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Algorithms for Multiplex Scheduling of Object-Based
Audio–Visual Presentations

Hari Kalva, Member, IEEE, and Alexandros Eleftheriadis, Senior Member, IEEE

Abstract—Object-based representation of audio–visual (AV)
presentations provides a flexible scheme to create interactive con-
tent that lends itself to resource-driven adaptation. The content
adaptation needs of mobile devices can be met well with the use of
object-based AV presentations. The main distinguishing feature
of object-based AV presentations is the scene composition at the
user terminal. In this paper, we discuss the problem of scheduling
the delivery of object-based AV presentations under resource
constraints. We explore the similarities with the problem of job
sequencing on a single machine. We present a family of algorithms
to determine the schedulability of AV presentations, and for
unschedulable presentations, we present algorithms to compute
a schedule that minimizes the additionally acquired resources.
We present algorithms for computing incremental schedules for
applications such as content authoring that require immediate
feedback on resource consumption. The algorithms can be used to
schedule object-based MPEG-4 presentations. We discuss the al-
gorithms and results by considering a relatively complex MPEG-4
presentation with 16 objects, including audio, video, and images.

Index Terms—Delivery scheduling, MPEG-4, object-based con-
tent, scheduling algorithms.

NOMENCLATURE

N Set of objects to be scheduled.
Number of objects to be scheduled.
Number of access units (AUs) per object

.
Access unit of object .

. Set of all AUs in the presentation.

Decoding time of .
Send time of .

. Send-time schedule.

Transmission channel of capacity .
Size in bytes of .
Duration (channel occupancy) of AU on the wire;

.
Startup delay.
Maximum startup delay.

. Time to transmit AUs
of all objects with DTS/CTS of zero.
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I. INTRODUCTION

IMAGE and video encoding has been totally transformed
with the advent of new coding and representation techniques

[28]. These next-generation coding techniques have made pos-
sible encoding and representation of audio–visual (AV) scenes
with semantically or structurally meaningful objects. Such a
new paradigm of object-based representation of AV scenes and
presentations will change the way AV applications are created.
MPEG-4 is a standardization activity, under the auspices of the
International Standards Organization, specifying tools to enable
object-based AV presentations [25]. These include tools to en-
code individual objects, compose presentations with objects,
store these object-based presentations, and access these presen-
tations in a distributed manner over networks. The main distin-
guishing feature of object-based AV presentations is the scene
composition at the user terminal. The objects that are part of a
scene are composed and displayed at the user end as opposed to
encoding the composed scenes as is done in the case of MPEG-2
systems. Such object-based representation and presentation has
several benefits including compression efficiency and the capa-
bility to interact with individual objects.

The MPEG-4 Systems specification [1], [12], [13], [26] de-
fines an architecture and tools to create AV scenes from indi-
vidual objects. The scene description and synchronization tools
are at the core of the systems specification. The MPEG-4 scene
description, also referred to as binary format for scenes (BIFS),
is based on the virtual reality modeling language (VRML) and
specifies the spatiotemporal composition of objects in a scene
[26]. MPEG-4 also specifies the delivery multimedia integra-
tion framework (DMIF), a general application and transport de-
livery framework [14]. In order to keep the user unaware of
underlying transport details, MPEG-4 defined an interface be-
tween user level applications and the underlying transport pro-
tocol called the DMIF application interface (DAI). The DAI pro-
vides the required functionality for realizing multimedia appli-
cations with quality-of-service (QoS) support. This architecture
allows creation of complex presentations with wide-ranging ap-
plications. As the complexity of the content increases, so does
the complexity of the servers and user-terminals involved. The
servers now have to manage multiple streams (objects) to de-
liver a single presentation.

The flexibility of MPEG-4 enables complex interactive pre-
sentations but makes the content creation process nontrivial. Un-
like MPEG-2, the content creation process involves much more
than multiplexing the media streams. Determining the schedula-
bility, i.e., whether objects in a presentation can be delivered in
realtime, of a presentation is also important during the content
creation process to determine if the presentation being designed
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can be scheduled for specific channel rates and client buffer ca-
pacity. It may not be possible to schedule a presentation with a
given set of resources. In order to create a schedulable presenta-
tion, some constraints may be relaxed. In the case of scheduling
objects, relaxing a constraint may involve increasing the buffer
capacity, increasing the channel capacity, not scheduling some
object instances, or removing some objects from a presentation.

In this paper, we discuss the problem of scheduling AV
objects and present algorithms for optimal scheduling of AV
objects. We present new algorithms, based on job sequencing
on a single machine proposed by Carlier [3], for scheduling
objects in a presentation. The original contributions of this
paper include: algorithm to determine the schedulability of
AV presentations, algorithm to compute startup delay optimal
schedules, algorithm to compute schedules that minimize the
required channel capacity, and algorithms to compute incre-
mental schedules. A more detailed discussion including the
issues in scheduling interactive presentation can be found in
[17]. This paper is organized as follows. The general problem
of scheduling AV objects and related earlier work is presented
in Section II. The characteristics of startup delay and terminal
buffer are discussed in Section III. In Section IV, we present
several algorithms to schedule AV presentations. Discussions
and results are presented in Section V. We conclude the paper
in Section VI.

II. SCHEDULING AV OBJECTS

Scheduling and multiplexing of AV objects in a presenta-
tion is a complex problem. Scheduling of AV objects has been
the subject of study in [1], [23], and [27]. In [23], Little and
Ghafoor present synchronization of multiobject presentations
using Petri-net models to describe timing relations in multi-
media presentations. They present network-level and applica-
tion-level synchronization protocols for multiobject presenta-
tions. The problem considered is delivering objects from mul-
tiple sources to a single destination. The problem we are consid-
ering is the network-independent scheduling of interactive AV
objects on the server side. We assume the use of underlying net-
work services for establishing connections for data transport.
We also show that scheduling objects jointly results in band-
width savings. In the Firefly system [2], the issue addressed
was scheduling a set of local objects to ensure synchroniza-
tion by adjusting the duration of the media objects involved.
The authors address the issue of meeting specified timing con-
straints on the presentation by adjusting the playrate of objects
(speeding up or slowing down playback) but do not consider net-
work delivery issues. We address the problem of synchroniza-
tion by assuming a constant delay network, a terminal buffer,
and time stamps associated with the objects in the presentations.
In [27], Song et al. describe the JINSEL system that uses band-
width profiles (BPs) to reserve bandwidth for media objects on
a delivery path. The JINSEL system computes the bandwidth
required on the network segments on the delivery path using the
amount of buffer available on the switch/component. This ap-
proach to delivering object-based presentations is not practical
because of the processing required at the intermediary nodes.
The approach reserves a constant bit rate (CBR) channel as-
suming only CBR sources while it has been shown that mul-

(a)

(b)

Fig. 1(a). Terminal model. ( b) Server model.

tiple CBR sources, when combined, result in a variable bit rate
(VBR) source [9]. We consider a generic MPEG-4 presentation
and present algorithms for determining a delivery schedule.

In the following, the problem is explained in the context of
MPEG-4 Systems. MPEG-4 Systems specifies an architecture
to describe scenes and communicate AV data that corresponds
to the objects in a scene [1]. A scene consists of one or more
AV objects with each of these objects associated with an ele-
mentary stream that carries the corresponding data. All the ele-
mentary streams are typically multiplexed in a transport multi-
plex. A server that is transmitting objects (elementary streams)
should make sure that an access unit (AU) (an AU is the smallest
data entity to which timing information can be attributed, e.g.,
frames in an elementary stream) arrives at the terminal before
its decoding time. The constraints on the server transmission
are the channel capacity and buffer capacity at the receiving ter-
minal. This problem has similarities with VBR scheduling [24]
where the goal is to maximize the number of streams supported
by a server. One of the main differences is that in VBR sched-
uling discussed in [24] and references therein, the assumption is
that the video data being handled is periodic (e.g., 30 f/s). In a
general architecture such as MPEG-4, such an assumption is not
valid as the data may consist of only still images and associated
audio. Furthermore, the multiple streams in MPEG-4 presen-
tations are synchronized at the same end-user terminal using a
single clock or possibly multiple clocks whereas there are no in-
terdependencies when scheduling multiple VBR video streams.
This puts tighter restrictions on the scheduling of an AV presen-
tation. In such cases, the decoding times of individual AUs have
to be considered for efficient scheduling. Furthermore, the delay
tolerances and relative priorities of objects in an AV presentation
can be used to schedule objects for delivery. To make a presen-
tation schedulable, objects of lower priority could be dropped.
Even different instances of an object may be assigned different
priorities (e.g, higher priority for I and P frames and a lower
priority for B frames in an MPEG video stream). These charac-
teristics of the AV services can be used to efficiently schedule a
presentation with minimal resource consumption.

A. System Model and Assumptions

We discuss the scheduling of AV objects in the context of a
system consisting of client (end-user) server, and network com-
ponents as shown in Fig. 1(a). Fig. 1(b) shows the server model.
The server delivers objects in a presentation as scheduled by
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the scheduler. The scheduler uses the decoding timestamps to
schedule the delivery of AUs. A decoder is assumed at the far
end that decodes the objects for real-time playback. On the client
side, data is retrieved from the network and provided to the de-
coders at decoding time of that AU. Any data that arrives before
its decoding time is buffered at the terminal. The terminal buffer
model is not considered to keep the schedule independent of ter-
minal designs. However we need the minimum buffer size for
a class of terminals to compute object schedules. The data de-
livered from the server is transported on the channel established
between the client and the server. The following assumptions
are made about the content, decoders, network, and the server.

Content:
• An AV presentation is composed of one or more ob-

jects (AV Objects).
• An AU is the smallest piece of data that can be asso-

ciated with a decoding time.
• An AV object contains one or more AUs.
• Objects and their AUs may be assigned relative pri-

orities.
Terminal/Decoders:

• The decoders have given, limited memory for re-
ceiving and decoder buffers.

• The object data is removed instantaneously from the
buffer at the decoding time given by the object’s de-
coding timestamp.

• An object/instance that is received before the de-
coding time is buffered in the decoder-input buffers
until its decoding time.

• More than one object instance may be present in the
decoder-input buffers.

Channel/Network:
• End-to-end delays from the server to the player (in-

cluding the transmission delay) are assumed to be
constant.

• The capacity required for the signaling channel is
assumed to be negligibly small.

• The transport layer is work conserving, and delivers
the packets to the network instantaneously.

Server:
• Audio-visual objects are available at the server in the

form of time-stamped AUs.
• All the AUs of an object are delivered in their de-

coding order.
• A server presents an AU to the transport layer at the

send time determined by the scheduler.

B. Problem Formulation

Given a set of objects that comprise an AV presentation,
with each object containing AUs each with a decoding time

, of th AU of object , a transmission channel of capacity
, terminal buffer of size , allowed startup delay of , and

duration (channel occupancy) of each AU on the channel, ,
is there a schedule that satisfies the following constraints:

(1)

(2)

Fig. 2. Sequencing of AUs in a 3-object presentation.

if then

either

or (3)

(4)

(5)

Constraints (1)–(5) represent the conditions for transmission
and playback of object based AV presentations. Constraint (1)
enforces the on-time delivery of AUs. Ignoring the constant
end-to-end delays, (1) gives the latest time an AU can be trans-
mitted. Constraint (2) imposes intraobject synchronization by
enforcing precedence constraints among the AUs. Access units
are never transmitted out of order; they are transmitted in their
decoding order. Since a single channel is used for transmission,
channel occupancy of any two AUs cannot overlap. Constraint
(3) ensures that data is delivered on a single channel between
a server and a client, i.e., if we consider any two AUs in the
presentation, only one of them can be transmitted at any time.
Constraint (4) gives the buffer occupancy at the end-user ter-
minal at time . Constraint (5) gives a bound on the startup delay
for the given presentation. If the problem cannot be solved, i.e.,
a schedule that satisfies the given resource constraints cannot
be found, some of the constraints could be relaxed in order to
find a schedule. The constraints can be relaxed by reducing the
number of objects, increasing the startup delay, or increasing the
channel capacity.

Example: Consider the scheduling of a presentation with
three objects as shown in Fig. 2. Object 1 has five AUs, ob-
ject 2 has three AUs, and object 3 has one AU. The AUs are
shown with increasing decoding time stamps from left to right.
We have to find a schedule, if one exists, that sequences the
AUs starting with the first AU of one of the three objects and
satisfying the constraints. Fig. 2 shows one such sequence.
The general problem of determining the existence of such a
sequence is NP-complete. We prove that in Theorem 1.

Scheduling is a complex problem and has been widely
studied [4]–[6], [8]. Many of the scheduling problems are
NP-complete and a number of approximation algorithms are
developed trading off optimality for tractability [10], [30].
The scheduling problem closest to the AV object scheduling
is job-shop scheduling on a single machine. There has been
earlier work on scheduling on single machines. Complexity
of machine scheduling problems is studied in [21]. Carlier
proved the NP-hardness of one-machine sequencing problem
in [3] and some approximation algorithms are discussed in
[10]. Another problem with similarities to AV scheduling is job
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scheduling with temporal distant constraints. NP-completeness
results and polynomial time algorithms for a restricted instance
of the problem are given in [11]. In spite of the similarities
to the current problem, the approximation results for single
machine scheduling problems cannot be applied to AV object
scheduling because of an entirely different problem domain and
additional constraints on AV object scheduling. Approximation
algorithms are based on heuristics and domain knowledge is
essential to develop good designs. Even though the results of
single-machine scheduling are not directly applicable to AV
presentations, some of the results can be used in scheduling
individual objects on a channel. The results of single-machine
scheduling problems as formulated by Lawler in [19], [20] may
be used to determine the schedulablity of individual objects.

C. Complexity of Audio Visual Object Scheduling

Theorem 1: Scheduling of an AU in AV presentations (SAV)
is NP-complete in the strong sense.

Proof: We prove this by transforming the problem of se-
quencing within intervals (SWI), proven to be NP-complete in
the strong sense [8].

We restate SWI below:

Instance: A finite set of tasks and, for each , an
integer release time , a deadline , and a
length .
Question: Does there exist a feasible schedule for , i.e., a
function , such that for each ,

, , and if , then either
or ?

The basic units of the SWI problem are the tasks .
The local replacement for each is a single AU
with , , .
We disregard the buffer and startup delay constraints. It is
easy to see that this instance can be created from SWI in
polynomial time. Since SWI can be transformed to SAV,
SAV is at least as hard as SWI.

Since SAV is NP-complete in the strong sense, it cannot be
solved by a pseudopolynomial-time algorithm. We present sev-
eral polynomial-time algorithms based on heuristics and con-
straint relaxation and evaluate their performance with respect to
speed and efficiency.

III. BOUNDS ON STARTUP DELAY AND TERMINAL BUFFER

An MPEG-4 terminal has a finite buffer to store the received
data until they are decoded. The amount of buffer capacity re-
quired depends on the type and number of elementary streams
being buffered. Since there are usually no limits on the number
of objects in AV presentations, it is not practical to have suffi-
cient buffer for all presentations. A terminal should be designed
to support a class of presentations. The amount of buffer avail-
able also determines the upper bound on the startup delay for
a session. The higher the startup delay, the higher the buffer
capacity required (with channel capacity remaining the same).
When scheduling presentations, a scheduler should assume the
minimum allowable buffer for terminals in order to support all
terminal types. Even though the knowledge of the buffer occu-
pancy at a terminal may help improve the schedule, it makes

the schedule dependent on the buffer model used by the termi-
nals. Since the buffer model and management in a terminal de-
pends on terminal design, we designed the scheduler to be buffer
model independent.

Startup delay can be defined as the time a user has to wait
from the time a request is made until the time the presentation
starts. A startup delay of is not equal to buffering sec-
onds of the presentation. The amount of startup delay varies
from presentation to presentation and even for the same presen-
tation, it may vary with varying resources (e.g, bandwidth and
buffer). Startup delay can be viewed as preloading the beginning
of a presentation so that the presentation is played back contin-
uously once the playback starts. The amount of startup delay re-
quired for the smooth playback of a presentation depends on the
channel capacity. For any channel, the minimum startup delay
is the time needed to transmit (buffer) AUs that are presented at
time 0 (AUs with timestamp 0).

Consider a presentation composed of several images dis-
played on the first screen, followed by an audio track. The
images to be displayed on the first screen should reach the
terminal before the presentation starts, resulting in a startup
delay. If the channel bandwidth reserved for the presentation
is allocated based on the low bitrate audio stream that follows
the images, the startup delay will be higher. On the other hand,
if the higher bandwidth is reserved to minimize the startup
delay, the capacity may be wasted during the remainder of the
presentation when low bitrate audio is delivered. The tradeoff
depends on resource availability and startup-delay tolerance of
the application.

Given a startup delay , the buffer required is equal to the
size of the objects that can be loaded (transmitted to the client)
in time . The minimum buffer required for this delay is .
The minimum startup delay for any presentation is equal to the
time required to transmit (load) the objects/instances to be dis-
played at time 0. We refer to this time as . is the op-
timal startup delay for startup delay-optimal schedules and is
the lower bound on startup delay for bandwidth-optimal sched-
ules.

A. Residual Data Volume

We introduce the notion of data volume to quickly compute
the minimum startup delays needed for a presentation and de-
termine the nonschedulability. Data volume is the amount
of data (in bits) transferred during a session. The amount of data
that can be carried by a channel during a session is the data
pipe volume . The amount of data volume ex-
ceeding the data pipe volume is the residual data volume

. A positive gives the lower bound on the amount
of data to be loaded during startup and hence determines the
lower bound on the startup delay for a presentation. A negative
value of indicates unused channel capacity during the ses-
sion. We prove the lower bound on channel capacity required in
Theorem 2.

Theorem 2: For a presentation of duration , the lower
bound on channel capacity required for a startup delay-optimal
schedule is

where

and the bound is tight.
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Proof:

For a presentation of length , the data pipe volume at the
given pipe capacity is

Assuming that the buffers are filled up at a rate C, the startup
delay due to is

To minimize the startup delay

Since , substituting we get the lower bound
on the channel capacity

From constraint (1)

From constraint (2)

Assuming that the presentation starts at time 0

From constraints (1) and (2)

Similarly

Since the AUs are transmitted on a single channel

Fig. 3. Example to prove the tightness of the bound.

We can show that the bound is tight by considering the ex-
ample as shown in Fig. 3.

Object 1 has two AUs and object 2 has one AU. The decoding
times and sizes of AUs in bytes are

With these values, the send times and channel capacity are
, , and

bytes/s.
The actual channel capacity required to minimize startup

delay may be higher depending on the timing constraints of
AUs. Note that irrespective of the channel capacity, the min-
imum startup delay remains nonzero and is equal to .

Thus, for any given presentation with resource constraints,
the minimum startup delay is , the min-
imum buffer capacity required is , and the
presentation is schedulable only if the available buffer is at least
equal to .

IV. SCHEDULING ALGORITHMS

In this section we describe a family of scheduling algorithms
for AV object scheduling. Given an AV presentation, the sched-
uling algorithms compute a delivery schedule according to the
selected criteria. We assume that the terminal buffer is fixed and
compute startup delay-optimal or bandwidth-minimizing sched-
ules. The algorithms can also be repurposed to compute the min-
imum terminal buffer required for a given channel capacity.

A. FullSched Algorithm

This algorithm is based on the last-to-first idea mentioned in
[20] for scheduling jobs on a single machine. The main principle
behind this algorithm is scheduling an AU with latest deadline
first and scheduling it as close to the deadline as possible. The
algorithm computes the schedule starting with an AU with the
latest decoding time in the presentation. This algorithm com-
putes the schedule, the required startup delay, and any channel
idle times. The channel idle times computed are used in the
gap-scheduling algorithm described in Section IV-B.

Let be the set of current AUs to be scheduled. Initialize
to contain the last AU of each of the objects to be scheduled. Let

be the index of the next AU of object to be scheduled

Initialize , . is the AU of object
to be scheduled next. contains at most one AU for every
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object . is the set of channel idle times. Idle time is given
by a tuple , i.e, the channel is idle for duration starting at
time . Initialize . Set current time . Sort AU of
objects in the decreasing order of their decoding times.

BEGIN
while {

,
; //send time for

; // Update
--;

// Update by removing from S
;

// add to
if

if ,
// there is a gap on the channel

,
}
if
then

, ,
END

The process begins with initialized with the last AU of each
of the objects in the presentation and initially empty. In each
of the iterations, the AU with the latest decoding time is sched-
uled as close to the decoding time as possible. Ties are broken
arbitrarily. Once the AU of an object is scheduled, the next AU
of that object is added to as long as there are AUs to be sched-
uled. The current time is given by . A value of greater than the
largest decoding time of AUs in indicates idle
time on the channel (gaps or slots). The channel is idle because
nothing can be scheduled between and . This is
illustrated in the example below.

Example: Consider two objects: object with two AUs and
object with one AU with duration on channel, d, and de-
coding time stamp, T given as a set of tuples .

and . After is sched-
uled, at time , nothing can be scheduled between

and current time resulting in a gap on the
channel. A negative value of the send time indicates that the AU
has to be transmitted before the presentation starts giving rise to
a startup delay. The FullSched example is depicted in Fig. 4.

When becomes empty, i.e., all AUs are scheduled, a neg-
ative value of indicates the required startup delay for the pre-
sentation and gives the set of gaps on the channel. Since the
decoding times are all nonnegative, once becomes neg-
ative, there are no gaps on the channel indicating that the AUs
are tightly packed. A gap is not an indication of the subopti-
mality of the schedule. However, it may indicate the subopti-
mality of the bandwidth-optimized schedule, i.e, it may be pos-
sible to schedule the presentation at a lower bandwidth. When

, this algorithm can be used to determine the schedula-
bility of individual objects and determine the unschedulability

Fig. 4. FullSched example.

of a presentation. This is especially useful during the content
creation process where objects are added to create presenta-
tions. When an object is added during an editing operation, it
is faster to determine the unschedulability of a presentation by
computing the independent schedules of objects and adding the
startup delays of the independent schedules. However, a full
schedule should still be computed after the editing operations to
determine the schedulability of the presentation under given re-
source constraints. This algorithm is not efficient in computing
the schedulability during the content creation process, as the full
schedule needs to be recomputed every time an object is added.
We next present a gap-scheduling algorithm that computes in-
cremental schedules to determine the schedulability of a pre-
sentation and is well suited for the content creation process. We
also prove that FullSched and gap-scheduling algorithm com-
pute startup delay optimal schedules.

Theorem 3: Algorithm FullSched produces a startup delay-
optimal schedule.

Proof: The algorithm selects an AU with the latest de-
coding time and schedules it as close to the deadline as possible,
i.e., the algorithm schedules the AUs in nonincreasing order of
their decoding times. On a conceptual timeline, with time in-
creasing from left to right, we are stacking the AUs as much to
the right as possible. Gaps occur only when there is nothing to
be scheduled in that gap. Any (or part of) AUs that appear to the
left of the origin (time 0) give the startup delay. Since the al-
gorithm always moves the AUs to the right whenever possible,
the startup delay is minimized. A smaller startup delay is not
possible because, it would mean moving the AUs to the right
implying that there is a usable gap on the channel. This cannot
be the case because the algorithm would have scheduled an AU
in that gap!

B. GapSched Algorithm

The gap-scheduling (GapSched) algorithm schedules AUs in
the available gaps on a channel. It starts with available gaps on a
channel and tries to fit an AU or a partial AU using the SplitAnd-
Schedule procedure. The initial set of gaps may be obtained by
using FullSched to schedule a single object. The algorithm looks
for the first available gap starting at a time less than the decoding
time of the AU to be scheduled. Since is already sorted in the
decreasing order of gap times, the look up can be done very ef-
ficiently. If the gap duration is not long enough to fit an AU, the
AU is split, with one part scheduled in the current gap and the
other added to to be scheduled next. The AUs in the presen-
tation are iteratively scheduled until becomes empty.

contains all the AU of the object ,
, and . Sort AUs in in the decreasing order
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of their decoding times. set of available slots .
is the th tuple in with start time and duration .

.

BEGIN
while {
find a slot , , such that

if {
//send

time for
--;
// update the gap
if

else
;

// remove AU from the set
;

}
else{
PROCEDURE SplitAndSchedule

( , );
}

}
END

Split the AU into two parts, one part that is scheduled in
and the other that is placed back in .

PROCEDURE SplitAndSchedule ( , )
{
Create a subAU of length with

the last bytes of the AU.
;

;
;

}

C. IncSched Algorithm

The incremental scheduling (IncSched) algorithm computes
the schedule for a presentation by considering one object at a
time. This is a typical content creation scenario where objects
are composed to create a presentation. Instead of recomputing
the full schedule with FullSched algorithm each time an object
is added, this algorithm computes the schedules incrementally
by scheduling the AU in the available gaps. Note that not all the
gaps are schedulable. A gap is unschedulable if there are no AUs
with decoding times greater than the gap time. An unschedu-
lable gap indicates unused bandwidth, which is either due to the
structure of the presentation or due to a suboptimal schedule.
The IncSched algorithm uses FullSched and GapSched algo-
rithms to schedule a presentation. This algorithm appears to be
more efficient than FullSched as it schedules parts of AUs and
fills all the gaps. However, this is only as efficient as FullSched
as far as startup delay is concerned. Splitting the AUs in order

Fig. 5. Schedules computed using FullSched and IncSched.

to pack the gaps is not going to decrease the startup delay, as the
available channel capacity is the same. The startup delay, like in
other cases, is given by the send-time of the first AU transmitted.

OBJ is the set of objects in the presentation.

BEGIN
Apply FullSched and compute

schedule for object 1.
//LRG is a sufficiently large

number to accommodate startup delay.

for , apply gap scheduling
GS to .
for , find , the send

time of the first AU to be transmitted
(smallest )
if
then

, ,
END

Theorem 4: The IncSched algorithm is startup delay-op-
timal.

Proof: The first object is scheduled using FullSched
producing a startup delay-optimal schedule for that object.
GapSched, when applied iteratively to the remaining objects,
packs the AUs tightly, i.e., an AU is scheduled if the gap time
is less than the decoding time for that AU. The resulting startup
delay is optimal because the algorithm would reduce the startup
delay by moving the AU to the right on the timeline if any
schedulable gap is available.

Example: Consider two objects: with two AUs, and
with one AU with duration on channel and decoding time
stamp given as a set of tuples .
and . The top part of Fig. 5 shows the schedule
computed using FullSched, and the bottom half shows the
schedule computed with IncSched, with object 2 scheduled first
using FullSched. The figure also shows unschedulable gaps in
both the schedules.

There may be cases where splitting the AUs is necessary,
for example, the underlying transport layer may not be able to
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Fig. 6. First gap-time and startup delay of a presentation.

handle large AUs. This result shows that AUs can be split while
maintaining the optimality of the schedule. Although the Inc-
Sched algorithm produces an optimal schedule and is useful in
determining the schedulability of a presentation in applications
such as content creation, the schedule generated by FullSched
may be more efficient when the overhead due to splitting and
packetizing is significant.

D. MinC Algorithm

In scheduling AV objects, we have so far answered two ques-
tions: 1) Is the given presentation schedulable under the given
resource constraints, and 2) what is the minimum startup delay
required for this presentation? If the answer to question 1 is neg-
ative (or if bandwidth consumption needs to be minimized), the
question we need to address is what are the minimum amounts
of resources required to schedule the presentation? Since we
cannot make assumptions about decoder buffers in order to keep
the schedules player-independent, the only resource that can be
acquired is the bandwidth . We next present the MinC algo-
rithm that computes the minimum bandwidth (CBR) required to
schedule a presentation.

This algorithm is based on the premise that there is a gap
on the channel only when everything else after the gap-time
has been scheduled. Otherwise, an unscheduled AU would have
taken up the gap. The presentation is not schedulable because
there is not enough channel capacity until the first gap time,

(smallest gap time). Consider the case in Fig. 6. is the
first gap-time is the maximum allowable startup delay
with the current channel capacity, and is the current startup
delay. The channel capacity should be increased to accommo-
date in the duration . The new value of

then is . The addi-
tional bandwidth necessary is therefore equal to

. The algorithm also outputs the for the
presentation in the form of three tuples capacity, start, end .
Note that the increased channel capacity is not going to affect
the schedule from to . A finer BP can be obtained by
initializing with and increasing by a small value in
each iteration.

BEGIN
=gap count gap count, number

of gaps on the channel.

is the decoding time of the
first AU scheduled (=duration of the
presentation)

, computed using the results
of theorem 2.

Fig. 7. Typical BP generated by MinC.

SCHEDULE: compute schedule using
FullSched

If schedulable goto END
if

else {

Find the smallest gap time,

}

goto: SCHEDULE
END

The channel capacity output by the algorithm is in the form of
a set of three tuples forming a BP. The minimum CBR channel
required is given by the maximum value of in the BP. This
profile may also be used to reserve session bandwidth efficiently.
Since the schedule is computed from last to first (right-to-left on
the timeline), the BP will always be a step function with possible
steps (decreasing) from left to right. Fig. 7 shows some sample
profiles. This algorithm does not give the best profile to reserve
variable session bandwidth since the algorithm does not reduce
the bandwidth when it is unused. Consider the example shown
in the Fig. 7. At , a capacity increase is necessary. Suppose
the increase in at is sufficient to schedule the presentation.
It is possible that the presentation from 0 to could have been
scheduled with a much smaller capacity.

E. BestSched Algorithm

When a presentation cannot be scheduled with the given re-
sources, and additional resources cannot be acquired, the only
way to schedule the presentation is to drop some AUs. AUs
cannot be dropped arbitrarily as they have different effects on
the presentation. Content creators should assign priorities to ob-
jects and possibly AUs of objects to help a scheduler in deter-
mining the AUs to be dropped. The following algorithm sched-
ules a presentation by dropping lower priority objects.

BEGIN
SCHEDULE: Compute schedule using
FullSched.
if {
Remove of lower priority ob-

jects such that,

goto: SCHEDULE
}

END
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Fig. 8. Structure of the presentation in the example.

V. RESULTS AND DISCUSSION

Determining the schedulability of a presentation is of
complexity, where is the number of AUs in the presentation.
Both FullSched and GapSched fall under this category. These
algorithms are used to determine the schedulability, compute
an optimal startup delay for the given channel capacity, and for
computing incremental schedules. The MinC algorithm, used to
compute the minimum channel capacity required to schedule the
presentation, calls FullSched iteratively with channel capacity
incremented in each iteration. The number of iterations depends
on the structure of the presentation and the initial value of C.
The complexity of this algorithm is , where
is a constant determined by the structure of the presentation and
the initial channel capacity. The proposed algorithms are fast
enough to determine the schedulability of the presentations in
real-time.

The structure of the presentation has significant impact on the
performance of MinC algorithm. To aid the discussion, we con-
sider a relatively complex MPEG-4 presentation with structural
overview as shown in Fig. 8. The properties of the objects in the
presentation are tabulated in Table I.

In the following discussion we refer to objects by the codes
shown in the first column of the table. The presentation is made
up of 16 objects including scene description, object description,
images, audio, and video. A screenshot of the presentation as
seen in an MPEG-4 player is shown in Fig. 9. The presentation
is composed of three scenes. Before the scenes are loaded, the
scene description and object description streams are received
and decoded by the terminal. The first scene consists of four
jpeg images (I1–I4) animated to give a breakout effect. The
scene is encoded to animate the images for 10 s and then load
the second scene. The second scene consists of a background
image (I5), four logos with animation effects (I6–I9), and two
images (I10 and I11) with descriptive text of the following AV
scene. The last scene consists of a background image, an audio
stream, and a video stream. The temporal layout of the pre-
sentation is shown in Fig. 8. The times indicated are the de-
coding times of the first AUs of the objects starting at that time.
Thus, the first four images (I1–I4), the scene description (S1)
and the object descriptor stream (O1) should reach the decoder
before anything is displayed on the screen. This amounts to the
minimum startup delay for the presentation. The objects I5–I9
should reach the decoder by the time 10, I10 and I11 by 15,

TABLE I
PROPERTIES OF OBJECTS IN THE EXAMPLE

Fig. 9. Snapshot of the player with the scheduled presentation.

and the first AU of V1 and A1, and the object I12 should reach
the terminal by the time . The video ends at while
the audio stream continues until the end of the presentation. The
total length of the presentation is 122. This temporal ordering of
objects in the presentation results in higher data rates toward the
beginning of the presentation (object data to be delivered in the
first 16 s: 261 Kb 130 Kb/s).

A. Startup Delay and Capacity Computation

Fig. 10 shows the plot of the minimum channel capacity re-
quired for a given startup delay. This is a scenario with variable
buffer at the terminal. We assume a work-conserving transport
layer that delivers the objects at the minimum required capacity.
The amount of buffer available at the terminal should be at least
sufficient to store the data during the startup. For a startup delay
of , if is the min capacity required, then the buffer at
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Fig. 10. Computing min capacity using MinC.

Fig. 11. Computing BP using MinC.

the terminal . This curve is useful to deter-
mine the amount of buffer (delay) required based on the avail-
able network capacity, especially with terminals such as PC’s
with sufficient memory. As mentioned earlier in the discussion
of the MinC algorithm, the MinC algorithm also computes the
BP for presentations.

Fig. 11 shows the BP computed for a startup delay of 5 s. The
minimum capacity in the profile is 59 Kb/s even for the segment
(80–120 s) that only has low bit rate audio (6 Kb/s). This is
because MinC starts with an initial value of C computed using
the residual data volume as described in Section III. This starting
point is acceptable for computing a CBR channel required; for
a profile to be used in reserving variable network resources, a
lower initial value of C should be selected. The final bandwidth
jump in the profile gives the minimum channel capacity required
for the given delay or buffer.

B. Buffer and Capacity Computation

The available buffer at the terminal determines the amount
of startup delay a terminal can support. The available channel
capacity imposes a lower limit on the buffer required. Lower
channel capacity implies higher startup delays, and hence,
larger required buffer. Fig. 12 gives the required buffer at
various channel capacities. This can be directly converted to
the startup delay at that capacity. Computing the capacity for a
given buffer is bit more computationally intensive. Unlike the
previous case where we assumed enough capacity to support
the required startup delay, the buffer capacity is fixed in this
case. This typically the scenario when using dedicated devices
such as set-top-boxed with fixed receiving buffers. Since the
buffer is fixed, the supported startup delay decreases as channel
capacity increases. For MinC algorithm to complete, the reduc-
tion in startup delay due to increased channel capacity should

Fig. 12. Minimum required buffer.

Fig. 13. Partial profile for low terminal buffer.

be greater than the reduction in startup delay supported by the
buffer.

Fig. 13 shows a case with terminal buffer . For the
given presentation Kb, the size of objects to be
decoded at time 0. As discussed in Section III, for a presen-
tation to be schedulable, the available buffer should be greater
than , the lower bound on the required buffer capacity for
the presentation. Since the terminal buffer is less than the re-
quired buffer, at any given capacity C, the supported startup
delay , the required startup-delay. The
presentation is hence unschedulable with terminal buffer ca-
pacity of 84 Kb. This is depicted in Fig. 13, which shows the
presentation is unschedulable even at 3323 Kb/s. The plot shows
that no matter how much the channel capacity is increased, the
presentation cannot be scheduled because of limited terminal
buffer. To avoid infinite loops in MinC, the scheduler should
first examine the available and required buffer capacities.

VI. CONCLUSION

We presented the problem of scheduling object-based AV
presentations under resource constraints. The problem is
NP-complete in the strong sense. We explored similarities
with the problem of sequencing jobs on a single machine and
used the idea of last-to-first scheduling to develop heuristic
algorithms to determine schedulability and compute startup
delay-optimal schedules. The proposed algorithms are appli-
cable in optimizing the delivery of any generic object-based
AV presentations and also mixed media presentations described
with formats such as SMIL [30]. The algorithms can be applied
in scheduling object-based MPEG-4 presentations.

We introduced the notion of residual data volume to compute
lower bounds on buffer, channel capacity, and startup delay. De-
termining the schedulability of presentations online is important
for applications like content creation where an additional object
may make the presentation unschedulable. We presented an al-
gorithm that computes incremental schedules and produces a
startup delay optimal schedule. The incremental scheduling is
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very useful in application such as content authoring where au-
thors add and remove objects to presentations during creation.
The IncSched algorithm computes the incremental resources re-
quired to schedule the additional object. Starting with a lower
bound on the channel capacity for scheduling a presentation, the
MinC algorithms minimizes the CBR channel capacity required
to schedule the presentation. The proposed algorithms are of low
complexity and can be implemented efficiently.
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