work among multiprocessors is evenly distributed. Figure 3 [1] 
shows two different block distributions, when GPU has two or 
four multiprocessors. 

 
Figure 3.Example of block distribution among GPUs with 

different number of multiprocessors 
A device with more multiprocessors will automatically execute a 
kernel grid in less time than a device with fewer multiprocessors. 
Graphic cards have various memories on GPU’s disposal to use 
when necessary. A thread that executes on the device has access 
to global memory and the on-chip memory through the memory 
types. Memory available is: 

• One set of local registers per thread. On a chip. 
• A parallel data cache or shared memory that is shared 

by all the threads executed on one multiprocessor and 
implements the shared memory space.  

• A read-only constant cache that is shared by all the 
threads and speeds up reads from the constant memory 
space, which is implemented as a read-only region of 
device memory 

• A read-only texture cache that is shared by all the 
processors and speeds up reads from the texture 
memory space, which is implemented as a read-only 
region of device memory. 

• Local memory, assigned to a thread to use if needed. It 
is not cashed; basically it is part of the global memory 
allocated to a thread to serve as a helping, local 
memory. 
 

Of these different memory spaces, global and texture memory are 
the most plentiful. There is a 16 KB per thread limit on local 
memory, a total of 64 KB of constant memory, and a limit of 16 
KB of shared memory, and either 8,192 or 16,384 32-bit registers 
per multiprocessor. Global, local, and texture memory have the 
greatest access latency (although texture is cached), followed by 
constant memory, registers, and shared memory. Figure 4 [1] 
describes memory organization. 
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Figure 4.Memory organization on the CUDA enabled graphic 

cards 
Since GPU processors are not best for flow control and data cashing 
CUDA developers came with smart solution to hide latencies caused 
by this. Their solution is to group threads of one thread block, that 
are executed on one multiprocessor, in a groups of 32 threads called 
warps. Basic idea behind this is to hide latencies by swapping 
groups of threads currently executing on cores of that 
multiprocessor. Rough and simplified example would be one when 
a group of threads want to access global memory multiprocessors 
initiates loading from global memory for that group of threads and 
in the same time swaps currently executing (waiting for data from 
memory) group of threads with other group of threads that can start 
their execution so that cores are doing some work instead of waiting 
for data to arrive. With this more efficient use of cores is achieved. 
Warp is divided into two equal parts of 16 threads called half warps. 
When swapping happens it happens between half warps or warps. 

What is important for developers to understand is that because of 
this warp – half warp organization and swapping, although there are 
8 cores per multiprocessor, developer has to remember that groups 
of 16 threads are being executed in parallel on one multiprocessor. 
Although this do sound confusing since there are only 8 cores that 
can do actual work on the physical level, developer should focus on 
the software level where this seems to be possible. Experiments will 
prove this to be important fact to know from optimization point of 
view.  

3. MOTION ESTIMATION 
IMPLEMENTATION USING CUDA 

CUDA allows flexibility in choosing different approaches to solve 
the same problem. Question is what approach to choose. Of course, 

right choice would be one that provides biggest boost in speed. This 
paper will show that that choice is not easy to be found. Every 
different approach usually performs significantly different and every 
different approach has to deal with tradeoffs because of software or 
hardware limitations. 
Before trying to solve any problem any developer should first 
consider if his problem can be parallelized. Motion Estimation 
problem can be divided into two parts that can be parallelized. One 
of the parts are computing minimum sum of absolute differences 
(SAD) [10] between pixel blocks in reference and current frames. 
And second part is to find the minimum SAD values and motion 
vectors for pixel blocks. So two kernels were created, one 
calculating SAD values for all candidate blocks, and second one 
finding the minimum SAD values and motion vectors. 
Both kernels can be implemented in different ways. Some of the 
ways for calculating SAD values are discussed below: 

1. Assigning every thread to calculate only one SAD value 
between two pixels. Thread blocks would have same 
dimensions as a block size declared for the current and 
reference macro blocks of pixels [10]. (block Size*block Size 
of threads per thread block) Limitations of this approach are as 
follows. The first problem is that a block size has to be smaller 
than 22x22 in order not to exceed the 512 threads allowed per 
thread block. Other problem is that additional kernel for 
accumulation of all separate SAD calculations for each 
candidate block in the search range would be needed. Third 
issue is practically the biggest one, to calculate all SAD values 
for one macro block we will need (2*search Range)*(2*search 
Range) thread blocks per one macro block. Problem becomes 
apparent when search range increases or if number of macro 
blocks increases (by lowering block size or performing motion 
estimation on bigger video). 
2. Assigning every thread to calculate SAD for one 
candidate block in the search range. Thread block is a 
(2*search Range)*(2*search Range) dimension. Advantage of 
this approach is that everything for a macro block is calculated 
in one thread block, so problem of a big number of macro 
blocks do not present a problem anymore. Biggest issue here is 
that the biggest search range possible would be 11 in order to 
have less than 512 threads per thread block; such a small 
search range is will not work for general purpose motion 
estimation. 
3. Assigning every thread to calculate SAD for one 
candidate block in a search range and use multiple thread 
blocks for each macro block. This is similar to the previous 
method; the difference is that one thread block calculates one 
quarter of a search area, so four thread blocks are needed per 
macro block. In this case maximal search range possible would 
be 22, which is better but still not flexible enough for motion 
estimation. 
4. A mixed approach; this approach removes limitations 
regarding possible search range size by dynamically assigning 
more thread blocks to cover whole search area. After 
experimenting we determined that solutions 1, 2, and 3 above 
were ruled out and the mixed approach is selected as a starting 
point for our experiments. 

Idea of this paper is not to focus in detail how motion estimation 
algorithm can be implemented as presented in [3] and [11], rather to 
explore CUDA architecture on familiar problem. Because of that all 
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the above mentioned approaches are described briefly mainly 
focusing on differences between approaches from CUDA 
perspective. 
Figure 5 describes how search area is organized for every current 
MB. Corresponding pairs of pixels are used to calculate SAD values 
for one reference MB in search area. Corresponding pairs of pixels 
are paired by same position in reference and current MB. Number of 
pairs per MB matches number of pixels in MB. All SAD values 
from every pair for one MB are accumulated and that accumulated 
SAD value represents SAD value for that reference MB in search 
area at the end there are search area number of SAD values for 
every current MB in a frame. 

  
Figure 5.Search area for one current block that has to be 

covered using full search in motion estimation 

4. EXPERIMENTS 
For the purpose of this paper, experimentations done on one of the 
kernels is enough to show impacts of different approaches 
developing using CUDA. So our focus will be on a kernel for 
calculation SAD values for macro blocks, specifically approaches 3 
and 4 in previous section as a starting point. 

Idea is to modify SAD kernel to see how much different approaches 
would impact overall performance. Most significant improvements 
in performance can be achieved by focusing on the following: 

1. Removing un-coalesced loads and stores from global 
memory 

2. Using shared memory instead of global memory. 
3. Removing shared memory bank conflicts to avoid 

serialization of thread execution. 
4. Thread block size to be multiple of 16(e.g. 16xn or 32xn 

etc.). 

4.1 Experiment I 
This experiment is devised to show quantitatively how 
different implementations of the same code can impact 
performance. Five different codes will be run and compared, 
every one of them building upon the previous one. In that way 

it can easily be seen how specific optimizations improve 
execution speed. 

1. First implementation is a baseline code written in C and 
completely run on the CPU. It is a baseline code in a sense that 
both speedup and accuracy of GPU implementation are 
checked against the baseline results. For a GPU 
implementation to be valid it has to provide the same output 
for the same set of inputs as a baseline code. 

2. Second implementation is representation of approach 3 
mentioned at the beginning of this section. This is not fully 
optimized code, meaning all of the four recommendations for 
improving performance are ignored. This implementation is 
direct port of the CPU code, with a biggest difference being 
additional calculation for fetching and storing appropriate data 
elements from global memory. 

3. Third implementation differs from the second one only in one 
part. Additional temporary variable is being created in every 
thread to serve as an accumulator for intermediate SAD 
calculations. That way global memory stores are reduced 
somewhat per thread. Storing happens only once, at the end of 
the thread. 

4. Fourth implementation introduces using of shared memory. 
Since shared memory is available to every thread of a thread 
block, idea is to use all the threads of a thread block to preload 
portion of a reference and current frame which is needed for 
calculating SAD values. Here global memory accesses are 
reduced to minimum. (every thread loads in couple of pixels 
which other threads can use). 

5. Fifth implementation represents completely optimized code. 
Every recommendation is taken into consideration, such as 
thread block size is multiple of 16,un coalesced loads and 
stores are removed, there is no warp serialization because of 
shared memory bank conflicts etc. 

All implementation are executed on NVIDIA 8800 GT which has 
compute capability of 1.1 and 14 multiprocessors. All 
implementation are run for 3 video files with different resolutions. 
Since the algorithm tested is exhaustive full search motion 
estimation, there are no content dependencies. 

4.2 Experiment II 
This experiment will try to show scalability of performance using 
different graphics cards with CUDA capabilities. Idea is to show 
how code performs when more or less multi cores are available for 
executing threads or when GPUs with different compute capabilities 
are available. Also performance of codes for different search ranges 
can be interesting and important data. 
Implementations used in this experiment are: 
1. Same implementation used in previous experiment, mentioned 

as a number 1. 
2. C code executing only on CPU with a difference between it 

and previously mentioned code is that it also calculates sub 
pixels using H.264 interpolation and performing full search on 
them also. 

3. Same implementation as mentioned in experiment I under 
number 5. 
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4. implementation that performs motion estimation both on 
integer and sub pixels using code mentioned under 3 as a base. 

5. Same implementation as mentioned in experiment I under 
number 3. 

All implementation are run on different machines, with different 
graphics cards. Cards that are used are: 

• 8800 GT - compute capability of 1.1 and has 14 
multiprocessors 

• 9800 GTX – compute capability of 1.1 and has 16 
multiprocessors 

• 285 GTX – compute capability of 1.3 and has 30 
multiprocessors 

All codes will be run for 3 video files with different resolutions. 

5. RESULTS 
5.1 Experiment I 
Provided below there are 3 graphs, each representing times for 
different CUDA implementations performed on 3 different video 
files. 
 

 
Figure 6.Results for the video file of 352x288 resolution 

 
Figure 7.Results for the video file of 720x576 resolution 

 

 
Figure 8.Results for the video file of 1920x1080 resolution 

Comparing all three figures it is obvious that pattern emerges. 
Baseline code is slowest, followed by the next two 
implementations that differ a little in times in a favor of 
implementation with temp variable added. Speedup with these 
two implementations is less than 2, which is significant only for 
large videos with big resolutions. When shared memory is 
introduced we can see dramatic improvement. That is showing us 
how important using of shared memory even in its simplest non 
optimized mode is. Finally fully optimized code showed another 
dramatic boost in performance. When all the pieces of the puzzle 
are put to the right place speedup can be drastic. 

Also one more important conclusion that can be taken looking 
from the graphs are that program running time increases for 
videos with a bigger resolution which was quite expected result. 
Bigger resolution means bigger number of current MBs which 
means more work. 

5.2 Experiment II 
Since we know how dramatic speedup can be from the previous 
experiment, experiment two is devised to built upon that 
knowledge and provide us with information regarding how code 
performs when search range varies and when more computing 
power is on codes disposal.Search range varied from 5 to 46 to 
cover mostly used search ranges in today’s motion estimation 
algorithms. 

5.2.1 8800 GT 
8800 GT can be regarded as a middle class graphics card, 
although it has been outdated since newer generations have 
showed up. But since it is reliable and relatively cheap compared 
to its capabilities it can serve as a starting point for our 
experiment. 
Provided bellow there are 3 graphs, each representing times for 
different CUDA or CPU implementations performed on 3 
different video files. 
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Figure 9.Results for the video file of 352x288 resolution 

 
Figure 10.Results for the video file of 720x576 resolution 

 
Figure 11.Results for the video file of 1920x1080 resolution 

Again, comparing 3 tables we can derive a pattern. While time for 
CPU implementations increase exponentially, time on the GPU 
increases semi-linearly with search range increasing. Meaning 

that bigger speedup is going to be achieved for bigger search 
ranges. 

Also worth noticing is that for videos with a bigger resolution 
CPU time is increasing exponentially faster than for the smaller 
resolution videos while although GPU times increase with 
resolution they increase linearly. That mutual relation leads to 
greater speedups for larger resolution videos which use bigger 
search ranges. 

 
Figure 12.Comparison speedup with increased resolution for 

8800 GT graphics card for search range of 16 

5.2.2 9800 GTX 
9800 GTX differs from 8800 GT just in the number of 
multiprocessors, it has two more. So results should show increase 
in performance purely based on a more number of computing 
units available since they do not differ in compute capabilities, 
they both have compute capability of 1.1. 

 
Figure 13.Results for the video file of 352x288 resolution 
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Figure 14.Results for the video file of 720x576 resolution 

 
Figure 15.Results for the video file of 1920x1080 resolution 

On the first look, compering these three figures with three 
equivalent figures from section 5.2.1 it is noticable that the same 
trends are being followed.Baseline C codes rise exponentially and 
GPU code rise semi-linearly. 

 
Figure 16.Comparison speedup with increased resolution for 

9800 GTX graphics card for search range of 16 
 

Figure 16 shows significant speedup for all three resolutions 
regardless if motion estimation is done on only integer pixels or 
on sub pixels also. 

 

5.2.3 285 GTX 
This card is one of the most powerful card available today, with 
highest CUDA capabilities of 1.3 and almost double 
multiprocessors compared to 9800 GTX. Following figures 
represent difference in speed when high-end card is used. 
 
 

 
Figure 17.Results for the video file of 352x288 resolution 

 

 
Figure 18.Results for the video file of 720x576 resolution 
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Figure 19.Results for the video file of 1920x1080 resolution 

 
 

It is hard to comprehend changes since all the figures look, or 
better said behave the same. They are there mostly to show the 
trend, how GPU code is behaving versus CPU code. For better 
feel of actual speed increase we provide Figure 20. 

 

 
Figure 20.Comparison speedup with increased resolution for 

285 GTX graphics card for search range of 16 
 

5.2.4 Comparison 
Since 9800 GTX graphics card has two more multiprocessors 
available for computing we were roughly expecting speedup 
increase of 20 percent compared to 8800 GT. More than double 
number of multiprocessors against 8800 GT, and almost double 
against 9800 GTX were logically leading us to conclusion that 
285 GTX will approximately half the time of the execution 
compared to other two cards. Figure 21 confirms our expectation.  
 

 
Figure 21.Comparison speedup with 1920x1080 resolution for 
9800 GTX and 8800 GT graphics cards  for search range of 16 

5. CONCLUSION 
Although using CUDA requires balancing between desires and 
hardware and software limitations results shown in this paper 
suggest that by following a set of optimization guidelines and 
carefully breaking problem down into parallelizable portions 
gains from using CUDA can be drastic. Simply measured in terms 
of a speedup, cutting execution time by hundred times should be 
enough motivation for every engineer to start considering using 
CUDA. Important lesson is the significance of the domain 
knowledge in developing parallelization strategies. 

Experiment I showed the importance of using appropriate 
optimization techniques. Two suggestions for most significant 
improvements on performance are: reducing global memory 
accesses by using shared memory and removing un coalesced 
loads and stores to global memory. As shown in the figures 6-8 
most significant speedup was seen when those two optimization 
techniques were implemented. Since that is the case, main focus 
of every CUDA developer would be to tackle those two issues 
first. And later to focus on improving speed more by optimizing 
further using other techniques. Contribution of the optimization 
techniques can be quantified as: 

1. Removing un coalesced loads  40% 
2. Using shared memory  40% 
3. Removing shared memory bank conflicts to avoid warp 

serialization   10% 
4. Reducing the number of registers and instructions used 

per thread    5% 
5. Avoiding branching(using of if, else etc. statements)

    5% 
Experiment II focused on showing performance difference on 
different graphics cards as well as performance compared to 
different search ranges. 

When different search ranges are taken into consideration it is 
shown that while time for CPU implementations increase 
exponentially, time on the GPU increases semi-linearly. Meaning 
that bigger speedup is going to be achieved for bigger search 
ranges. And since CPU times are raising faster bigger resolution 
videos while GPU times rise with resolution linearly conclusion is 
that maximum gain out of these CUDA implementations would 
have problems dealing with big resolutions (e.g. HD video) 
performing big searches in motion estimation. 
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One of the obvious conclusions is that CUDA architectures scales 
well and linear performance improvements can be achieved when 
run on GPUs with more multi processors. How significant that 
increase we can expect is nicely shown in figure 21. 

Biggest issues that we encountered were need for constant 
balancing between performance and tradeoffs. Although 
following a set of general guidelines seems simple, elegant 
solution is not easily achievable; it takes time, practice and 
experience. Seems like learning and following a set of general 
guidelines and introducing some extra effort in approaching 
problem from CUDA (data parallel) point of view is really small 
price to pay comparing to the gains in speedup. 
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