
Exploring NVIDIA-CUDA for Video Coding
Aleksandar Colic

Dept. of Electrical and Computer
Engineering and Computer Science

Florida Atlantic University
Boca Raton, FL 33431

+1 561 287 3885

acolic@fau.edu

Hari Kalva
Dept. of Electrical and Computer

Engineering and Computer Science
Florida Atlantic University

Boca Raton, FL 33431
+1 561 287 3885

hkalva@fau.edu

Borko Furht
Dept. of Electrical and Computer

Engineering and Computer Science
Florida Atlantic University

Boca Raton, FL 33431
+1 561 287 3885

bfurht@fau.edu

ABSTRACT
Today, world is rapidly turning to high definition multimedia.
From engineering and programming point of view, this usually
means more computation is needed and more memory space is
required to achieve these higher qualities. In this paper we explore
the use of parallelization opportunities in graphics processors to
accelerate video encoding. We evaluate the NVIDIA CUDA[1]
toolkit and evaluate the performance of motion estimation in
video encoding. The main goal of this paper is to evaluate the
capabilities of NVIDIA/CUDA and develop a process for
implementing video/multimedia applications. We have discovered
that the difference in performance when CUDA is not used
properly can be over 100x. We show how we were able to use
CUDA capabilities to reduce the motion estimation time from
7000 milli seconds to 70 milli seconds.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel programming. B.8.2 [Performance and Reliability]:
Performance Analysis and Design Aids.

General Terms
Algorithms, Management, Measurement, Documentation,
Performance, Experimentation.

Keywords
Compute Unified Device Architecture (CUDA), Graphics
Processing Unit (GPU), Video coding, motion estimation, Parallel
Processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MMSys’10, February 22–23, 2010, Phoenix, Arizona, USA.
Copyright 2010 ACM 978-1-60558-914-5/10/02...$10.00.

1. INTRODUCTION
In this paper we present the application of NVIDIA CUDA toolkit
for video coding applications [1]. The CUDA toolkit makes
develop parallel programs on the NVIDIA GPUs easier and
enables access to the large scale parallelism offered by the GPU.
Video processing applications are especially suited for the
NVIDIA platform because of the data parallel nature of the
problem. In this paper we explore the tools available in CUDA
and apply them tot he motion estimation problem. Motion
estimation is widely studied and is the computationally expensive
part of video coding. Working on a well understood domain
allows us to explore the CUDA features better and allows readers
to understand the intricacies of CUDA better.

1.1 Motion Estimation
Motion estimation is a widely known process. It is explained
briefly in this section. Motion estimation is a computationally
expensive process and is a key component for video processing
operations such as encoding, segmentation and edge detection.
The motion estimation engine that we are developing is part of the
larger project for optimizing encoder implementation for High
Efficiency Video encoding projects that are currently under way
in MPEG.
Many fast motion estimation algorithms have been proposed in
[2], but they may not be suitable for optimal used in CUDA.
Thus, in this paper we focus on exploring and optimizing basic
integer full search and exhaustive full search motion estimation
algorithms. Motion estimation engine developed implements full
search algorithm that exhaustively searches for a block match in a
previous frame. The best match is selected based on the minimum
sum of absolute differences. A half-pixel search algorithm is also
implemented using the H.264 6-tap filter for half-pixel
interpolation. The goal of this paper is not to develop a better
motion estimation algorithm but to understand CUDA in the
context of the well understood motion estimation problem.

1.2 CUDA architecture
Although a few GPU-based motion estimation methods have been
proposed [3-6], CUDA architecture needs a new algorithm to
fully utilize its features [7]. In the quest for maximum speed,
NVIDIA's GPUs (Graphics Processing Units) have evolved far
beyond single processors [8]. Modern NVIDIA GPUs are not
single processors but rather are parallel supercomputers on a chip
that consist of very many, very fast processors. Contemporary
NVIDIA GPUs range from 16 to 256 stream processors per card,
delivering incredibly powerful computing bandwidth. Those GPU

13

boards have become so powerful that the scientific computing
community has begun using them for general purpose computing.
It turns out that many mathematical computations, such as matrix
multiplication and transposition, which are required for complex
visual and physics simulations in games are also exactly the same
computations that must be performed in a wide variety of
scientific computing applications.
Because of this, CUDA has been developed - to allow application
developers to write code that can be uploaded into an NVIDIA-
based card for execution by NVIDIA's massively parallel GPUs.
This allows applications developers to plug in a 500 gigaflop,
256-processor, NVIDIA-based card and upload applications to
run within the NVIDIA GPU at far greater speed than possible on
even the fastest general purpose CPU on the motherboard. A
comparison of computing capabilities between GPUs and CPUs
are given in the figure 1, taken from [1].

Figure 1.Compared compute capability measured in GFLOPs

CUDA allows developers to use C as a high-level programming
language. Using already well established high level language and
subtly adding additional, CUDA specific features (implemented in
a way that they follow C programmer’s way of thinking as close
as possible) provides extremely user friendly environment.

GPU is specialized for compute-intensive, highly parallel
computation because of the sole purpose of the GPU in the first
place – graphics rendering. Because of that GPU and CPU differs
in a way that more GPU transistors are devoted to data processing
rather than data cashing and flow control. This makes them
excellent candidates to be used to solve highly arithmetically
intensive problems. And when we take into consideration that
CUDA enabled GPU’s are many core systems, conclusion arises
that the CUDA architecture is best suited for solving highly
arithmetic problems that can be done on many data elements in
parallel – data parallelism. Or differently said, CUDA architecture
provides best performance when every available core performs
same set of arithmetic computation on a different data element. If
there are no data dependencies between data elements, true
parallelism can be accomplished – every core doing its work
independently of one another just on a different set of data
elements.

2. CUDA ARCHITECTURE
CUDA comes with user friendly environment, and one of the
most important features is ability to write code that can be
executed on a device mainly focusing on what the program is
doing not how hardware is organized. Of course there are
restrictions and rules needed to be followed by software because

of the hardware limitations. Because of that, both software and
hardware organization will be described shortly.

2.1 Software implementation
When a CUDA programmer starts developing CUDA software he
needs to understand what is different from regular C code and
what is similar [9]. Biggest difference is that CUDA code is
divided into two parts, host code and device code. Host code is a
code that runs on CPU, and it is in charge of everything, including
when to run a device code. Device code is code that will run on
GPU. Device code is organized as a function with a special name
– kernel and special way of declaring. That is about all the
difference between regular C function and CUDA function. As
long as developer follows these special rules for declaring CUDA
functions, he can simply regard them as a regular C function.
CUDA function or kernel represents portion of code that will be
executed on GPU device. Since idea is to perform some
calculations represented in kernel on different, mutually
independent data elements basically that kernel will be executed
as many times as there are data elements needed to be processed.
So far this seems similar as running functions on CPU using
simple for loop for example. But since there are many cores
available on the GPU, every available core will do all calculations
for different data element, and since calculations are on different
data element they are done in parallel. For example, if there is a
need to process K data elements, K kernel executions have to
happen to process all of them. If GPU has N cores that means that
N out of K kernels can be executed in parallel. So kernels become
independent threads assigned to some core to be executed.
Developer has to know how many threads he needs to process all
the data before calling his kernel. Because number of threads
needs to be specified there are special arguments assigned to
every kernel, and there lies the difference between normal C
function and kernel, in those additional arguments needed to be
provided.
Every thread has to know on what data element it has to work on.
Usually data elements that need to be processed in these situations
are arranged in one dimensional arrays or more dimensional
arrays. Since that is the case, simplest and most practical
approach would be to organize threads in a way to closely match
organization of data elements. That way thread would fetch
appropriate data element, depending on its position among other
threads. Every thread is provided with group of variables that
tells that thread its ID.(position in thread organization)If both data
element ID and thread ID matches, or closely matches(meaning
that it is easy to compute data element ID using thread ID) than
choosing right data element for thread becomes easy or in some
cases trivial.
General organization of the treads is: threads are grouped in a
thread blocks, thread blocks are grouped in a grid of thread
blocks. For user convenience threads within a block can be
organized in a one, two or three dimensional way. Tread blocks
can be also organized in such a way, although three-dimensional
organization of grid is mentioned as existing by NVIDIA, but still
not possible to implement.(as discovered while exploring different
CUDA options for these paper) We are quite sure that in later
improvements that dimension will be available because adding
one more dimension can open completely new development
horizons to a developer and make his life much easier. For now,

14

because of the hardware organization there are some limitations
concerning number of threads per block – 512 maximum threads
in one block, and 65535 blocks in a block grid. Calculating
maximum number of threads that GPU can manage per one kernel
call gives incredible number of 33553920 threads. One simple
example how threads can be organized is given on the figure 2
[1].

Figure 2.Example of thread organization

The way developer would like to organize his threads needs to be
provided to a kernel, and it is done by passing two arguments to a
kernel, one for thread block organization, other one for grid
organization. Third argument that can be passed to kernel is
optional while previous two are required, and it tells kernel how
much of a shared memory every thread is going to use. Shared
memory will be discussed in hardware implementation.

2.2 Hardware implementation
Main parts of graphics card are GPU and device memory. There
are more parts that provide synchronization and scheduling
among cores and memory but our focus of explanation will be on
this two parts.
GPU consists of certain number of multiprocessors, which
number depends of graphics card generation and price of course.
What is important to understand is that every multiprocessor
consists of 8 single processors who actually execute threads on
them. When execution of a kernel starts every multiprocessor is
assigned with a thread block to execute and every thread in that
thread block will be executed on one of the .Thread blocks waits
in a queue for available multiprocessor to execute on. Special
scheduler is assigning thread blocks to appropriate multiprocessor
and it is making sure that multiprocessors are constantly fed and
work among multiprocessors is evenly distributed. Figure 3 [1]
shows two different block distributions, when GPU has two or
four multiprocessors.

Figure 3.Example of block distribution among GPUs with

different number of multiprocessors
A device with more multiprocessors will automatically execute a
kernel grid in less time than a device with fewer multiprocessors.
Graphic cards have various memories on GPU’s disposal to use
when necessary. A thread that executes on the device has access
to global memory and the on-chip memory through the memory
types. Memory available is:

• One set of local registers per thread. On a chip.
• A parallel data cache or shared memory that is shared

by all the threads executed on one multiprocessor and
implements the shared memory space.

• A read-only constant cache that is shared by all the
threads and speeds up reads from the constant memory
space, which is implemented as a read-only region of
device memory

• A read-only texture cache that is shared by all the
processors and speeds up reads from the texture
memory space, which is implemented as a read-only
region of device memory.

• Local memory, assigned to a thread to use if needed. It
is not cashed; basically it is part of the global memory
allocated to a thread to serve as a helping, local
memory.

Of these different memory spaces, global and texture memory are
the most plentiful. There is a 16 KB per thread limit on local
memory, a total of 64 KB of constant memory, and a limit of 16
KB of shared memory, and either 8,192 or 16,384 32-bit registers
per multiprocessor. Global, local, and texture memory have the
greatest access latency (although texture is cached), followed by
constant memory, registers, and shared memory. Figure 4 [1]
describes memory organization.

15

Figure 4.Memory organization on the CUDA enabled graphic

cards
Since GPU processors are not best for flow control and data cashing
CUDA developers came with smart solution to hide latencies caused
by this. Their solution is to group threads of one thread block, that
are executed on one multiprocessor, in a groups of 32 threads called
warps. Basic idea behind this is to hide latencies by swapping
groups of threads currently executing on cores of that
multiprocessor. Rough and simplified example would be one when
a group of threads want to access global memory multiprocessors
initiates loading from global memory for that group of threads and
in the same time swaps currently executing (waiting for data from
memory) group of threads with other group of threads that can start
their execution so that cores are doing some work instead of waiting
for data to arrive. With this more efficient use of cores is achieved.
Warp is divided into two equal parts of 16 threads called half warps.
When swapping happens it happens between half warps or warps.

What is important for developers to understand is that because of
this warp – half warp organization and swapping, although there are
8 cores per multiprocessor, developer has to remember that groups
of 16 threads are being executed in parallel on one multiprocessor.
Although this do sound confusing since there are only 8 cores that
can do actual work on the physical level, developer should focus on
the software level where this seems to be possible. Experiments will
prove this to be important fact to know from optimization point of
view.

3. MOTION ESTIMATION
IMPLEMENTATION USING CUDA

CUDA allows flexibility in choosing different approaches to solve
the same problem. Question is what approach to choose. Of course,

right choice would be one that provides biggest boost in speed. This
paper will show that that choice is not easy to be found. Every
different approach usually performs significantly different and every
different approach has to deal with tradeoffs because of software or
hardware limitations.
Before trying to solve any problem any developer should first
consider if his problem can be parallelized. Motion Estimation
problem can be divided into two parts that can be parallelized. One
of the parts are computing minimum sum of absolute differences
(SAD) [10] between pixel blocks in reference and current frames.
And second part is to find the minimum SAD values and motion
vectors for pixel blocks. So two kernels were created, one
calculating SAD values for all candidate blocks, and second one
finding the minimum SAD values and motion vectors.
Both kernels can be implemented in different ways. Some of the
ways for calculating SAD values are discussed below:

1. Assigning every thread to calculate only one SAD value
between two pixels. Thread blocks would have same
dimensions as a block size declared for the current and
reference macro blocks of pixels [10]. (block Size*block Size
of threads per thread block) Limitations of this approach are as
follows. The first problem is that a block size has to be smaller
than 22x22 in order not to exceed the 512 threads allowed per
thread block. Other problem is that additional kernel for
accumulation of all separate SAD calculations for each
candidate block in the search range would be needed. Third
issue is practically the biggest one, to calculate all SAD values
for one macro block we will need (2*search Range)*(2*search
Range) thread blocks per one macro block. Problem becomes
apparent when search range increases or if number of macro
blocks increases (by lowering block size or performing motion
estimation on bigger video).
2. Assigning every thread to calculate SAD for one
candidate block in the search range. Thread block is a
(2*search Range)*(2*search Range) dimension. Advantage of
this approach is that everything for a macro block is calculated
in one thread block, so problem of a big number of macro
blocks do not present a problem anymore. Biggest issue here is
that the biggest search range possible would be 11 in order to
have less than 512 threads per thread block; such a small
search range is will not work for general purpose motion
estimation.
3. Assigning every thread to calculate SAD for one
candidate block in a search range and use multiple thread
blocks for each macro block. This is similar to the previous
method; the difference is that one thread block calculates one
quarter of a search area, so four thread blocks are needed per
macro block. In this case maximal search range possible would
be 22, which is better but still not flexible enough for motion
estimation.
4. A mixed approach; this approach removes limitations
regarding possible search range size by dynamically assigning
more thread blocks to cover whole search area. After
experimenting we determined that solutions 1, 2, and 3 above
were ruled out and the mixed approach is selected as a starting
point for our experiments.

Idea of this paper is not to focus in detail how motion estimation
algorithm can be implemented as presented in [3] and [11], rather to
explore CUDA architecture on familiar problem. Because of that all

16

the above mentioned approaches are described briefly mainly
focusing on differences between approaches from CUDA
perspective.
Figure 5 describes how search area is organized for every current
MB. Corresponding pairs of pixels are used to calculate SAD values
for one reference MB in search area. Corresponding pairs of pixels
are paired by same position in reference and current MB. Number of
pairs per MB matches number of pixels in MB. All SAD values
from every pair for one MB are accumulated and that accumulated
SAD value represents SAD value for that reference MB in search
area at the end there are search area number of SAD values for
every current MB in a frame.

Figure 5.Search area for one current block that has to be

covered using full search in motion estimation

4. EXPERIMENTS
For the purpose of this paper, experimentations done on one of the
kernels is enough to show impacts of different approaches
developing using CUDA. So our focus will be on a kernel for
calculation SAD values for macro blocks, specifically approaches 3
and 4 in previous section as a starting point.

Idea is to modify SAD kernel to see how much different approaches
would impact overall performance. Most significant improvements
in performance can be achieved by focusing on the following:

1. Removing un-coalesced loads and stores from global
memory

2. Using shared memory instead of global memory.
3. Removing shared memory bank conflicts to avoid

serialization of thread execution.
4. Thread block size to be multiple of 16(e.g. 16xn or 32xn

etc.).

4.1 Experiment I
This experiment is devised to show quantitatively how
different implementations of the same code can impact
performance. Five different codes will be run and compared,
every one of them building upon the previous one. In that way

it can easily be seen how specific optimizations improve
execution speed.

1. First implementation is a baseline code written in C and
completely run on the CPU. It is a baseline code in a sense that
both speedup and accuracy of GPU implementation are
checked against the baseline results. For a GPU
implementation to be valid it has to provide the same output
for the same set of inputs as a baseline code.

2. Second implementation is representation of approach 3
mentioned at the beginning of this section. This is not fully
optimized code, meaning all of the four recommendations for
improving performance are ignored. This implementation is
direct port of the CPU code, with a biggest difference being
additional calculation for fetching and storing appropriate data
elements from global memory.

3. Third implementation differs from the second one only in one
part. Additional temporary variable is being created in every
thread to serve as an accumulator for intermediate SAD
calculations. That way global memory stores are reduced
somewhat per thread. Storing happens only once, at the end of
the thread.

4. Fourth implementation introduces using of shared memory.
Since shared memory is available to every thread of a thread
block, idea is to use all the threads of a thread block to preload
portion of a reference and current frame which is needed for
calculating SAD values. Here global memory accesses are
reduced to minimum. (every thread loads in couple of pixels
which other threads can use).

5. Fifth implementation represents completely optimized code.
Every recommendation is taken into consideration, such as
thread block size is multiple of 16,un coalesced loads and
stores are removed, there is no warp serialization because of
shared memory bank conflicts etc.

All implementation are executed on NVIDIA 8800 GT which has
compute capability of 1.1 and 14 multiprocessors. All
implementation are run for 3 video files with different resolutions.
Since the algorithm tested is exhaustive full search motion
estimation, there are no content dependencies.

4.2 Experiment II
This experiment will try to show scalability of performance using
different graphics cards with CUDA capabilities. Idea is to show
how code performs when more or less multi cores are available for
executing threads or when GPUs with different compute capabilities
are available. Also performance of codes for different search ranges
can be interesting and important data.
Implementations used in this experiment are:
1. Same implementation used in previous experiment, mentioned

as a number 1.
2. C code executing only on CPU with a difference between it

and previously mentioned code is that it also calculates sub
pixels using H.264 interpolation and performing full search on
them also.

3. Same implementation as mentioned in experiment I under
number 5.

17

4. implementation that performs motion estimation both on
integer and sub pixels using code mentioned under 3 as a base.

5. Same implementation as mentioned in experiment I under
number 3.

All implementation are run on different machines, with different
graphics cards. Cards that are used are:

• 8800 GT - compute capability of 1.1 and has 14
multiprocessors

• 9800 GTX – compute capability of 1.1 and has 16
multiprocessors

• 285 GTX – compute capability of 1.3 and has 30
multiprocessors

All codes will be run for 3 video files with different resolutions.

5. RESULTS
5.1 Experiment I
Provided below there are 3 graphs, each representing times for
different CUDA implementations performed on 3 different video
files.

Figure 6.Results for the video file of 352x288 resolution

Figure 7.Results for the video file of 720x576 resolution

Figure 8.Results for the video file of 1920x1080 resolution

Comparing all three figures it is obvious that pattern emerges.
Baseline code is slowest, followed by the next two
implementations that differ a little in times in a favor of
implementation with temp variable added. Speedup with these
two implementations is less than 2, which is significant only for
large videos with big resolutions. When shared memory is
introduced we can see dramatic improvement. That is showing us
how important using of shared memory even in its simplest non
optimized mode is. Finally fully optimized code showed another
dramatic boost in performance. When all the pieces of the puzzle
are put to the right place speedup can be drastic.

Also one more important conclusion that can be taken looking
from the graphs are that program running time increases for
videos with a bigger resolution which was quite expected result.
Bigger resolution means bigger number of current MBs which
means more work.

5.2 Experiment II
Since we know how dramatic speedup can be from the previous
experiment, experiment two is devised to built upon that
knowledge and provide us with information regarding how code
performs when search range varies and when more computing
power is on codes disposal.Search range varied from 5 to 46 to
cover mostly used search ranges in today’s motion estimation
algorithms.

5.2.1 8800 GT
8800 GT can be regarded as a middle class graphics card,
although it has been outdated since newer generations have
showed up. But since it is reliable and relatively cheap compared
to its capabilities it can serve as a starting point for our
experiment.
Provided bellow there are 3 graphs, each representing times for
different CUDA or CPU implementations performed on 3
different video files.

18

Figure 9.Results for the video file of 352x288 resolution

Figure 10.Results for the video file of 720x576 resolution

Figure 11.Results for the video file of 1920x1080 resolution

Again, comparing 3 tables we can derive a pattern. While time for
CPU implementations increase exponentially, time on the GPU
increases semi-linearly with search range increasing. Meaning

that bigger speedup is going to be achieved for bigger search
ranges.

Also worth noticing is that for videos with a bigger resolution
CPU time is increasing exponentially faster than for the smaller
resolution videos while although GPU times increase with
resolution they increase linearly. That mutual relation leads to
greater speedups for larger resolution videos which use bigger
search ranges.

Figure 12.Comparison speedup with increased resolution for

8800 GT graphics card for search range of 16

5.2.2 9800 GTX
9800 GTX differs from 8800 GT just in the number of
multiprocessors, it has two more. So results should show increase
in performance purely based on a more number of computing
units available since they do not differ in compute capabilities,
they both have compute capability of 1.1.

Figure 13.Results for the video file of 352x288 resolution

Sp
ee

du
p

19

Figure 14.Results for the video file of 720x576 resolution

Figure 15.Results for the video file of 1920x1080 resolution

On the first look, compering these three figures with three
equivalent figures from section 5.2.1 it is noticable that the same
trends are being followed.Baseline C codes rise exponentially and
GPU code rise semi-linearly.

Figure 16.Comparison speedup with increased resolution for

9800 GTX graphics card for search range of 16

Figure 16 shows significant speedup for all three resolutions
regardless if motion estimation is done on only integer pixels or
on sub pixels also.

5.2.3 285 GTX
This card is one of the most powerful card available today, with
highest CUDA capabilities of 1.3 and almost double
multiprocessors compared to 9800 GTX. Following figures
represent difference in speed when high-end card is used.

Figure 17.Results for the video file of 352x288 resolution

Figure 18.Results for the video file of 720x576 resolution

Sp
ee

du
p

20

Figure 19.Results for the video file of 1920x1080 resolution

It is hard to comprehend changes since all the figures look, or
better said behave the same. They are there mostly to show the
trend, how GPU code is behaving versus CPU code. For better
feel of actual speed increase we provide Figure 20.

Figure 20.Comparison speedup with increased resolution for

285 GTX graphics card for search range of 16

5.2.4 Comparison
Since 9800 GTX graphics card has two more multiprocessors
available for computing we were roughly expecting speedup
increase of 20 percent compared to 8800 GT. More than double
number of multiprocessors against 8800 GT, and almost double
against 9800 GTX were logically leading us to conclusion that
285 GTX will approximately half the time of the execution
compared to other two cards. Figure 21 confirms our expectation.

Figure 21.Comparison speedup with 1920x1080 resolution for
9800 GTX and 8800 GT graphics cards for search range of 16

5. CONCLUSION
Although using CUDA requires balancing between desires and
hardware and software limitations results shown in this paper
suggest that by following a set of optimization guidelines and
carefully breaking problem down into parallelizable portions
gains from using CUDA can be drastic. Simply measured in terms
of a speedup, cutting execution time by hundred times should be
enough motivation for every engineer to start considering using
CUDA. Important lesson is the significance of the domain
knowledge in developing parallelization strategies.

Experiment I showed the importance of using appropriate
optimization techniques. Two suggestions for most significant
improvements on performance are: reducing global memory
accesses by using shared memory and removing un coalesced
loads and stores to global memory. As shown in the figures 6-8
most significant speedup was seen when those two optimization
techniques were implemented. Since that is the case, main focus
of every CUDA developer would be to tackle those two issues
first. And later to focus on improving speed more by optimizing
further using other techniques. Contribution of the optimization
techniques can be quantified as:

1. Removing un coalesced loads 40%
2. Using shared memory 40%
3. Removing shared memory bank conflicts to avoid warp

serialization 10%
4. Reducing the number of registers and instructions used

per thread 5%
5. Avoiding branching(using of if, else etc. statements)

 5%
Experiment II focused on showing performance difference on
different graphics cards as well as performance compared to
different search ranges.

When different search ranges are taken into consideration it is
shown that while time for CPU implementations increase
exponentially, time on the GPU increases semi-linearly. Meaning
that bigger speedup is going to be achieved for bigger search
ranges. And since CPU times are raising faster bigger resolution
videos while GPU times rise with resolution linearly conclusion is
that maximum gain out of these CUDA implementations would
have problems dealing with big resolutions (e.g. HD video)
performing big searches in motion estimation.

Sp
ee

du
p

21

One of the obvious conclusions is that CUDA architectures scales
well and linear performance improvements can be achieved when
run on GPUs with more multi processors. How significant that
increase we can expect is nicely shown in figure 21.

Biggest issues that we encountered were need for constant
balancing between performance and tradeoffs. Although
following a set of general guidelines seems simple, elegant
solution is not easily achievable; it takes time, practice and
experience. Seems like learning and following a set of general
guidelines and introducing some extra effort in approaching
problem from CUDA (data parallel) point of view is really small
price to pay comparing to the gains in speedup.

6. REFERENCES
[1] NVIDIA CUDA Programming Guide version 2.3 (7/1/2009)

developer.download.nvidia.com/.../cuda/.../NVIDIA_CUDA
_Programming_Guide_2.3.pdf

[2] S. Yang, et al., “Power and Performance Analysis of Motion
Estimation Based on Hardware and Software Realizations,”
in IEEE Trans. Computer, vol.54, pp.714-726, Jun, 2005.

[3] C.-W. Ho, et al., “Motion Estimation for H.264/AVC Using
Programmable Graphics Hardware,” in Proc. IEEE Int’l
Conf. on Multimedia and Expo, July 2006, pp. 2049-2052.

[4] C.-Y. Lee, et al., “Multi-Pass and Frame Parallel Algorithm
of Motion Estimation in H.264/AVC for Generic GPU,” in
Proc. IEEE Int’l Conf. on Multimedia and Expo, July 2007,
pp. 1603-1606.

[5] Y.-C. Lin, et al., “Multi-Pass algorithm of Motion Estimation
in Video Encoding for Generic GPU,” in Proc. IEEE
International Symposium on Circuit and Systems, May 2006,
pp. 4451-4454.

[6] R.-X. Chen and J. Fan, “Complexity reduction for
SOPCbased H.264/AVC coder via sum of absolute
difference”, IEEE/CIE 7th Int’l Conf’ on ASIC, pp. 1277-
1280, Oct. 2007

[7] S. Ryoo, et al., “Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA,” Proc. 13th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, Feb. 2008, pp.73-82.

[8] GPGPU. http://www.gpgpu.org/
[9] K. Mueller, F. Xu, and N. Neophytou, “Why do commodity

graphics hardware boards (GPUs) work so well for
acceleration of computed tomography?” in SPIE Electronic
Imaging Conference, San Diego, 2007, (Keynote,
Computational Imaging V).

[10] E. G. Richardson, Iain (2003). H.264 and MPEG-4 Video
Compression: Video Coding for Next-generation
Multimedia. Chichester: John Wiley & Sons Ltd..

[11] Wei-Nien Chen and Hsueh-Ming Hang, 2008 “H.264/AVC
motion estimation implementation on compute unified
device architecture (CUDA)” in conf. ICME 2008. National
Chiao-Tung University, Taiwan

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

