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Abstract

In this paper we rewrite the Minimal-Connected-Compon®h€C) model in 2-D meshes in a fully dis-
tributed manner without using global information so that anly can the existence of a Manhattan distance
path be ensured at the source, but also such a path can be ddwgpneuting decisions made at intermediate
nodes along the path. We propose the MCC model in 3-D mesldesxséand the corresponding routing in
2-D meshes to 3-D meshes. We consider the positions of treesmd destination when the new faulty com-
ponents are constructed. Specifically, all faulty nodeshbeilcontained in some disjoint faulty components
and a healthy node will be included in a faulty component dniging it in the routing will definitely cause
a non-minimal routing path. A distributed process is preddo collect and distribute MCC information
to a limited number of nodes along so-called boundaries. edeer, a sufficient and necessary condition
is provided for the existence of a Manhattan distance patiménpresence of our faulty components. As a
result, only the routing having a Manhattan distance path e activated at the source and its success can
be guaranteed by using the boundary information in routiagisions at the intermediate nodes. The Monte
Carlo simulation results of our new fault information modbbw substantial improvement in the percentage
of success Manhattan routing conducted in 3-D meshes.

Index Terms: 3-D meshes, adaptive routing, distributed algorithms, tfenformation models, minimal
routing.
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1 Introduction

NOTATION

source node

destination node

a rectangular region in 2-D meshes with four vertekes)), (z,v'), («’,'), and
(@', y)

a line segment along thé dimension with two end point&e, y) and(x, i)
and, respectively, we have a line segment alongXtgimension[z : 2/, y : y]
an MCC with the initialization cornet

the region extending from/ (c) along theX/Y/Z dimension that should be
forbidden for a Manhattan routing to enter

the corresponding critical region af/ (c)

the corner of a section of an MCC in 3-D meshes péatallglanez = 0

that has the minimum coordinate along tKedimension of those which have
the maximum coordinate along theédimension and, respectively, we have
+Y -2)-,(+X -Y)-, (+X — 2)-, (+Z - Y)-, and(+Z — X )-corners
the edge of an MCC in 3-D meshes that only contairis-it5s — X )-corners
and, respectively, we have-Y — 2)-, (+X - Y)-, (+X — 2)-, (+Z - Y)-,
and(+Z — X)-edges

a cuboid region in 3-D meshes with eight vertexesy, z), (z,y, 2’), (z,v', 2),
(@,9,2), (¢ y,2), (2',y, 7)), (2, ¢/, ), and (2, /', 2)

a rectangular region on th€ plane in 3-D meshes and, respectively, we have
rectangledx : o',y : y,z : 2/l and[z : ',y : ¢/, 2 : z] on theY andZ planes

In a multicomputer system, a collection of processors (alesd work together to solve large application

problems. These nodes communicate data and coordinateeffais by sending and receiving packets
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through the underlying communication network. Thus, thdgmmance of such a multicomputer system
depends on the end-to-end cost of communication mechaniShesrouting time of packets is one of the
key factors critical to the performance of multicomputeBasically, routing is the process of transmitting
data from one node, called the source node, to another nalled the destination node. It is necessary to
present théMlanhattan routingi.e., the minimal routing, which always routes the packethe destination
through a Manhattan distance path [1], so that the destima&n be reached in the quickest way.

The mesh-connected topolog], [11] is one of the most thoroughly investigated netwtokologies
for multicomputer systems. Like 2-dimensional (2-D) mest®&D meshes are lower dimensional meshes
that have been commonly discussed due to structural régyufar easy construction and high potential
of legibility of various algorithms. Some multicomputerserg built based on the 3-D meshes [3], [11].
As the number of nodes in a mesh-connected multicomputéersygicreases, the chance of failure also
increases. The complex nature of networks also makes thémerable to disturbances. Therefore, the
ability to tolerate failure is becoming increasingly imgaont for Manhattan routing [13], [18], [21].

In designing a fault-tolerant routing, one of the most intpot issues is to select an appropriate fault
model. Most existing literature [4], [5], [6], [7], [9], [12[14], [21], [22] uses the simplest orthogonal
convex region to model node faults (link faults can be tre@® node faults by disabling the corresponding
adjacent nodes). In 2-D meshes, a routing will be blockenhfemtering the rectangular shape region, also
called rectangular fault block, because using any nortyfaubde inside it may cause a detour and make
the routing non-minimal (see Figure 1 (a)). When the reaidargfault block is extended to cuboid in
3-D meshes, most routings blocked by the rectangle-shapettbs of this cuboid on one plane can find
a Manhattan distance path along an alternative plane (spee-1 (b)). That is, some non-faulty nodes
inside the fault cuboid can be used in Manhattan routing aadimnecessarily disabled to form the cuboid-
shaped fault region. In the worst case, a few nodes can dighblentire mesh and, further, block any
communication (see Figure 1 (c)).

In this paper, we focus on the minimal fault region for Marthatrouting, in which the non-faulty con-
tained are reduced as much as possible. Because the glédrah@tion models are not suitable for large-
scale and complex grid-connected networks, we also focuspractical implementation of the fault infor-
mation model in a fully distributed manner to make the whgkdem more scalable where each node knows
only the status of its neighbors. The contributions arediss follows:

e We introduce the minimal fault region MCC model for Manhattauting in 3-D meshes. A node
will be included in an MCC of 3-D meshes if and only if usingrita routing will cause a detour
and make the route non-minimal. In this way, our MCC not ordy prevent the routing from using
a non-faulty node inside the area where a detour must be rbatalso will not block any possible
Manhattan distance path. Thus, each MCC has to follow aineste@pe. To our knowledge, this is
the first attempt to achieve a minimal fault region in 3-D messhWe consider the positions of the
source and destination when the MCCs are constructed.
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Figure 1. (a) Routing blocked from entering a rectangular fa ulty block in 2-D meshes. (b) The
use of alternative plane in Manhattan routing after the bloc k in the original plane. (c) A sample

of fault cuboid that contains too many non-faulty nodes.

e We provide a fully distributed method via information exolgas among neighbors to collect MCC
information and distribute to a limited number of nodesppatslled boundaries. The boundaries
exactly surround the region in which the routing cannot fimelManhattan distance path. The process
of boundary construction is not trivial.

e The boundary information is introduced to Wu’s adaptivetirugi [17], where the path is formed by
routing decisions at intermediate nodes. Only a Manhattating will be activated and its success
can be guaranteed.

e Extensive simulation is developed in the Monte Carlo metffjdo determine the number of non-
faulty nodes included in MCCs in 3-D meshes and the rate afessful Manhattan routing under the
MCC model. The results obtained are compared with the bestraly known results.

A short summary of our approach follows. First, without wsilobal information, we rewrite Wang’s
MCC model in 2-D meshes [15] which is a refinement of the reguidar fault block model. After each non-
faulty node in Wang's MCC is labeled, the shape of the fagjfime is identified in our identification process.
Then, the identified information of this MCC will be propagdtalong the boundaries [10], [16]. After that,
Wu’s adaptive routing in [17] with two phases is extendedhe Manhattan routing in 2-D meshes: In
phase one, Wang’s sufficient and necessary condition faettstence of a Manhattan distance path, which
has been rewritten without using global information, isduseensure the Manhattan routing at the source
node. In phase two, the routing process at each intermedaate, including the source, will forward the
message to the next node along the path. It uses the boumflamnation to keep the route minimal while
not missing any Manhattan distance path. Second, our irgtom processes in 2-D meshes are extended
to 3-D meshes. We introduce the MCC in 3-D meshes. A labelinggss is proposed to identify all nodes



inside MCCs. The information propagation along 2-dimenalosurfaces in both identification process
and boundary construction is implemented through messagsmission between two neighboring nodes
along one of those three dimensials Y, andZ. With this boundary information, Wu'’s routing in [17] is
extended to the Manhattan routing in 3-D meshes.

The remainder of the paper is organized as follows. Sectimir@duces some necessary notations and
preliminaries. Section 3 provides our boundary constamcfor MCCs in 2-D meshes and our boundary-
information-based minimal and adaptive routing. In the sasaction, Wang’s sufficient and necessary
condition for the existence of a Manhattan distance patlewgitten without using global information.
Section 4 presents the MCC model in 3-D meshes and extendsrtiesponding processes in 2-D meshes to
3-D meshes. A node labeling scheme for non-faulty nodesdh BCC and the construction of boundaries
for an MCC are presented. Section 5 provides a sufficient @ogssary condition for the existence of a
Manhattan distance path in 3-D meshes. In Section 6, our Btearhrouting in 3-D meshes is provided. Its
performance improvement compared with the best existingjimg is shown in the Monte Carlo simulation
results in Section 7. Its improvement on the cost of infoioratnodel is also shown in Section 7. Section
8 concludes this paper and provides ideas for future relsearc

2 Preliminary

A k-ary n-dimensional mesh witk™ nodes has an interior node degreeafand the network diameter
is (k — 1)n. Each node: has an addregs:,, us, ..., u, ), where0 < u; < k — 1. Two nodeSvy, va, ..., vy,)
and (uq, us, ..., u, ) are neighbors if their addresses differ in one and only omeedsion, say dimensian
moreover,|v; — u;| = 1. Basically, nodes along each dimension are connected asar larray. In a 2-D
mesh, each node is labeled agz,, y,,) and the Manhattan distance between two nadasdv, D(u,v),
is equal to| x, — =y, | + | y» — yu |- Assume node is the source node; is the current node, and is
the destination node. Simply, for a nodéz,,, y,), nodev(z, + 1,y,) is called the+X neighbor ofu.
Respectively(z, — 1,v), (Tu, yu — 1), and(z,,y, + 1) are—X, —Y and+Y neighbors of node: in a
2-D mesh. When node is a neighbor of node, v is called apreferred neighboif D(v,d) < D(u,d);
otherwise, it is called apare neighbar Respectively, the corresponding connecting directicescalled
preferred directiorandspare direction In general, { : 2/, y : '] represents a rectangular region with four
vertexes: €,v), (z,v'), (',y'), and ¢’,y). Specifically,  : z, vy : ¥'1/[z : 2/, y : y] represents a line
segment along th¥/ X dimension. In a Manhattan routing, the length of the roupath from source node
s to destination nod€ is equal toD(s, d). The Manhattan routing is also calledinimal routing. Without
loss of generality, assume, = y, = 0 andxg,y4 > 0. The corresponding Manhattan routing is also
called (+X/ + Y)-routing. In this paper, the Manhattan routing in 2-D mestied (+X/ + Y)-routing
are used alternatively. Similarly, in a 3-D megh, 0,0) is the source nodey(z,, ¥, z.,) is the current
node,d(x4, ya4, zq) (x4, yd, 24 > 0) is the destination node, and the Manhattan distance betiweenodes
wandv, D(u,v), isequal to| x, — Ty | + | Yo —Yu | + | 20 — 2u |- (@u + 1,90 20), (@ — 1, Yu, 2u),
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Figure 2. (a) Definition of useless and can’t-reach nodes. (b ) Sample of rectangular faulty block.

(c) The corresponding MCCs

(T Yu + 1, 20), (T Y — 1, 20)y (Tuy Yuy 20 + 1) @Nd (24, Yo, 20 — 1) @are+X, =X, +Y, =Y, +7, and
—Z neighbors of node. The Manhattan routing in 3-D meshes is also calle/ + Y/ + Z)-routing.

The formation of MCC in 2-D meshes [15] is based on the notafnsselessandcan’t-reachnodes (see
Figure 2 (a)): A node labeled useless is a node such that oree’d/ + Y')-routing enters it, the next move
must take either the- X or —Y direction, making the routing non-minimal. A node labeledh't-reach is a
node such that for af- X/ + Y')-routing to enter it, & X or —Y direction move must be taken, making the
routing non-minimal. The node status labels of faulty, esg] and can’t-reach can be determined through
a labeling procedure. All faulty, useless, and can'’t-reagties are also called unsafe nodes. The labeling
procedure is given in Algorithm 1 and it can quickly identtfye non-faulty nodes in MCCs. Each active
node collects its neighbors’ status and updates its sta@ugy those affected nodes update their status.
Eventually, neighboring unsafe nodes form an MCC. Figura) 3kows the idea of the definition of useless
and can't-reach nodes. Figure 2 (c) shows some samples ofsM@@he routing from(0, 0) to (z4, yq)

(.’L‘d, Ya > 0)

Algorithm 1: Labeling procedure of MCC for the routing froff, 0) to (x4, y4) (x4, ya > 0)

1. Initially, label all faulty nodes afaulty and allnon-faulty nodes asafe

2. If nodeu is safe, but itst X neighbor and+Y neighbor are faulty or uselessjs labeleduseless

3. If nodeu is safe, but its- X neighbor and-Y neighbor are faulty or can’t-reach,is labeledcan’t-reach
4. The nodes are iteratively labeled until there is no nevilesseor can’t-reach node.
5

. All faulty, useless, and can’t-reach nodes (other thémsades) are also callathsafenodes.
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Figure 3. (a) Identification process activated at the initia lization corner. (b) Identified information
re-sending.

3 Boundary information in MCC model in 2-D meshes

In this section, we provide a distributed process to colleetinformation of each MCC in 2-D meshes
and distribute it along the boundaries so that not only thstemce of a Manhattan distance path can be
ensured at the source node but also such a routing can bevedtsaccessfully by routing decisions at
intermediate nodes along the path. The new routing proaessded in this section can find a Manhattan
distance path from the source to the destination whenewér apath exists.

3.1 Corner and boundary of MCC in 2-D meshes

To collect the information of all MCCs for the routing prosegach MCC needs to identify its fault
region. Any node inside the fault region of an MCC is callecuasafe node. Otherwise, it is called a safe
node. Any safe node with an unsafe neighbor in an MCC is calteedgenode of that MCC. Acorner
is a safe node with two edge neighbors of the same MCC in diffedlimensions or a safe node with two
unsafe neighbors of the same MCC in different dimensionserAhe labeling procedure, the identification
process starts from dnitialization corner. The initialization corner is a corner with two edge neigrgoof
the same MCC in the- X and+Y dimensions. A safe node with two edge neighbors of the sam€ MC
the — X and—Y dimensions is called thepposite corner

From that initialization corner, two identification messagone clockwise and one counter-clockwise, are
initiated. Each message carries partial region infornmatkirst, they will be sent to its two edge neighbors.
Such propagation will continue along the edges until thesagss reach the opposite corner of the same
MCC. When the clockwise message passes through an intexteecbrneru(x,,, y,,), node information



the first MCC M(c)

the second MCC M(v)
forbidden region Qy(c)
in (a) or Qx(c) in (b)
critical region Q'y(c)
in (@) or Q’x(c) in (b)
-X boundary of M(c)
=Y boundary of M(c)

other MCCs

(b)

Figure 4. Samples of boundary construction under the MCC mod el in 2-D meshes.

(zw, y,) Will be attached to the message. This information will beduaethe opposite corner to form the
shape of this MCC. Similarly, the counter-clockwise messadl also bring the node information of every
intermediate corner it passed through to the opposite coiiter these two messages meet at the opposite
corner, the propagation will continue and bring the ideadifinformation back to the initialization corner.
This time, no new intermediate corner needs to be identifredh® new information will be added into each
message. Figure 3 shows a sample of the identification poces

An MCC has only one initialization cornef(z.,y.) and one opposite cornef(z.,y.). If two iden-
tification messages cannot meet at that opposite cornef,amyiof them finds the shape changed when
it is sent back ta, it suggests that this MCC is not stable. The message isrdid¢do avoid generating
incorrect MCC boundary information. If only one messageerseived at the initialization corner, the other
has been discarded in the propagation procedure and thisageeshould also be discarded. Normally, a
TTL (time-to-live) is associated with each identificatioressage and the corresponding message will be
discarded once the time expires.

In 2-D meshes, an MCC with initialization corneis denoted by\/(c). An (+X/+Y)-routing message
should avoid entering the region right below it in theX direction if the destination is right above it. The
first region is called théorbidden regiondenoted byQy (c¢). The corresponding region right abo¥é(c) is
calledcritical region, denoted by} (c). Similarly, the routing message should avoid entering tiiiéiden
region@x (c) on the left side of\/(c) in the +Y direction if the destination is in the critical regi@ply (c)
on the right side ofd/(c). To guide the routing process, two boundary messages wilhitiated when
two identification messages are both received at nodagne boundary message, also called boundary,
will carry the informationM (¢), Qy (c), and @} (c) and propagate to all the nodes along the boundary



Algorithm 2 : Identification process and boundary construction of an MCC

1. Identification of edge nodes, the initialization cornér., y.), intermediate corners, and the opposite corner
C/(xdayd)-

2. ldentification process of MC@/(c): (a) From noder, two identification message (one clockwise and one
counter-clockwise) are sent along the edge nodéd of) until they reach node. (b) Partial region informa-
tion, including the node information of all intermediatercers and cornet, is transferred to form the shape
of M (c) at nodec’. (c) After they meet at nodé, the propagation will continue until the identified informa
tion reaches back to node (d) The stable shape @ (c¢) can be ensured at nodevhen two identification
messages are both received. Meanwhile, the forbidden @iwhtregions @ x (c), Qv (¢), Q' (¢), Q% (¢)) are
identified.

3. —X / —Y boundary construction af/(c): A boundary construction is activated at nadafter it receives two
identification messages. The information/df(c), Qv (c) / @x(c), andQ} - (c) I Q'x (c) is propagated along
the boundary linec = z./ y = y.. When the propagation intersects another MCC, &&y), it will make
aturnin the— X / —Y direction and go along the edgesf(v). Eventually, it will join the same boundary
of M (v). Since then, the forbidden region 8f (v), Qy (v) / @x (v), will merge into that ofM (¢), Qv (c) /
Qx(c).

line x = x. until it reaches the edge of this 2-D mesh. When this bountiagyintersects with another
MCC (M (v)), a turn in the— X direction is made. After that, it will go along the edgesidf(v) to join
the same boundary a¥/(v) at the initialization cornew. At that cornerv, Qy (v) merges intoQy (c)
(Qy(c) = Qy(c) UQy(v), see Figure 4 (a)). Similarly, another boundary propagatonstruction of-Y
boundary, carryingV/(c), Qx(c), andQ@’y (c) will go alongy = y. and make a turn in the'Y" direction if
necessary (see Figure 4 (b)). The whole procedure is showlgorithm 2.

3.2 Sufficient and necessary condition for the existence ofManhattan distance path in 2-D meshes

The MCC model includes much fewer non-faulty nodes in itdtfiagion than the conventional rectan-
gular model in 2-D meshes. Many non-faulty nodes that woaldehbeen included in rectangular faulty
blocks now can become candidate routing nodes. As a matfacpMCC is the “ultimate” minimal fault
region; that is, no non-faulty node contained in an MCC wdluseful in a Manhattan routing. A routing
that enters a non-faulty node in the MCC would force a stepwindates the requirement for a Manhattan
routing. In other words, the MCC is a fault information motlet provides the maximum possibility to find
a Manhattan routing in the presence of faults. If no Manhattauting exists under the MCC model, there
will be absolutely no Manhattan routing. In [15], a suffidi@md necessary condition was provided for the
existence of a Manhattan distance path. This can be reweatehe following:

Lemma 1: A routing does not have a Manhattan distance path iff thefst®xan MCCM (c¢) that (a)
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s€Qx(c)NdeQy(c),or(b)s e Qy(c) Nd € Qy(c).
Proof: A sequence of MCCsM, Mo, ..., M), such that
1. M, contains a nod€0, y;) and0 < y; < Y4,
2. M, contains a nodéz, y,,) and0 < y,, < yq4,
3. ForallM; andM; 11,1 <i<mn-1,

min{a | (a,b) € M1} < max{u| (u,v) € M;}

IN

max{z | (z,y) € Mys1}
and

max{v | (u,v) € M;} < max{y| (z,y) € Mit1}

is called Type-I sequence in [15] (see Figure 5 (a)). It isiobs that there exists such a sequence if and
only if there exits an MCC M(c) that € Qy (¢) andd € Q) (c).
Similarly, a sequence of MCC4A(3, My, ..., M), such that

1. M, contains a nodér;,0) and0 < z; < xg4,
2. M, contains a nodézx,,, y4) and0 < z,, < zg4,
3. ForallM; andM; 11,1 <i<mn-1,

min{b | (a,b) € M;11} < max{v| (u,v) € M;}

N

< max{y | (z,y) € Mi11}

and
max{u | (u,v) € M;} < max{z | (z,y) € Mit1}

is called Type-Il sequence (see Figure 5 (b)). There exi3¥ga-Il sequence if and only if there exists an
MCC M(c) thats € Qx(c) andd € Qs (c). Based on the result presented in [15] that a Manhattannguti
can be found if and only if neither Type-I sequence nor Tyljpgeguence exists, the statement is proved to
be true. For the details, refer to [15]. [

Theorem 1: A routing does not have a Manhattan distance path if and driheire exists an MCC in which
(@) d € Q% (c) and its—X boundary does not intersect with the segmént 4, 0 : 0], or (b) d € Q'x(¢)
and its—Y boundary does not intersect with the segmeént(), 0 : y,].

Proof. Whend € Q} (c), based on our construction ferX boundary in Algorithm 2s € Qy (c) if and
only if the —X boundary does not intersect with the segmeént {4, 0 : 0]. Whend € Qs (c), similarly,
s € Qx/(c) if and only if the —Y boundary does not intersect with the segmént [0, 0 : y4]. With
Lemma 1, the statement is easy to prove. [

11
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x=xd x=xd

(a) (b)

Figure 5. (a) Type-l MCC sequence. (b) Type-Il MCC sequence.

3.3 Boundary-information-based routing under the MCC modd in 2-D meshes

Wu proposed a minimal and adaptive routing in n-D meshesih JLcan easily be extended to a routing
in 2-D meshes under the MCC model (see Algorithm 3). In thiging, at the source nodg the feasibility
check is first activated to make sure that the Manhattanrguxists. Otherwise, the routing will stop. First,
after a 180 degree self-rotation, the source nodal play the role of the destination in Theorem 1. It sends
two detection messages, one along th& boundary froms (+X boundary in the original mesh network
before the rotation) and one along th&” boundary froms (+Y boundary in the original mesh network).
The first one is to check if a type-1 sequence [15] exists or Hadt can reach the segmem | x4, yq : y4]
in the original network before rotation (return “YES”), itilwnmake the condition (b) in Theorem 1 false. In
other words, there is no type-l sequence. Similarly, theseéone is to check if a type-Il sequence exists or
not. If the sources knows both segments can be reached, based on the sufficéeneaessary condition in
Theorem 1, a Manhattan routing frodito s exists. That is, a Manhattan routing fronto d exists.

At each node along the routing path, including the sourceesothe routing process basically has two
preferred directions4+X and+Y. The boundary information of an MCC at the current node wdlph
the routing process avoid entering the forbidden regionxmjugling the corresponding preferred direction
from the candidates of the forwarding direction. After therty fully adaptive and minimal routing process
could be applied to select the forwarding direction and mavthe routing message along this direction
to the corresponding neighbor. The procedure of feasibdiieck and routing decision using boundary
information can also be seen in the samples in Figure 6.
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Algorithm 3: Routing froms(0,0) to d(x4, ya) (x4, ya > 0)

1. Feasibility check: At source send two detection messages (the first alongitheboundary froms and the
second along the'Y boundary froms) until they reach the ling = y, or line x = z4. If it intersects with the
segment() : xq4, yq : yal / [xq : x4, 0 : yq], return “YES” to nodes; otherwise, return “NO”. If any return is
“NQ”, stop the routing since there is no Manhattan distareth p

2. Routing decision and message sending at the currentiyadeluding the source:

(a) Add all the preferred directions into the set of candidadf forwarding directiong” and find all the
recorded MCCs.

(b) For eachM (c) found, excludet+Y/ + X direction fromF'if d € Qx(¢)/Qv (c).
(c) Apply any fully adaptive and minimal routing process &bext a forwarding direction from sét.

(d) Forward the routing message along the selected formguirection to the next node.

Y Y Y
d(xd,yd) Yes d(xd,yd) d(xd,yd;
[ S © Y N © 1 ©
y=yd 3 y=yd| A ‘ y=yd
1 1
: 3 A 3
= § = §
- | : 1 :
- Yes 3
S X S X S Cox
x=xd x=xd x=xd
(@) (b) (c)
= = detection message sent along +X — detection message sent along +Y
boundary from s, i.e., =X boundary boundary from s, i.e., =Y boundary
after 180 degree self rotation after 180 degree self rotation

—l%< preferred but forbidden direction — preferred direction (candidate
of forwarding direction)

Figure 6. (a) Feasibility check for a case without any Manhat tan distance path. (b) Feasibility
check to ensure the existence of a Manhattan distance path. ( ¢) Routing decisions in routing

process to construct a Manhattan distance path.
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Figure 7. (a) Sample cuboid faulty block in 3-D meshes. (b) Th e corresponding MCCs.
4 MCC model in 3-D meshes

In this section, we present our distributed solution forstarcting MCCs and propagating the region in-
formation in 3-D meshes. First, the status of each nodeereidult region is identified in a labeling process.
Then, each 2-D section and its neighboring section in a 3t fagion are identified in an identification
process. After that, the information of 2-D sections is etiéd along the edges in the edge construction.
With this information, the region is identified as an MCC ahd tnformation of its shape, forbidden re-
gion, and critical region is formed. Finally, in the boung@onstruction, the formed information will be
propagated along the boundaries to prevent the routing éotaring the forbidden region.

4.1 Labeling process

A useless node: in an MCC in 2-D meshes has two useless or faulty neighborbdn-tX and +Y
directions. Based on the label scheme in Algorithm 1, any (+Y)-routing will be blocked by the faulty
nodes if it enters node. For a non-faulty node in 3-D meshes, if it has only two useless or faulty neighbors
inthe+X and+Y directions, the routing message can still route aroundahk fegion in thet Z direction.
Therefore, a non-faulty node is useless in 3-D meshes if ahdibit has three useless or faulty neighbors
inthe+X, +Y, and+Z directions. Similarly, a non-faulty node is can't-reactaifd only if it has three
can't-reach or faulty neighbors in theX, —Y, and—Z directions. The corresponding labeling scheme is
shown in Algorithm 4.

Algorithm 4 : Labeling procedure of MCC in 3-D meshes
1. Initially, label all faulty nodes afulty and all non-faulty nodes aafe

2. Ifnodeu is safe, but its+ X neighbor+Y neighbor, and-Z neighbor are faulty or uselessijs labeleduseless
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Figure 8. Identification of an ~ XY section with the initialization ~ (+Y — X)-corner c.

3. If nodew is safe, but its— X neighbor,—Y neighbor, and-Z neighbor are faulty or can’t-reach,is labeled
can't-reach

4. The nodes are iteratively labeled until there is no nevesseor can’t-reach node.

5. All faulty, useless, and can’t-reach nodes are alsodaltsafenodes.

Figure 7 (b) shows two sample MCCs in 3-D meshes. Fissh, 6), (6,5,5), (5,6,5), (6,7,5), (7,6,5),
(5,4,7), (4,5,7), and(7, 8, 4) are faulty nodes. Thely, 5,5) becomes useless afid 5, 7) becomes can't-
reach according to our labeling process in Algorithm 4. Oneé@/contains only one faulty nod&, 8, 4)
and the other MCC contains all the other faulty, uselesscand-reach nodes. Usually, a 2-D section of the
MCC parallel to plane: = 0, planey = 0, or planez = 0 is not aconvex polygonA convex polygon has
been defined in [20] as a polygdh for which a line segment connecting any two pointdinies entirely
within P. A non-convex section of the second MCC on the plare 5 with a hole at(6, 6, 5) is shown in
Figure 7 (b).

In the following subsection, we will introduce a process(adgorithm 5) to collect the shape information
of each MCC and distribute to a limited nhumber of nodes alamgadled boundaries for our Manhattan
routing.

4.2 ldentification process

The identification process for an MCC in 3-D meshes is basati@one for the MCC in 2-D meshes. It
starts from the identification of each 2-D section on¥g plane,Y Z plane, andX Z plane simultaneously.
Simply, we call these sectionsY sections)Y Z sections, and{ Z sections. For each section, for example,
an XY section, a two-head-on message identification processgorithm 2 is activated at its corner
say one with the minimum coordinate along tkedimension of those which have the maximum coordinate
along theY” dimension (see Figure 8). Such a corner is also called-é— X')-corner of thisX'Y section.
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Figure 9. Samples of corners, edges, and boundaries in 3-D me shes.

The corner of a section uses the previous definition for theeadran orthogonal fault region in 2-D meshes.
This XY section may have several corners with the maximum cooreliaking theX dimension and the
one with the minimum coordinate along thedimension is called th¢+X — Y')-corner of this section.
Respectively, we have+ X — Z)- and(+Z — X )-corners of aX Z section, and+Y — Z)-and(+Z —-Y)-
corners of a¥' Z section. Eacly’Z / X Z section will be identified by a similar process initiatedrfrats
(+Z = Y)-1 (+X — Z)-corner. Itis noted that these two identification messagag meet at any edge
node of the section, not necessarily a corner node (seed=8y(In)).

After section identification, six kinds of edges of each MG€ identified for the boundary construction:
(+Y — X)-edge,(+Y — Z)-edge,(+X —Y)-edge,(+X — Z)-edge,(+Z — Y)-edge and+Z — X )-edge
(see Figure 9). Each of these edges are defined by all of issmaldes. Each edge node is the corresponding
corner in its 2-D section. The identification process of edgdes is to find the path linking edge nodes in
two neighboring 2-D sections. The edge node next to the athiere routing direction+X, +Y, or +2
direction, is called a succeeding edge node. The other aredlex] a preceding edge node. By connecting
all the links together, the entire edge can be constructedh & process has three phases. In phase one, a
message will be initiated at an edge node and route arougdDtsection to find a path to the neighboring

16



Plane x=xu Plane x=xu

XY section
on plane z=zc

c(Xc,ya

neighboring section
in the +Z direction

/ / on the plane z=zc+1
+Z +Z v +Z
(@ (b) ©
<— message propagation © initialization corner, preceding edge node succeeding edc¢

[] XY sectionof MCC [ YZ section of MCC @ MCC in 3-D meshes

Figure 10. Identification of edge from node  ¢(z¢, ., 2¢). (a) Phase one. (b) Phase two. (c) Phase

three.

section, in a certain direction, say theZ direction in an(+Y — X) edge for thg§+X/ + Y/ + Z)-routing.
In phase two, this message will be propagated along thattpdtie neighboring section. In phase three,
it will route around that neighboring section to reach theresponding corner. Once this message reaches
that corner, those two corners in neighboring sectionsdametified as preceding and succeeding edge nodes
and the path between them will be used for future edge carigiru

For example, th¢+Y — X)-edge of an MCC is defined by tlie-Y — X )-corners of all itsX'Y” sections.
The identification process for this+tY — X)-edge starts from eadh+Y — X)-corner. In phase one, from
a(+Y — X)-cornerc(zx., ye, 2c) iIn the XY sectionz = z. in Figure 10 (a), a message will be sent to route
around this section. When such a message passes througle a@dy., z.) with an unsafe neighbor
in the —Y direction, the identified information of thE Z section on the plane = z, is used to find a
neighboring section on plane= z. + 1. A neighboring section exists . is not the minimum coordinate
in the +Z dimension in thal’ Z section. In phase two, the neighboring section is found hadriessage
will go around the corresponding Z section to the neighboring Y section (see Figure 10 (b)). In phase
three, once the message arrives at the neighbakXikgsection, it will go around that section to reach its
correspondind+Y — X') cornerc’. Atnoded, cis identified as its preceding edge node and the information
of the path to node (see the dash link in Figure 10 (c)) is saved for future infation propagation. It is
noted that the message propagation may require severaltbapetour the irregular fault region in each
phase (see Figure 11).
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Figure 11. Some samples of identification of edge node c. (a) ldentification of starting point
of edge. (b) Complex case of phase one in finding neighboring s ection. (c) Complex case of

phase two in reaching the neighboring section.

4.3 Edge construction

In phase one in the above identification process of an edge, ifdtie neighboring section is not found,
that starting edge node without a succeeding edge noderitfidd as the starting point of the entire edge,
and the corresponding section is identified as a surfacéoMBC (see Figure 11 (a)). From that identified
starting edge node, a collection process is activated to collect all the linksAeen preceding and succeed-
ing edge nodes and form the entire edge. A message is segtthlepaths linking each edge node and its
preceding edge node. Such a propagation will continue itnlaches the end node (an edge node with-
out any preceding node). At each edge nodepasses through, the section information is attachedeo th
message. With the previously attached information, tha afé1CC from the current nodeto the starting
pointu, M (v), is determined. The information of forbidden regi@tv) and the critical regio®®’(v) can
also be formed at node Figure 12 shows some samples of the determined informatiedge nodes. It is
noted that an edge node may have more than one preceding edigésee nodée’ in Figure 12 (a)). In that
case, the collection process needs a multicasting to apribeeding nodes. It is also noted that each edge
node cannot have more than one succeeding edge node duestaligion of the corresponding edge node
in neighbor section.

4.4 Boundary construction

At each edge node, say along a+Y — X)-edge, afterM (u) is formed, the information of\/ (u),
Qv (u), and Qy (u) will be propagated along the boundary, also called” — X )-boundary, to block
the routing from entering the regioRy (u) in the +X dimension if the destination is inside the critical
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Figure 12. (a) Sample of constructed  (+Y — X)-edge. (b) Information ( M, Q,, and Q) formed
at end edge node endl. (c) Information formed at an edge node  ¢”. (d) Information formed at

end edge node end2.
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u’ to cover the “nose"” part. (¢) M (u) overwritten by M (v). (d) A complete (+Y — X )-boundary
constructed for MCC M.
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Algorithm 5 : Identification and boundary construction of an MCC in 3-Dsimes
1. Identification of each 2-D section by using the identifimaprocess in Algorithm 2.

2. ldentification of each edge: (a) a message is sent alomg¢&¢ Y Z, or X Z section from its starting corner to
find the path to its neighboring section; (b) the messagee=athe neighboring section along this path; (c) an
identification process in Algorithm 2 is applied to reach toeresponding corner in this neighboring section,
the succeeding edge node.

3. Edge construction: If no succeeding edge node is fourdetlye node itself will be identified as the starting
node of the entire edge. From this node, a message will pedpadpng the links from each edge to its preceding
node(s) and such a propagation will continue until it readhe end (an edge node without any preceding edge
node). At each edge node, the 2-D section information wilhttached to the message. With the information
previously attached, the concerning MCC p&f{c) can be determined. The forbidden regi@fc) and the
critical regionQ@’(c) can also be formed.

4. Boundary construction: Afte¥/ (u), Q(u), and@’(v) is formed at an edge node say along thé+Y — X)-
edge, the informatiod (u), Qy (u), Q% (u) will be propagated along its+Y — X )-boundary in the-Y
direction. If it intersects with another MC@/, it will join the boundary of the “nose” part af/ and merge its
forbidden regiorQy into Qy (u).

region@y (u). Initially, @ message carrying the information is sent froodew along the—Y dimension
(see Figure 13 (a)). Once this message intersects with @nMlEC M’ at nodew' (xy/, Yy, 2,7), it Will
propagate along the surfacef in the—Z and— X directions to join it§+Y — X)) boundary propagation
and (+Y — Z) boundary propagation. From each joint point, the forbiddegion Qy of M’ will merge
into Qy (u): Qy(u) = Qy U Qy(u) (see Figure 13 (b)). To avoid propagation of redundant mfdion
along the boundaries of the intersected MCC, we have theviolly superseding rule:

e Superseding rule A propagation of an edge node overwrites the propagatiats siicceeding edge
node because the MCC information of the former one conthiaisdf the latter one.

Figure 13 (c) shows that the propagation of an edge ndd@verwritten by the propagation of its preceding
edge node on the surface of the intersected MIZC A sample of a complete+Y — X') boundary is shown
in Figure 13 (d). The whole procedure to collect and distebMCC information is shown in Algorithm 5.

5 Sufficient and necessary condition for the existence of a Mdattan distance path in 3-D
meshes

In this section, a sufficient and necessary condition witlnoary information is presented to ensure the
existence of a Manhattan distance path in 3-D meshes.

After the boundary construction, a boundary node will hderegion informationV/ (c), the forbidden
region informationQ(c) (Qx(c), Qy(c), or Qz(c)), and the critical region informatio®’(c) (Q’x (c),
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QYy (c), or Q" (c)). When a routing message arrives and its destinatiainside()’(c), the boundary line
can be used as a part of path in the Manhattan routing to reated M (c). Thus, we have the following
sufficient and necessary condition for the existence of ahd#an distance path in 3-D meshes:

Lemma 2: A routing does not have a Manhattan distance path if and drihere exists an MCC for which
(@deQyands € Qx, (b)d € Qy ands € Qy, or (c)d € Q, ands € Q.

Proof. Along the path in+-X/ + Y/ + Z routing from s to d, if a Manhattan distance path exists, any
intermediate node should have a length (s, u) path tos (condition (a)). Among all the nodes i | x4,

0 : yq, 0 : z4] meeting such a satisfaction, only a nodevhich has a lengttD(u, d) path tod can be
selected to form the Manhattan distance path fedmd (condition (b)). Assumé/ (c, ) is the closest MCC
thatd € Q. (c.). RespectivelyM (c,)/M(c.) is the closest MCC thal € Q) (c,)/Q’(c.). Define the
region of the Manhattan distance patli&\{ D P) that includes every node meeting the satisfaction of both
conditions (a) and (b). We have its regiof: [ z4, 0 : y4, 0 : 24] -Qx(cz) — Qv (cy) — Qz(c.). Based

on the construction of boundaries Qrx (¢, ), Qy (¢y), andQ z(c.), a Manhattan distance path frafito s
(i.e., froms to d) exists iff s € RM DP; thatis,s ¢ Qx (cz), Qy (cy), andQz(c;). ]

Theorem 2: A routing does not have a Manhattan distance path if and dntizare exists an MCC for
which (a)d € Q'y and neither its(+X — Y')-boundary nor its(+X — Z)-boundary intersects with the
surface P : 0,0 : y4, 0 : z4], (b) d € Q% and neither it§+Y — X)-boundary nor it§+Y — Z)-boundary
intersects with the surfac®[: z4,0: 0,0 : z4], or (c) d € ), and neither it5+Z — X)-boundary nor its
(+Z — Y)-boundary intersects with the surface x4, 0 : y4, 0 : 0].

Proof: When we find an MCC and ii¢ € Q' (/Q4/Q%). s € Qx (/Qy/Qz) iff the (+X —Y')-boundary
(/(+Y — 2)-/(+Z — X)-boundary) and+X — Z)-boundary ((+Y — X)-/(+Z — Y )-boundary) intersect
with the surface( : 0, 0 : yq, 0 : z4](/[0 : 24,0 : 0,0 : 24] /[0 : 24, 0 : yg, 0 : 0]). With Lemma 2, the
statement is easy to prove. |

6 Boundary-information-based routing under the MCC model in 3-D meshes

Based on Theorem 2, Wu's routing in [19] in 3-D meshes is adedrto a routing under the MCC model
(see Algorithm 6). Such a routing can find a Manhattan digigoath from the source and destination nodes
whenever this path exists.

Similar to the routing in 2-D meshes, the feasibility chesKiist activated at the soureeto make sure
that a Manhattan distance path exists. Otherwise, thenguiill stop. First, the source nodewill play the
role of the destination in Theorem 2. Three detection messagll be sent frons along the+ X, +Y, and
+Z directions. If any message, say the one alongthédirection (see Figure 14 (c)), intersects another
MCC, it will join the (=Y + X)- and(—Y + Z) boundaries as boundary construction, i.e.,({th& — X)-
and(+Y — Z) boundaries in the 3-D meshes after 180 degree rotation (geeeFl4 (b)). If any copy of
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Algorithm 6 : Routing froms(0, 0, 0) to d(za, Y4, zd) (d, Yd, za = 0)

1. Feasibility check: At source, send detection messages along th¥, +Y and +Z directions. When a
message, say the one along th& direction, intersects another MCC, it will join tife X +Y)- and(— X + Z)-
boundaries as boundary construction. The source node hgliicif these three detection messages can reach
the surfacesdy : 4,0 : ¥4, 0: 24], [0 : 24, Ya : ya, 0 : zgl @nd [0 : x4, 0 : yq, 24 : z4] respectively. If any one
of these three surfaces cannot be reached, stop the rouogteere is no Manhattan distance path.

2. Routing decision and message sending at the currentnyadeluding the source:
(a) Add all the preferred directions into the set of candidabf forwarding directiong” and find all the
recorded MCCs.

(b) Foreach MCC found in the above step, exclude directiomff’ if the destination is in the critical region
and the neighbor of along this direction is inside the forbidden region.

(c) Apply any fully adaptive and minimal routing process &bext a forwarding direction from sét.

(d) Forward the routing message along the selected forwguirection to the next node.

this message reaches the surfatedf , yq : a4, 0 : z4], it will return “YES” back tos. If s receives all three
“YES” returns, based on the sufficient and necessary camditi Theorem 2, a Manhattan routing frai
to s exists; that is, a Manhattan routing froso d exists. Figure 15 shows some samples of check results.
At each node, including the source noglehe routing process basically has three preferred doesti
the+ X, +Y, and+Z directions. The boundary information of an MCC with the desion in the critical
region will help the routing process avoid entering the fdden region by excluding the corresponding pre-
ferred direction from the candidates for the forwardingedtion. After that, any fully adaptive and minimal
routing process could be applied to pick up the forwardirgation and forward the routing message along
this direction to the corresponding neighbor. Figure 16nsheome samples of routing under our MCC
model in 3-D meshes.

7 Monte Carlo Simulation Results

We developed a simulation to test the effect of our new MCC ehod the performance of routing in
3-D meshes, in terms of the percentage of successful Mamhattting. The cost for construction of MCC
model was also tested, in terms of (a) the number of unsafesnadhose communications are disabled,
and (b) the number of rounds of information exchanges anategdcheeded in a synchronous round-based
system (i.e, the speed that the construction process geslerTo show that our new information model is
cost-effective, the results are compared with those urtgecuboid fault block (CFB) model [19], which
are the best results known to date.

The simulation is developed in the Monte Carlo estimate guace. That is, we simply take many
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Figure 16. Samples of routing under the MCC model.

samples, independently, and average them to get resulie ttothe true value. In the simulation, we
take many samples>( 10,000) of a 30x30x30 3-D mesh. In each case, a certain number of faults are
uniformly distributed. After this, the MCC information ar@FB information are constructed. And then,
many routing cases with a pair of the source and the desimatindomly generated for each are tested in
different routings. We only test those cases when a Manhditiance path exists between the source and
the destination. When the number of faults is larger than &@@lying the CFB model may disable all the
non-faulty nodes in the networks and furthermore disall¢hair communication while many nodes and
their data transmission are kept enabled under our MCC mindkEe same fault configuration. Therefore,
only the results when the number of faults is no more than 5@@a@mpared in a fair way in Figure 17. Itis
noted that all the schemes presented in this paper can akgoptied in an asynchronous system; however,
to make the discussion simple, we do not pursue the relaxhgoe.

Compared with the CFB model, the MCC model has much fewerfamsales and can enable much more
end-to-end communication in the entire network, espgcialien the number of faults is larger than 400.
As shown in Figure 17 (b), the construction process of our M@dtlel also converges very fast in terms
of the number of rounds needed. It is noted that in our randautt §enerator, the faults will be distributed
sparsely when only a small amount of faults are generatederVttie number of faults is less than 10, both
MCCs and CFBs contain faults only; that is, no unsafe nodésebted and the costs under two different
models are the same. Even when the number of faults reacleseldunsafe nodes are disabled in both
models. Therefore, the cost is nearly the same for our new Mt@del and the CFB model when the
number of faults is limited. However, the cost of MCC modedlisays less than that of the CFB model.

Our new MCC routing proposed in this paper can find a Manhatistance path from to d whenever
it exists. However, it needs a broadcast along surfaceserfdlsible check process. Wu presented a
simple feasibility check for the Manhattan routing in [1@hich only requires message propagations along
three rays. However, if the existence of a Manhattan digtgnath is ensured in the check process, then a
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Manhattan routing can be conducted, but not the other waynaroTo reduce the cost for the feasibility
check, we replace our check process in Algorithm 6 by thatlB].[ The corresponding routing, denoted
by MCC’, is a simple version of our MCC routing. In the routifit] using cuboid fault block (denoted
by CFB), the proposed Manhattan routing under the MCC matdiehdted by MCC), and its simplified
version MCC'’ routing, whenever the feasibility check is ged, a Manhattan routing can be guaranteed.
Thus, in these routings, the success of Manhattan routipgriis on the passing rate in the check process.
Figure 17 (c) shows the percentage of passing cases, ieerath of successful Manhattan routing. The
Monte Carlo simulation results show that our new MCC routiag always find a Manhattan distance path
whenever it exists (rate of successful Manhattan routind00%). In MCC’ routing, the simple check
process is not able to identify every existing Manhattamadise path. Thus, MCC’ routing will have less
success than MCC routing. However, by using the MCC infolonathe rate is still higher than that of CFB
routing. These results show the significance of our MCC imfation model in 3-D meshes.

8 Conclusion

In this paper, we have proposed the minimal fault region M@QGHe Manhattan routing, also called the
minimal routing, in 3-D meshes by considering the positioh¢he source and destination. Using a non-
faulty node contained in an MCC will definitely make the ragtinon-minimal. If no Manhattan distance
path exists under the MCC model, there will be absolutely remhattan routing. By using our boundary
information, we have provided a fully distributed processboth 2-D meshes and 3-D meshes to collect
and distribute the MCC information. Based on this boundafgrmation, our routing will guarantee a
Manhattan distance path for the data communication in asystithout using global information. Our
estimates in the Monte Carlo method have shown the impromemeler our MCC model in 3-D meshes
by comparing with the best currently known approaches. hfature work, we will study the performance
of our new routing. The maximum achieved throughput amoegstife nodes that can communicate under
the MCC model will be analyzed and tested. We will also extemdresults to dynamic networks in which
any of the components can become faulty during the routinggss. As a result, the minimal fault region
can change its shape dynamically and the correspondingdiades will be adjusted frequently. Next, our
results will be extended to higher dimension networks.
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