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Abstract

In this paper we rewrite the Minimal-Connected-Component (MCC) model in 2-D meshes in a fully dis-

tributed manner without using global information so that not only can the existence of a Manhattan distance

path be ensured at the source, but also such a path can be formed by routing decisions made at intermediate

nodes along the path. We propose the MCC model in 3-D meshes and extend the corresponding routing in

2-D meshes to 3-D meshes. We consider the positions of the source and destination when the new faulty com-

ponents are constructed. Specifically, all faulty nodes will be contained in some disjoint faulty components

and a healthy node will be included in a faulty component onlyif using it in the routing will definitely cause

a non-minimal routing path. A distributed process is provided to collect and distribute MCC information

to a limited number of nodes along so-called boundaries. Moreover, a sufficient and necessary condition

is provided for the existence of a Manhattan distance path inthe presence of our faulty components. As a

result, only the routing having a Manhattan distance path will be activated at the source and its success can

be guaranteed by using the boundary information in routing decisions at the intermediate nodes. The Monte

Carlo simulation results of our new fault information modelshow substantial improvement in the percentage

of success Manhattan routing conducted in 3-D meshes.

Index Terms: 3-D meshes, adaptive routing, distributed algorithms, fault information models, minimal

routing.
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ACRONYMS

2-D meshes 2-dimensional meshes

3-D meshes 3-dimensional meshes

MCC minimal connected components

(+X/ + Y )-routing Manhattan routing from(0, 0) to (dx, dy) (dx, dy ≥ 0) in 2-D meshes

(+X/ + Y/ + Z)-routing Manhattan routing from(0, 0, 0) to (dx, dy , dz) (dx, dy, dz ≥ 0) in 3-D meshes

NOTATION

s source node

d destination node

[x : x′, y : y′] a rectangular region in 2-D meshes with four vertexes(x, y), (x, y′), (x′, y′), and

(x′, y)

[x : x, y : y′] a line segment along theY dimension with two end points(x, y) and(x, y′)

and, respectively, we have a line segment along theX dimension[x : x′, y : y]

M(c) an MCC with the initialization cornerc

QX(c)/QY (c)/QZ(c) the region extending fromM(c) along theX/Y/Z dimension that should be

forbidden for a Manhattan routing to enter

Q′

X(c)/Q′

Y (c)/Q′

Z(c) the corresponding critical region ofM(c)

(+Y − X)-corner the corner of a section of an MCC in 3-D meshes parallel to planez = 0

that has the minimum coordinate along theX dimension of those which have

the maximum coordinate along theY dimension and, respectively, we have

(+Y − Z)-, (+X − Y )-, (+X − Z)-, (+Z − Y )-, and(+Z − X)-corners

(+Y − X)-edge the edge of an MCC in 3-D meshes that only contains its(+Y − X)-corners

and, respectively, we have(+Y − Z)-, (+X − Y )-, (+X − Z)-, (+Z − Y )-,

and(+Z − X)-edges

[x : x′, y : y′, z : z′] a cuboid region in 3-D meshes with eight vertexes(x, y, z), (x, y, z′), (x, y′, z′),

(x, y′, z), (x′, y, z), (x′, y, z′), (x′, y′, z′), and(x′, y′, z)

[x : x, y : y′, z : z′] a rectangular region on theX plane in 3-D meshes and, respectively, we have

rectangles[x : x′, y : y, z : z′] and[x : x′, y : y′, z : z] on theY andZ planes

1 Introduction

In a multicomputer system, a collection of processors (or nodes) work together to solve large application

problems. These nodes communicate data and coordinate their efforts by sending and receiving packets
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through the underlying communication network. Thus, the performance of such a multicomputer system

depends on the end-to-end cost of communication mechanisms. The routing time of packets is one of the

key factors critical to the performance of multicomputers.Basically, routing is the process of transmitting

data from one node, called the source node, to another node, called the destination node. It is necessary to

present theManhattan routing, i.e., the minimal routing, which always routes the packet to the destination

through a Manhattan distance path [1], so that the destination can be reached in the quickest way.

The mesh-connected topology[8], [11] is one of the most thoroughly investigated networktopologies

for multicomputer systems. Like 2-dimensional (2-D) meshes, 3-D meshes are lower dimensional meshes

that have been commonly discussed due to structural regularity for easy construction and high potential

of legibility of various algorithms. Some multicomputers were built based on the 3-D meshes [3], [11].

As the number of nodes in a mesh-connected multicomputer system increases, the chance of failure also

increases. The complex nature of networks also makes them vulnerable to disturbances. Therefore, the

ability to tolerate failure is becoming increasingly important for Manhattan routing [13], [18], [21].

In designing a fault-tolerant routing, one of the most important issues is to select an appropriate fault

model. Most existing literature [4], [5], [6], [7], [9], [12], [14], [21], [22] uses the simplest orthogonal

convex region to model node faults (link faults can be treated as node faults by disabling the corresponding

adjacent nodes). In 2-D meshes, a routing will be blocked from entering the rectangular shape region, also

called rectangular fault block, because using any non-faulty node inside it may cause a detour and make

the routing non-minimal (see Figure 1 (a)). When the rectangular fault block is extended to cuboid in

3-D meshes, most routings blocked by the rectangle-shaped section of this cuboid on one plane can find

a Manhattan distance path along an alternative plane (see Figure 1 (b)). That is, some non-faulty nodes

inside the fault cuboid can be used in Manhattan routing and are unnecessarily disabled to form the cuboid-

shaped fault region. In the worst case, a few nodes can disable the entire mesh and, further, block any

communication (see Figure 1 (c)).

In this paper, we focus on the minimal fault region for Manhattan routing, in which the non-faulty con-

tained are reduced as much as possible. Because the global information models are not suitable for large-

scale and complex grid-connected networks, we also focus ona practical implementation of the fault infor-

mation model in a fully distributed manner to make the whole system more scalable where each node knows

only the status of its neighbors. The contributions are listed as follows:

• We introduce the minimal fault region MCC model for Manhattan routing in 3-D meshes. A node

will be included in an MCC of 3-D meshes if and only if using it in a routing will cause a detour

and make the route non-minimal. In this way, our MCC not only can prevent the routing from using

a non-faulty node inside the area where a detour must be made,but also will not block any possible

Manhattan distance path. Thus, each MCC has to follow a certain shape. To our knowledge, this is

the first attempt to achieve a minimal fault region in 3-D meshes. We consider the positions of the

source and destination when the MCCs are constructed.

4



disable nodes contained in the fault blockfault nodes (area)fault cuboid routing path

alternative
plane

(c)

destination
source

destination

source

(b)(a) plane
original

Figure 1. (a) Routing blocked from entering a rectangular fa ulty block in 2-D meshes. (b) The

use of alternative plane in Manhattan routing after the bloc k in the original plane. (c) A sample

of fault cuboid that contains too many non-faulty nodes.

• We provide a fully distributed method via information exchanges among neighbors to collect MCC

information and distribute to a limited number of nodes, also called boundaries. The boundaries

exactly surround the region in which the routing cannot find the Manhattan distance path. The process

of boundary construction is not trivial.

• The boundary information is introduced to Wu’s adaptive routing [17], where the path is formed by

routing decisions at intermediate nodes. Only a Manhattan routing will be activated and its success

can be guaranteed.

• Extensive simulation is developed in the Monte Carlo method[2] to determine the number of non-

faulty nodes included in MCCs in 3-D meshes and the rate of successful Manhattan routing under the

MCC model. The results obtained are compared with the best currently known results.

A short summary of our approach follows. First, without using global information, we rewrite Wang’s

MCC model in 2-D meshes [15] which is a refinement of the rectangular fault block model. After each non-

faulty node in Wang’s MCC is labeled, the shape of the fault region is identified in our identification process.

Then, the identified information of this MCC will be propagated along the boundaries [10], [16]. After that,

Wu’s adaptive routing in [17] with two phases is extended to the Manhattan routing in 2-D meshes: In

phase one, Wang’s sufficient and necessary condition for theexistence of a Manhattan distance path, which

has been rewritten without using global information, is used to ensure the Manhattan routing at the source

node. In phase two, the routing process at each intermediatenode, including the source, will forward the

message to the next node along the path. It uses the boundary information to keep the route minimal while

not missing any Manhattan distance path. Second, our information processes in 2-D meshes are extended

to 3-D meshes. We introduce the MCC in 3-D meshes. A labeling process is proposed to identify all nodes
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inside MCCs. The information propagation along 2-dimensional surfaces in both identification process

and boundary construction is implemented through message transmission between two neighboring nodes

along one of those three dimensionsX, Y , andZ. With this boundary information, Wu’s routing in [17] is

extended to the Manhattan routing in 3-D meshes.

The remainder of the paper is organized as follows. Section 2introduces some necessary notations and

preliminaries. Section 3 provides our boundary construction for MCCs in 2-D meshes and our boundary-

information-based minimal and adaptive routing. In the same section, Wang’s sufficient and necessary

condition for the existence of a Manhattan distance path is rewritten without using global information.

Section 4 presents the MCC model in 3-D meshes and extends thecorresponding processes in 2-D meshes to

3-D meshes. A node labeling scheme for non-faulty nodes in each MCC and the construction of boundaries

for an MCC are presented. Section 5 provides a sufficient and necessary condition for the existence of a

Manhattan distance path in 3-D meshes. In Section 6, our Manhattan routing in 3-D meshes is provided. Its

performance improvement compared with the best existing routing is shown in the Monte Carlo simulation

results in Section 7. Its improvement on the cost of information model is also shown in Section 7. Section

8 concludes this paper and provides ideas for future research.

2 Preliminary

A k-ary n-dimensional mesh withkn nodes has an interior node degree of2n and the network diameter

is (k − 1)n. Each nodeu has an address(u1, u2, ..., un), where0 ≤ ui ≤ k − 1. Two nodes(v1, v2, ..., vn)

and(u1, u2, ..., un) are neighbors if their addresses differ in one and only one dimension, say dimensioni;

moreover,|vi − ui| = 1. Basically, nodes along each dimension are connected as a linear array. In a 2-D

mesh, each nodeu is labeled as(xu, yu) and the Manhattan distance between two nodesu andv, D(u, v),

is equal to| xv − xu | + | yv − yu |. Assume nodes is the source node,u is the current node, andd is

the destination node. Simply, for a nodeu(xu, yu), nodev(xu + 1, yu) is called the+X neighbor ofu.

Respectively,(xu − 1, yu), (xu, yu − 1), and(xu, yu + 1) are−X, −Y and+Y neighbors of nodeu in a

2-D mesh. When nodev is a neighbor of nodeu, v is called apreferred neighborif D(v, d) < D(u, d);

otherwise, it is called aspare neighbor. Respectively, the corresponding connecting directions are called

preferred directionandspare direction. In general, [x : x′, y : y′] represents a rectangular region with four

vertexes: (x, y), (x, y′), (x′, y′), and (x′, y). Specifically, [x : x, y : y′]/[x : x′, y : y] represents a line

segment along theY/X dimension. In a Manhattan routing, the length of the routingpath from source node

s to destination noded is equal toD(s, d). The Manhattan routing is also calledminimal routing. Without

loss of generality, assumexs = ys = 0 andxd, yd ≥ 0. The corresponding Manhattan routing is also

called(+X/ + Y )-routing. In this paper, the Manhattan routing in 2-D meshesand(+X/ + Y )-routing

are used alternatively. Similarly, in a 3-D mesh,(0, 0, 0) is the source node,u(xu, yu, zu) is the current

node,d(xd, yd, zd) (xd, yd, zd ≥ 0) is the destination node, and the Manhattan distance between two nodes

u andv, D(u, v), is equal to| xv − xu | + | yv − yu | + | zv − zu |. (xu + 1, yu, zu), (xu − 1, yu, zu),
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s(0,0)

useless/can’t reach node non−minimal routing minimal routing

(a) (b)

s(0,0)

d d

s(0,0)

(c)

faulty node

Figure 2. (a) Definition of useless and can’t-reach nodes. (b ) Sample of rectangular faulty block.

(c) The corresponding MCCs

(xu, yu + 1, zu), (xu, yu − 1, zu), (xu, yu, zu + 1) and(xu, yu, zu − 1) are+X, −X, +Y , −Y , +Z, and

−Z neighbors of nodeu. The Manhattan routing in 3-D meshes is also called(+X/ + Y/ + Z)-routing.

The formation of MCC in 2-D meshes [15] is based on the notionsof uselessandcan’t-reachnodes (see

Figure 2 (a)): A node labeled useless is a node such that once an (+X/+Y )-routing enters it, the next move

must take either the−X or−Y direction, making the routing non-minimal. A node labeled can’t-reach is a

node such that for an(+X/+Y )-routing to enter it, a−X or−Y direction move must be taken, making the

routing non-minimal. The node status labels of faulty, useless, and can’t-reach can be determined through

a labeling procedure. All faulty, useless, and can’t-reachnodes are also called unsafe nodes. The labeling

procedure is given in Algorithm 1 and it can quickly identifythe non-faulty nodes in MCCs. Each active

node collects its neighbors’ status and updates its status.Only those affected nodes update their status.

Eventually, neighboring unsafe nodes form an MCC. Figure 2 (a) shows the idea of the definition of useless

and can’t-reach nodes. Figure 2 (c) shows some samples of MCCs for the routing from(0, 0) to (xd, yd)

(xd, yd ≥ 0).

Algorithm 1 : Labeling procedure of MCC for the routing from(0, 0) to (xd, yd) (xd, yd ≥ 0)

1. Initially, label all faulty nodes asfaulty and allnon-faulty nodes assafe.

2. If nodeu is safe, but its+X neighbor and+Y neighbor are faulty or useless,u is labeleduseless.

3. If nodeu is safe, but its−X neighbor and−Y neighbor are faulty or can’t-reach,u is labeledcan’t-reach.

4. The nodes are iteratively labeled until there is no new useless or can’t-reach node.

5. All faulty, useless, and can’t-reach nodes (other than safe nodes) are also calledunsafenodes.
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initialization
        corner

intermediate
corner

opposite
corner

faulty node

useless/can’t
reach node

(a) (b)

dd

s(0,0) s(0,0)

identification
clockwise

counter−
clockwise

message

identification
message

Figure 3. (a) Identification process activated at the initia lization corner. (b) Identified information

re-sending.

3 Boundary information in MCC model in 2-D meshes

In this section, we provide a distributed process to collectthe information of each MCC in 2-D meshes

and distribute it along the boundaries so that not only the existence of a Manhattan distance path can be

ensured at the source node but also such a routing can be achieved successfully by routing decisions at

intermediate nodes along the path. The new routing process provided in this section can find a Manhattan

distance path from the source to the destination whenever such a path exists.

3.1 Corner and boundary of MCC in 2-D meshes

To collect the information of all MCCs for the routing process, each MCC needs to identify its fault

region. Any node inside the fault region of an MCC is called anunsafe node. Otherwise, it is called a safe

node. Any safe node with an unsafe neighbor in an MCC is calledan edgenode of that MCC. Acorner

is a safe node with two edge neighbors of the same MCC in different dimensions or a safe node with two

unsafe neighbors of the same MCC in different dimensions. After the labeling procedure, the identification

process starts from aninitialization corner. The initialization corner is a corner with two edge neighbors of

the same MCC in the+X and+Y dimensions. A safe node with two edge neighbors of the same MCC in

the−X and−Y dimensions is called theopposite corner.

From that initialization corner, two identification messages, one clockwise and one counter-clockwise, are

initiated. Each message carries partial region information. First, they will be sent to its two edge neighbors.

Such propagation will continue along the edges until the messages reach the opposite corner of the same

MCC. When the clockwise message passes through an intermediate corneru(xu, yu), node information
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d
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c

v

ss

Figure 4. Samples of boundary construction under the MCC mod el in 2-D meshes.

(xu, yu) will be attached to the message. This information will be used at the opposite corner to form the

shape of this MCC. Similarly, the counter-clockwise message will also bring the node information of every

intermediate corner it passed through to the opposite corner. After these two messages meet at the opposite

corner, the propagation will continue and bring the identified information back to the initialization corner.

This time, no new intermediate corner needs to be identified and no new information will be added into each

message. Figure 3 shows a sample of the identification process.

An MCC has only one initialization cornerc(xc, yc) and one opposite cornerc′(xc′ , yc′). If two iden-

tification messages cannot meet at that opposite corner, or if any of them finds the shape changed when

it is sent back toc, it suggests that this MCC is not stable. The message is discarded to avoid generating

incorrect MCC boundary information. If only one message is received at the initialization corner, the other

has been discarded in the propagation procedure and this message should also be discarded. Normally, a

TTL (time-to-live) is associated with each identification message and the corresponding message will be

discarded once the time expires.

In 2-D meshes, an MCC with initialization cornerc is denoted byM(c). An (+X/+Y )-routing message

should avoid entering the region right below it in the+X direction if the destination is right above it. The

first region is called theforbidden region, denoted byQY (c). The corresponding region right aboveM(c) is

calledcritical region, denoted byQ′

Y (c). Similarly, the routing message should avoid entering the forbidden

regionQX(c) on the left side ofM(c) in the+Y direction if the destination is in the critical regionQ′

X(c)

on the right side ofM(c). To guide the routing process, two boundary messages will beinitiated when

two identification messages are both received at nodec. One boundary message, also called−X boundary,

will carry the informationM(c), QY (c), andQ′

Y (c) and propagate to all the nodes along the boundary
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Algorithm 2 : Identification process and boundary construction of an MCC

1. Identification of edge nodes, the initialization cornerc(xc, yc), intermediate corners, and the opposite corner

c′(xc′ , yc′).

2. Identification process of MCCM(c): (a) From nodec, two identification message (one clockwise and one

counter-clockwise) are sent along the edge nodes ofM(c) until they reach nodec′. (b) Partial region informa-

tion, including the node information of all intermediate corners and cornerc, is transferred to form the shape

of M(c) at nodec′. (c) After they meet at nodec′, the propagation will continue until the identified informa-

tion reaches back to nodec. (d) The stable shape ofM(c) can be ensured at nodec when two identification

messages are both received. Meanwhile, the forbidden and critical regions (QX(c), QY (c), Q′

X
(c), Q′

Y
(c)) are

identified.

3. −X / −Y boundary construction ofM(c): A boundary construction is activated at nodec after it receives two

identification messages. The information ofM(c), QY (c) / QX(c), andQ′

Y
(c) / Q′

X
(c) is propagated along

the boundary linex = xc / y = yc. When the propagation intersects another MCC, sayM(v), it will make

a turn in the−X / −Y direction and go along the edges ofM(v). Eventually, it will join the same boundary

of M(v). Since then, the forbidden region ofM(v), QY (v) / QX(v), will merge into that ofM(c), QY (c) /

QX(c).

line x = xc until it reaches the edge of this 2-D mesh. When this boundaryline intersects with another

MCC (M(v)), a turn in the−X direction is made. After that, it will go along the edges ofM(v) to join

the same boundary ofM(v) at the initialization cornerv. At that cornerv, QY (v) merges intoQY (c)

(QY (c) = QY (c)∪QY (v), see Figure 4 (a)). Similarly, another boundary propagation, construction of−Y

boundary, carryingM(c), QX(c), andQ′

X(c) will go alongy = yc and make a turn in the−Y direction if

necessary (see Figure 4 (b)). The whole procedure is shown inAlgorithm 2.

3.2 Sufficient and necessary condition for the existence of aManhattan distance path in 2-D meshes

The MCC model includes much fewer non-faulty nodes in its fault region than the conventional rectan-

gular model in 2-D meshes. Many non-faulty nodes that would have been included in rectangular faulty

blocks now can become candidate routing nodes. As a matter offact, MCC is the “ultimate” minimal fault

region; that is, no non-faulty node contained in an MCC will be useful in a Manhattan routing. A routing

that enters a non-faulty node in the MCC would force a step that violates the requirement for a Manhattan

routing. In other words, the MCC is a fault information modelthat provides the maximum possibility to find

a Manhattan routing in the presence of faults. If no Manhattan routing exists under the MCC model, there

will be absolutely no Manhattan routing. In [15], a sufficient and necessary condition was provided for the

existence of a Manhattan distance path. This can be rewritten as the following:

Lemma 1: A routing does not have a Manhattan distance path iff there exists an MCCM(c) that (a)

10



s ∈ QX(c) ∧ d ∈ Q′

X(c), or (b) s ∈ QY (c) ∧ d ∈ Q′

Y (c).

Proof: A sequence of MCCs (M1, M2, ...,Mn), such that

1. M1 contains a node(0, y1) and0 < y1 < yd,

2. Mn contains a node(xd, yn) and0 < yn < yd,

3. For allMi andMi+1, 1 ≤ i ≤ n − 1,

min{a | (a, b) ∈ Mi+1} ≤ max{u | (u, v) ∈ Mi}

≤ max{x | (x, y) ∈ Mi+1}

and

max{v | (u, v) ∈ Mi} < max{y | (x, y) ∈ Mi+1}

is called Type-I sequence in [15] (see Figure 5 (a)). It is obvious that there exists such a sequence if and

only if there exits an MCC M(c) thats ∈ QY (c) andd ∈ Q′

Y (c).

Similarly, a sequence of MCCs (M1, M2, ...,Mn), such that

1. M1 contains a node(x1, 0) and0 < x1 < xd,

2. Mn contains a node(xn, yd) and0 < xn < xd,

3. For allMi andMi+1, 1 ≤ i ≤ n − 1,

min{b | (a, b) ∈ Mi+1} ≤ max{v | (u, v) ∈ Mi}

≤ max{y | (x, y) ∈ Mi+1}

and

max{u | (u, v) ∈ Mi} < max{x | (x, y) ∈ Mi+1}

is called Type-II sequence (see Figure 5 (b)). There exists aType-II sequence if and only if there exists an

MCC M(c) thats ∈ QX(c) andd ∈ Q′

X(c). Based on the result presented in [15] that a Manhattan routing

can be found if and only if neither Type-I sequence nor Type-II sequence exists, the statement is proved to

be true. For the details, refer to [15].

Theorem 1: A routing does not have a Manhattan distance path if and only if there exists an MCC in which

(a) d ∈ Q′

Y (c) and its−X boundary does not intersect with the segment [0 : xd, 0 : 0], or (b) d ∈ Q′

X(c)

and its−Y boundary does not intersect with the segment [0 : 0, 0 : yd].

Proof: Whend ∈ Q′

Y (c), based on our construction for−X boundary in Algorithm 2,s ∈ QY (c) if and

only if the−X boundary does not intersect with the segment [0 : xd, 0 : 0]. Whend ∈ Q′

X(c), similarly,

s ∈ QX(c) if and only if the−Y boundary does not intersect with the segment [0 : 0, 0 : yd]. With

Lemma 1, the statement is easy to prove.
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(a)
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d(xd,yd) d(xd,yd)

Figure 5. (a) Type-I MCC sequence. (b) Type-II MCC sequence.

3.3 Boundary-information-based routing under the MCC model in 2-D meshes

Wu proposed a minimal and adaptive routing in n-D meshes in [17]. It can easily be extended to a routing

in 2-D meshes under the MCC model (see Algorithm 3). In this routing, at the source nodes, the feasibility

check is first activated to make sure that the Manhattan routing exists. Otherwise, the routing will stop. First,

after a 180 degree self-rotation, the source nodes will play the role of the destination in Theorem 1. It sends

two detection messages, one along the−X boundary froms (+X boundary in the original mesh network

before the rotation) and one along the−Y boundary froms (+Y boundary in the original mesh network).

The first one is to check if a type-I sequence [15] exists or not. If it can reach the segment [0 : xd, yd : yd]

in the original network before rotation (return “YES”), it will make the condition (b) in Theorem 1 false. In

other words, there is no type-I sequence. Similarly, the second one is to check if a type-II sequence exists or

not. If the sources knows both segments can be reached, based on the sufficient and necessary condition in

Theorem 1, a Manhattan routing fromd to s exists. That is, a Manhattan routing froms to d exists.

At each node along the routing path, including the source node s, the routing process basically has two

preferred directions:+X and+Y . The boundary information of an MCC at the current node will help

the routing process avoid entering the forbidden region by excluding the corresponding preferred direction

from the candidates of the forwarding direction. After that, any fully adaptive and minimal routing process

could be applied to select the forwarding direction and forward the routing message along this direction

to the corresponding neighbor. The procedure of feasibility check and routing decision using boundary

information can also be seen in the samples in Figure 6.
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Algorithm 3 : Routing froms(0, 0) to d(xd, yd) (xd, yd ≥ 0)

1. Feasibility check: At sources, send two detection messages (the first along the+X boundary froms and the

second along the+Y boundary froms) until they reach the liney = yd or linex = xd. If it intersects with the

segment [0 : xd, yd : yd] / [xd : xd, 0 : yd], return “YES” to nodes; otherwise, return “NO”. If any return is

“NO”, stop the routing since there is no Manhattan distance path.

2. Routing decision and message sending at the current nodeu, including the sources:

(a) Add all the preferred directions into the set of candidates of forwarding directionsF and find all the

recorded MCCs.

(b) For eachM(c) found, exclude+Y/ + X direction fromF if d ∈ QX(c)/QY (c).

(c) Apply any fully adaptive and minimal routing process to select a forwarding direction from setF .

(d) Forward the routing message along the selected forwarding direction to the next node.
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s
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s
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s
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Figure 6. (a) Feasibility check for a case without any Manhat tan distance path. (b) Feasibility

check to ensure the existence of a Manhattan distance path. ( c) Routing decisions in routing

process to construct a Manhattan distance path.
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Figure 7. (a) Sample cuboid faulty block in 3-D meshes. (b) Th e corresponding MCCs.

4 MCC model in 3-D meshes

In this section, we present our distributed solution for constructing MCCs and propagating the region in-

formation in 3-D meshes. First, the status of each node inside a fault region is identified in a labeling process.

Then, each 2-D section and its neighboring section in a 3-D fault region are identified in an identification

process. After that, the information of 2-D sections is collected along the edges in the edge construction.

With this information, the region is identified as an MCC and the information of its shape, forbidden re-

gion, and critical region is formed. Finally, in the boundary construction, the formed information will be

propagated along the boundaries to prevent the routing fromentering the forbidden region.

4.1 Labeling process

A useless nodeu in an MCC in 2-D meshes has two useless or faulty neighbors in the +X and+Y

directions. Based on the label scheme in Algorithm 1, any (+X/+Y )-routing will be blocked by the faulty

nodes if it enters nodeu. For a non-faulty nodeu in 3-D meshes, if it has only two useless or faulty neighbors

in the+X and+Y directions, the routing message can still route around the fault region in the+Z direction.

Therefore, a non-faulty node is useless in 3-D meshes if and only if it has three useless or faulty neighbors

in the+X, +Y , and+Z directions. Similarly, a non-faulty node is can’t-reach ifand only if it has three

can’t-reach or faulty neighbors in the−X, −Y , and−Z directions. The corresponding labeling scheme is

shown in Algorithm 4.

Algorithm 4 : Labeling procedure of MCC in 3-D meshes

1. Initially, label all faulty nodes asfaulty and all non-faulty nodes assafe.

2. If nodeu is safe, but its+X neighbor,+Y neighbor, and+Z neighbor are faulty or useless,u is labeleduseless.
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initialization corner 

MCC in 3−D meshes

c(xc, yc, zc) c(xc, yc, zc)

Plane z=zcPlane z=zc

(a) (b)

Figure 8. Identification of an XY section with the initialization (+Y − X)-corner c.

3. If nodeu is safe, but its−X neighbor,−Y neighbor, and−Z neighbor are faulty or can’t-reach,u is labeled

can’t-reach.

4. The nodes are iteratively labeled until there is no new useless or can’t-reach node.

5. All faulty, useless, and can’t-reach nodes are also called unsafenodes.

Figure 7 (b) shows two sample MCCs in 3-D meshes. First,(5, 5, 6), (6, 5, 5), (5, 6, 5), (6, 7, 5), (7, 6, 5),

(5, 4, 7), (4, 5, 7), and(7, 8, 4) are faulty nodes. Then,(5, 5, 5) becomes useless and(5, 5, 7) becomes can’t-

reach according to our labeling process in Algorithm 4. One MCC contains only one faulty node(7, 8, 4)

and the other MCC contains all the other faulty, useless, andcan’t-reach nodes. Usually, a 2-D section of the

MCC parallel to planex = 0, planey = 0, or planez = 0 is not aconvex polygon. A convex polygon has

been defined in [20] as a polygonP for which a line segment connecting any two points inP lies entirely

within P . A non-convex section of the second MCC on the planez = 5 with a hole at(6, 6, 5) is shown in

Figure 7 (b).

In the following subsection, we will introduce a process (see Algorithm 5) to collect the shape information

of each MCC and distribute to a limited number of nodes along so-called boundaries for our Manhattan

routing.

4.2 Identification process

The identification process for an MCC in 3-D meshes is based onthe one for the MCC in 2-D meshes. It

starts from the identification of each 2-D section on theXY plane,Y Z plane, andXZ plane simultaneously.

Simply, we call these sectionsXY sections,Y Z sections, andXZ sections. For each section, for example,

an XY section, a two-head-on message identification process in Algorithm 2 is activated at its cornerc,

say one with the minimum coordinate along theX dimension of those which have the maximum coordinate

along theY dimension (see Figure 8). Such a corner is also called the(+Y −X)-corner of thisXY section.
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Figure 9. Samples of corners, edges, and boundaries in 3-D me shes.

The corner of a section uses the previous definition for the one of an orthogonal fault region in 2-D meshes.

This XY section may have several corners with the maximum coordinate along theX dimension and the

one with the minimum coordinate along theY dimension is called the(+X − Y )-corner of this section.

Respectively, we have(+X −Z)- and(+Z −X)-corners of aXZ section, and(+Y −Z)- and(+Z −Y )-

corners of aY Z section. EachY Z / XZ section will be identified by a similar process initiated from its

(+Z − Y )- / (+X − Z)-corner. It is noted that these two identification messages may meet at any edge

node of the section, not necessarily a corner node (see Figure 8 (b)).

After section identification, six kinds of edges of each MCC are identified for the boundary construction:

(+Y −X)-edge,(+Y −Z)-edge,(+X −Y )-edge,(+X −Z)-edge,(+Z −Y )-edge and(+Z −X)-edge

(see Figure 9). Each of these edges are defined by all of its edge nodes. Each edge node is the corresponding

corner in its 2-D section. The identification process of edgenodes is to find the path linking edge nodes in

two neighboring 2-D sections. The edge node next to the otherin the routing direction,+X, +Y , or +Z

direction, is called a succeeding edge node. The other one iscalled a preceding edge node. By connecting

all the links together, the entire edge can be constructed. Such a process has three phases. In phase one, a

message will be initiated at an edge node and route around its2-D section to find a path to the neighboring
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Figure 10. Identification of edge from node c(xc, yc, zc). (a) Phase one. (b) Phase two. (c) Phase

three.

section, in a certain direction, say the+Z direction in an(+Y −X) edge for the(+X/ + Y/+ Z)-routing.

In phase two, this message will be propagated along that pathto the neighboring section. In phase three,

it will route around that neighboring section to reach the corresponding corner. Once this message reaches

that corner, those two corners in neighboring sections are identified as preceding and succeeding edge nodes

and the path between them will be used for future edge construction.

For example, the(+Y −X)-edge of an MCC is defined by the(+Y −X)-corners of all itsXY sections.

The identification process for this(+Y − X)-edge starts from each(+Y − X)-corner. In phase one, from

a (+Y − X)-cornerc(xc, yc, zc) in theXY sectionz = zc in Figure 10 (a), a message will be sent to route

around this section. When such a message passes through a node u(xu, yu, zc) with an unsafe neighbor

in the−Y direction, the identified information of theY Z section on the planex = xu is used to find a

neighboring section on planez = zc + 1. A neighboring section exists ifzc is not the minimum coordinate

in the+Z dimension in thatY Z section. In phase two, the neighboring section is found and the message

will go around the correspondingY Z section to the neighboringXY section (see Figure 10 (b)). In phase

three, once the message arrives at the neighboringXY section, it will go around that section to reach its

corresponding(+Y −X) cornerc′. At nodec′, c is identified as its preceding edge node and the information

of the path to nodec (see the dash link in Figure 10 (c)) is saved for future information propagation. It is

noted that the message propagation may require several hopsto detour the irregular fault region in each

phase (see Figure 11).
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Figure 11. Some samples of identification of edge node c. (a) Identification of starting point

of edge. (b) Complex case of phase one in finding neighboring s ection. (c) Complex case of

phase two in reaching the neighboring section.

4.3 Edge construction

In phase one in the above identification process of an edge node, if the neighboring section is not found,

that starting edge node without a succeeding edge node is identified as the starting point of the entire edge,

and the corresponding section is identified as a surface of this MCC (see Figure 11 (a)). From that identified

starting edge nodeu, a collection process is activated to collect all the links between preceding and succeed-

ing edge nodes and form the entire edge. A message is sent along the paths linking each edge node and its

preceding edge node. Such a propagation will continue untilit reaches the end node (an edge node with-

out any preceding node). At each edge nodev it passes through, the section information is attached to the

message. With the previously attached information, the area of MCC from the current nodev to the starting

point u, M(v), is determined. The information of forbidden regionQ(v) and the critical regionQ′(v) can

also be formed at nodev. Figure 12 shows some samples of the determined informationat edge nodes. It is

noted that an edge node may have more than one preceding edge node (see nodec′′ in Figure 12 (a)). In that

case, the collection process needs a multicasting to all thepreceding nodes. It is also noted that each edge

node cannot have more than one succeeding edge node due to theexclusion of the corresponding edge node

in neighbor section.

4.4 Boundary construction

At each edge nodeu, say along a(+Y − X)-edge, afterM(u) is formed, the information ofM(u),

QY (u), andQ′

Y (u) will be propagated along the boundary, also called(+Y − X)-boundary, to block

the routing from entering the regionQY (u) in the +X dimension if the destination is inside the critical
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Algorithm 5 : Identification and boundary construction of an MCC in 3-D meshes

1. Identification of each 2-D section by using the identification process in Algorithm 2.

2. Identification of each edge: (a) a message is sent along each XY , Y Z, orXZ section from its starting corner to

find the path to its neighboring section; (b) the message reaches the neighboring section along this path; (c) an

identification process in Algorithm 2 is applied to reach thecorresponding corner in this neighboring section,

the succeeding edge node.

3. Edge construction: If no succeeding edge node is found, the edge node itself will be identified as the starting

node of the entire edge. From this node, a message will propagate along the links from each edge to its preceding

node(s) and such a propagation will continue until it reaches the end (an edge node without any preceding edge

node). At each edge node, the 2-D section information will beattached to the message. With the information

previously attached, the concerning MCC partM(c) can be determined. The forbidden regionQ(c) and the

critical regionQ′(c) can also be formed.

4. Boundary construction: AfterM(u), Q(u), andQ′(u) is formed at an edge nodeu, say along the(+Y − X)-

edge, the informationM(u), QY (u), Q′

Y
(u) will be propagated along its(+Y − X)-boundary in the−Y

direction. If it intersects with another MCCM , it will join the boundary of the “nose” part ofM and merge its

forbidden regionQY into QY (u).

regionQ′

Y (u). Initially, a message carrying the information is sent fromnodeu along the−Y dimension

(see Figure 13 (a)). Once this message intersects with another MCC M ′ at nodeu′(xu′ , yu′ , zu′), it will

propagate along the surface ofM ′ in the−Z and−X directions to join its(+Y −X) boundary propagation

and(+Y − Z) boundary propagation. From each joint point, the forbiddenregionQY of M ′ will merge

into QY (u): QY (u) = QY ∪ QY (u) (see Figure 13 (b)). To avoid propagation of redundant information

along the boundaries of the intersected MCC, we have the following superseding rule:

• Superseding rule: A propagation of an edge node overwrites the propagation ofits succeeding edge

node because the MCC information of the former one contains that of the latter one.

Figure 13 (c) shows that the propagation of an edge nodeu is overwritten by the propagation of its preceding

edge node on the surface of the intersected MCCM ′. A sample of a complete(+Y −X) boundary is shown

in Figure 13 (d). The whole procedure to collect and distribute MCC information is shown in Algorithm 5.

5 Sufficient and necessary condition for the existence of a Manhattan distance path in 3-D

meshes

In this section, a sufficient and necessary condition with boundary information is presented to ensure the

existence of a Manhattan distance path in 3-D meshes.

After the boundary construction, a boundary node will have the region informationM(c), the forbidden

region informationQ(c) (QX(c), QY (c), or QZ(c)), and the critical region informationQ′(c) (Q′

X(c),
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Q′

Y (c), or Q′

Z(c)). When a routing message arrives and its destinationd is insideQ′(c), the boundary line

can be used as a part of path in the Manhattan routing to route aroundM(c). Thus, we have the following

sufficient and necessary condition for the existence of a Manhattan distance path in 3-D meshes:

Lemma 2: A routing does not have a Manhattan distance path if and only if there exists an MCC for which

(a) d ∈ Q′

X ands ∈ QX , (b) d ∈ Q′

Y ands ∈ QY , or (c) d ∈ Q′

Z ands ∈ QZ .

Proof: Along the path in+X/ + Y/ + Z routing from s to d, if a Manhattan distance path exists, any

intermediate nodeu should have a lengthD(s, u) path tos (condition (a)). Among all the nodes in [0 : xd,

0 : yd, 0 : zd] meeting such a satisfaction, only a nodeu which has a lengthD(u, d) path tod can be

selected to form the Manhattan distance path froms to d (condition (b)). AssumeM(cx) is the closest MCC

that d ∈ Q′

x(cx). Respectively,M(cy)/M(cz) is the closest MCC thatd ∈ Q′

y(cy)/Q
′

z(cz). Define the

region of the Manhattan distance paths (RMDP ) that includes every node meeting the satisfaction of both

conditions (a) and (b). We have its region: [0 : xd, 0 : yd, 0 : zd]−QX(cx) − QY (cy) − QZ(cz). Based

on the construction of boundaries forQX(cx), QY (cy), andQZ(cz), a Manhattan distance path fromd to s

(i.e., froms to d) exists iff s ∈ RMDP ; that is,s 6∈ QX(cx), QY (cy), andQZ(cz).

Theorem 2: A routing does not have a Manhattan distance path if and only if there exists an MCC for

which (a)d ∈ Q′

X and neither its(+X − Y )-boundary nor its(+X − Z)-boundary intersects with the

surface [0 : 0, 0 : yd, 0 : zd], (b) d ∈ Q′

Y and neither its(+Y − X)-boundary nor its(+Y − Z)-boundary

intersects with the surface [0 : xd, 0 : 0, 0 : zd], or (c) d ∈ Q′

Z and neither its(+Z − X)-boundary nor its

(+Z − Y )-boundary intersects with the surface [0 : xd, 0 : yd, 0 : 0].

Proof: When we find an MCC and itsd ∈ Q′

X (/Q′

Y /Q′

Z ), s ∈ QX (/QY /QZ ) iff the (+X −Y )-boundary

(/(+Y −Z)-/(+Z−X)-boundary) and(+X−Z)-boundary (/(+Y −X)-/(+Z−Y )-boundary) intersect

with the surface [0 : 0, 0 : yd, 0 : zd](/[0 : xd, 0 : 0, 0 : zd]/[0 : xd, 0 : yd, 0 : 0]). With Lemma 2, the

statement is easy to prove.

6 Boundary-information-based routing under the MCC model in 3-D meshes

Based on Theorem 2, Wu’s routing in [19] in 3-D meshes is extended to a routing under the MCC model

(see Algorithm 6). Such a routing can find a Manhattan distance path from the source and destination nodes

whenever this path exists.

Similar to the routing in 2-D meshes, the feasibility check is first activated at the sources to make sure

that a Manhattan distance path exists. Otherwise, the routing will stop. First, the source nodes will play the

role of the destination in Theorem 2. Three detection messages will be sent froms along the+X, +Y , and

+Z directions. If any message, say the one along the+Y direction (see Figure 14 (c)), intersects another

MCC, it will join the (−Y + X)- and(−Y + Z) boundaries as boundary construction, i.e., the(+Y −X)-

and(+Y − Z) boundaries in the 3-D meshes after 180 degree rotation (see Figure 14 (b)). If any copy of
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Algorithm 6 : Routing froms(0, 0, 0) to d(xd, yd, zd) (xd, yd, zd ≥ 0)

1. Feasibility check: At sources, send detection messages along the+X , +Y and +Z directions. When a

message, say the one along the+X direction, intersects another MCC, it will join the(−X+Y )- and(−X+Z)-

boundaries as boundary construction. The source node will check if these three detection messages can reach

the surfaces [xd : xd, 0 : yd, 0 : zd], [0 : xd, yd : yd, 0 : zd] and [0 : xd, 0 : yd, zd : zd] respectively. If any one

of these three surfaces cannot be reached, stop the routing since there is no Manhattan distance path.

2. Routing decision and message sending at the current nodeu, including the sources:

(a) Add all the preferred directions into the set of candidates of forwarding directionsF and find all the

recorded MCCs.

(b) For each MCC found in the above step, exclude direction fromF if the destination is in the critical region

and the neighbor ofu along this direction is inside the forbidden region.

(c) Apply any fully adaptive and minimal routing process to select a forwarding direction from setF .

(d) Forward the routing message along the selected forwarding direction to the next node.

this message reaches the surface [0 : xd, yd : yd, 0 : zd], it will return “YES” back tos. If s receives all three

“YES” returns, based on the sufficient and necessary condition in Theorem 2, a Manhattan routing fromd

to s exists; that is, a Manhattan routing froms to d exists. Figure 15 shows some samples of check results.

At each node, including the source nodes, the routing process basically has three preferred directions:

the+X, +Y , and+Z directions. The boundary information of an MCC with the destination in the critical

region will help the routing process avoid entering the forbidden region by excluding the corresponding pre-

ferred direction from the candidates for the forwarding direction. After that, any fully adaptive and minimal

routing process could be applied to pick up the forwarding direction and forward the routing message along

this direction to the corresponding neighbor. Figure 16 shows some samples of routing under our MCC

model in 3-D meshes.

7 Monte Carlo Simulation Results

We developed a simulation to test the effect of our new MCC model on the performance of routing in

3-D meshes, in terms of the percentage of successful Manhattan routing. The cost for construction of MCC

model was also tested, in terms of (a) the number of unsafe nodes whose communications are disabled,

and (b) the number of rounds of information exchanges and updates needed in a synchronous round-based

system (i.e, the speed that the construction process converges). To show that our new information model is

cost-effective, the results are compared with those under the cuboid fault block (CFB) model [19], which

are the best results known to date.

The simulation is developed in the Monte Carlo estimate procedure. That is, we simply take many
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Figure 16. Samples of routing under the MCC model.

samples, independently, and average them to get results close to the true value. In the simulation, we

take many samples (> 10, 000) of a 30×30×30 3-D mesh. In each case, a certain number of faults are

uniformly distributed. After this, the MCC information andCFB information are constructed. And then,

many routing cases with a pair of the source and the destination randomly generated for each are tested in

different routings. We only test those cases when a Manhattan distance path exists between the source and

the destination. When the number of faults is larger than 500, applying the CFB model may disable all the

non-faulty nodes in the networks and furthermore disable all their communication while many nodes and

their data transmission are kept enabled under our MCC modelin the same fault configuration. Therefore,

only the results when the number of faults is no more than 500 are compared in a fair way in Figure 17. It is

noted that all the schemes presented in this paper can also beapplied in an asynchronous system; however,

to make the discussion simple, we do not pursue the relaxation here.

Compared with the CFB model, the MCC model has much fewer unsafe nodes and can enable much more

end-to-end communication in the entire network, especially when the number of faults is larger than 400.

As shown in Figure 17 (b), the construction process of our MCCmodel also converges very fast in terms

of the number of rounds needed. It is noted that in our random fault generator, the faults will be distributed

sparsely when only a small amount of faults are generated. When the number of faults is less than 10, both

MCCs and CFBs contain faults only; that is, no unsafe node is disabled and the costs under two different

models are the same. Even when the number of faults reaches 100, few unsafe nodes are disabled in both

models. Therefore, the cost is nearly the same for our new MCCmodel and the CFB model when the

number of faults is limited. However, the cost of MCC model isalways less than that of the CFB model.

Our new MCC routing proposed in this paper can find a Manhattandistance path froms to d whenever

it exists. However, it needs a broadcast along surfaces in the feasible check process. Wu presented a

simple feasibility check for the Manhattan routing in [19],which only requires message propagations along

three rays. However, if the existence of a Manhattan distance path is ensured in the check process, then a
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Figure 17. (a) Number of unsafe nodes (lg), (b) number of roun ds of information exchanges and

updates in labeling process, (c) percentage of successful M anhattan routing.
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Manhattan routing can be conducted, but not the other way around. To reduce the cost for the feasibility

check, we replace our check process in Algorithm 6 by that in [19]. The corresponding routing, denoted

by MCC’, is a simple version of our MCC routing. In the routing[19] using cuboid fault block (denoted

by CFB), the proposed Manhattan routing under the MCC model (denoted by MCC), and its simplified

version MCC’ routing, whenever the feasibility check is passed, a Manhattan routing can be guaranteed.

Thus, in these routings, the success of Manhattan routing depends on the passing rate in the check process.

Figure 17 (c) shows the percentage of passing cases, i.e., the rate of successful Manhattan routing. The

Monte Carlo simulation results show that our new MCC routingcan always find a Manhattan distance path

whenever it exists (rate of successful Manhattan routing= 100%). In MCC’ routing, the simple check

process is not able to identify every existing Manhattan distance path. Thus, MCC’ routing will have less

success than MCC routing. However, by using the MCC information, the rate is still higher than that of CFB

routing. These results show the significance of our MCC information model in 3-D meshes.

8 Conclusion

In this paper, we have proposed the minimal fault region MCC for the Manhattan routing, also called the

minimal routing, in 3-D meshes by considering the positionsof the source and destination. Using a non-

faulty node contained in an MCC will definitely make the routing non-minimal. If no Manhattan distance

path exists under the MCC model, there will be absolutely no Manhattan routing. By using our boundary

information, we have provided a fully distributed process in both 2-D meshes and 3-D meshes to collect

and distribute the MCC information. Based on this boundary information, our routing will guarantee a

Manhattan distance path for the data communication in a system without using global information. Our

estimates in the Monte Carlo method have shown the improvement under our MCC model in 3-D meshes

by comparing with the best currently known approaches. In our future work, we will study the performance

of our new routing. The maximum achieved throughput among the safe nodes that can communicate under

the MCC model will be analyzed and tested. We will also extendour results to dynamic networks in which

any of the components can become faulty during the routing process. As a result, the minimal fault region

can change its shape dynamically and the corresponding boundaries will be adjusted frequently. Next, our

results will be extended to higher dimension networks.
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