A Trail-Based Deadlock-Free Routing Scheme in Wormhole-Routed
Networks

Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

Abstract

This paper focuses on deadlock-free routing in
wormhole-routed nelworks. A trail-based model is pro-
posed to support deadlock-free routing in any networks
with node degree no less than four. Basically, given
a graph G representing a interconnection nelwork, a
walk in G is a finite sequence of edges. The trail-based
model generalizes the trip-based model proposed earlier
and it eliminates the need for virtual channels. Fun-
damentals of this model, including the necessary and
sufficient condition of constructing a special trail for
deadlock-free routing are investigated. The potential of
this model is illustrated by applying it to meshes and
hypercubes.

Key words: deadlock, hypercubes, interconnection
nelworks, meshes, wormhole routing

1 Introduction

In a computer system, deadlocks arise when mem-
bers of a group of processes which hold resources are
blocked indefinitely from access to resources held by
other processes within the group. Formally, a deadlock
can arise if and only if the following four conditions
hold simultaneously [4]:

o Mutual exclusion: no resource can be shared by
more than one process at a time.

e Hold and wait: there must exist a process that is
holding at least one resource and is waiting to ac-
quire additional resources that are currently being
held by other processes.

e No preemplion: a resource cannot be preempted.

o Circular wait: there is a cycle in the wait-for
graphs.

285

To avoid deadlock, it suffices to break one or more
of the above four conditions. In this paper, we study
the deadlock-free routing problem in wormhole-routed
networks, where each source wants to send a mes-
sage to some destination nodes. Routing represents
the most important communication pattern. In a par-
allel/distributed system, the design and performance
of a communication mechanism depends on several
characteristics of the network architecture such as
[3] network topology, routing algorithm, and switching
strategy. The popular network topologies include 2-
D mesh (Intel Paragon), 3-D mesh (MIT J-machine),
3-D torus (Cray T3D), and hypercube (Ncube Ncube-
2). A system is called wormhole-routed if its switching
technique used is wormhole routing, in which a mes-
sage is divided into a number of flits that are pipelined
through the network. One important feature of worm-
hole routing is the following: If there is no contention
among messages for network resources the network
latency is almost insensitive to the distance between
the source and the destination. Because of the above
feature, many nonminimal deadlock-free routing algo-
rithms have been proposed for wormhole-routed sys-
tems.

Path-based routing [2] and [1] is an example of non-
minimal routing algorithms. In this routing algorithm,
the duplex-channel model is used, that is, each channel
is bidirectional. This algorithm is based on finding a
Hamiltonian path in the network. Then all the rout-
ings follow this selected Hamiltonian path (in both
directions). Clearly, circular waiting is avoided, where
each routing corresponds to a process and each edge
corresponds to a resource, and there is no starvation;
that is, each node is reachable from any other nodes.
Recently, Tseng, Panda, and Lai [7] generalized the
path-based solution and proposed a new trip-based
model. This model can be applied to any network
of arbitrary topology as long as it remains connected.
The model is supported by adding a certain number



of virtual channels to each physical channel and this
number is derived depending on the trip.

In this paper, we propose a trail-based routing
scheme which further generalizes the path-model with-
out using virtual channels. The underlying channel
model used is half-duplex, that is, messages can be
flowed to either direction, but not both at the same
time. We show that the trip-model can be applied to
torus and hypercube networks. Fundamentals of this
model, including the necessary and sufficient condition
of constructing a special trail for deadlock-free routing
are investigated.

2 Trail-based Deadlock-Free Routing

A parallel /distributed system is represented by an
undirected system graph G [6]. More formally, G is de-
fined to be a pair (V(G), E(G)), where V(G) is a non-
empty finite set of elements called vertices (also called
nodes), and E(G) is a finite family of unordered pairs
of elements of V(G) called edges (also called links).
Normally, each vertex represents a processor and each
edge is a communication link connecting two proces-
SOrS.

Definition 1: Given any graph G, a walk in G is
a finite sequence of edges of the form

Vo = V] — V2 — ... = Un-1—Un.

It is clear that a walk has the property that any two
consecutive edges are either adjacent or identical; how-
ever, an arbitrary sequence of edges of G which has
this property is not necessarily a walk. The concept
of a walk is too general for our purpose, so we shall
impose some further restrictions.

Definition 2: A walk in which all the edges are
distinct is called a traid; if, in addition, the ver-
tices Vo, V1, V2, ...Um~1, Uy are distinct (ezcept, possi-
bly, vo = v ), then the trail is called a path. A path
or traid is closed if v, = vp,.

In the path-based routing scheme, a Hamiltonian
path which passes exactly once through each vertex
of G is constructed. Because each channel is duplex,
each ordered pair (v, u), where v # u appears in the
Hamiltonian path once and only once. A pair (v, u} is
said to be in a path (or trail) if u is reachable from v
using only edges in the path (or trail). Clearly, there
is no circular wait. Therefore, path-based routing is
deadlock free.

The condition for the existence of a Hamiltonian
path is too strong. Moreover, if each channel is half-
duplex, then the existence of a Hamiltonian path is

286

not sufficient. Because, for any two vertices v and u,
either (v, u) or (u,v) is not on the path.

In the proposed trail-based routing, a trail is con-
structed and a routing uses only those edges that ap-
pear in the trail. To ensure that each (ordered) pair
of vertices (v, u) appears in the trail. We have the
following necessary condition.

Theorem 1: To ensure that each (ordered) pair of
source and destination appears in a trail, ezcept for
one verter which appears only once, all the other ver-
tices should appear at least twice.

Proof: If there are two vertices, say v and u, each
of which appears only once in the trail. Then either
(v,u) or (u,v) is not in the trail. 0

By graph theory, any graph in which each node has
even node degree (> 4) has a trail in which each node
appears at least twice. Also, any graph where there
are more than three nodes that have degree less than
4 does not have such a trail.

Corollary: The trail-based routing cannot be ap-
plied to a 2-D mesh network where each channel is
half-duplez.

Proof: In a 2-D mesh, there are four nodes (in four
corners) whose node degree is two. o

Note that two appearances of each node is just
a necessary condition but not a sufficient condition.
Consider a partial trail in the following, where num-
ber 7 in each superscript of a node represents the ith
appearance of this node in the trail.

m_, @ _ 0

'U! - - U]

2
L
Suppose both v; and v; appear only twice in the trail.
Clearly, the pair (v;, v;) cannot be in this trail. There-
fore, the necessary and sufficient condition for a given
trail is the following:

Theorem 2: For any given node v;, there is at
least one appearance of any other node to the left of
the right-most appearance of v; and there is at least
one appearance of any other node to the right of the
left-most appearance of v;.

Actually, any two consecutive Hamiltonian paths
meets the conditions in Theorem 2. In two consec-
utive Hamiltonian paths, each node appears exactly
twice and all the nodes appear exactly once before
the second appearance of any node. Note that when
two Hamiltonian paths are merged into one, if the last
node of one path is the same node of the first node of
another path, then this node appears only once. Nor-
mally, two consecutive Hamiltonian paths requires a
stronger condition than the one in Theorem 2. For
example,

(1)

) o) P )l



(b)

Figure 1: Two edge-disjoint Hamiltonian circuits in a
4-cube

(2) (2) (2) (3)

—-)'()4 —-—)’[]2 -—->’U3

- ”53) — V3
meets the conditions in Theorem 2 but it fails the con-
dition for two consecutive Hamiltonian paths. How-
ever, the following result show that if each node can
appear no more than twice in a trail, then the condi-
tion for two consecutive Hamiltonian paths is equiva-
lent to the one in Theorem 2.

Theorem 3: If each node can appear no more than
twice in a trail, then the condition for two consecutive
Hamiltonian paths is a necessary and sufficient one.

Proof- We first prove that all nodes appear exactly
once in the trail before the second appearance of any
node. By this we have the first Hamiltonian path.
The fact is proved by contradiction. Suppose node v
appear twice before the first appearance of node wu.
Because, each node can appear at most twice, there
is no appearance of v after the first and the second
appearances of u; therefore, pair (u,v) is not in the
trail.

287

Now we prove that the rest of trail forms another
Hamiltonian path. (The first element of the second
Hamiltonian path can overlap with the last element
of the first Hamiltonian path.) Again, we prove this
fact by contradiction. Suppose there is no appearance
of u in the rest of the trail, where u is not the last
element in the first Hamiltonian path. Select any node
v whose first appearance is after the first appearance
of u. Clearly, (v, u) is not in the trail. o

3 Examples

In this section, we apply the proposed trail-based
routing to two popular network topologies: 2-D
torus and n-dimensional hypercube. Two consecutive
Hamiltonian paths are constructed by first identify-
ing two Hamiltonian circuits. In a Hamiltonian path,
if the first and last elements are the same then it is
called a Hamiltonian circuits. Clearly, two consecutive
Hamiltonian paths can be easily derived by appropri-
ately removing two edges of two given Hamiltonian
circuits, one from each Hamiltonian circuit to break
the loop.

An n-dimensional hypercube (n-cube) [5] consists
of N = 2" nodes and n(N/2) links. {0,1}" is the set
of nodes where nodes u and v are connected if and
only if u and v differ in exactly one bit. Figure 1 (a)
and (b) show two edge-disjoint Hamiltonian circuits
in a 4-cube.

The general way to construct edge-disjoint Hamil-
tonian circuits in an n-cube, n > 4, is as follows:

o Divide the given n-cube into two (n — 1)-cubes
along dimension n.

e Construct two Hamiltonian circuits, one from
each of the (n — 1)-cubes.

¢ Combine two edge-disjoint Hamiltonian circuits,
one from each of two (n — 1)-cubes, to form a
Hamiltonian circuit in n-cube. This can be done
by removing one edge to break the loop in each
circuit and then add two edges along dimension
n to connect two broken circuits.

e Combine the remaining two Hamiltonian circuits
to form a Hamiltonian circuit in the n-cube.

o Once two edge-disjoint Hamiltonian circuits are
constructed in the n-cube. Two consecutive
Hamiltonian paths are derived by removing two
edges from two edge-disjoint Hamiltonian circuits
in the n-cube.



——

(b)

Figure 2: Two edge-disjoint Hamiltonian circuits in a
4 x 4 torus.

Figure 2 (a) and (b) show two edge-disjoint Hamil-
tonian circuits in a 4 x 4 torus. Two consecutive
Hamiltonian paths can be derived from them straight-
forwardly.

4 Conclusions

In this paper, we have proposed a trail-based model
to support deadlock-free routing. The objective is to
find a trail that contain (v, u) and (u, v) for any v and
u. We have proved that under the restriction of at
most two appearances of each node the necessary and
sufficient condition is to find a path that combines
two consecutive Hamiltonian paths. This approach
has been illustrated by its application to two popular
network topologies: 2 — D torus and n-dimensional
hypercube. The problem of identification of a trail in
a given graph that meet the necessary and sufficient
condition without any constrain on the number of ap-

288

pearances of each node is still an open problem. Cer-
tain Eulerian graphs meet the condition. In a Eulerian
graph G, there exists a closed trail which includes ev-
ery edge of G; such a trail is then called an Eulerian
trail. G is semi-Eulerian if we remove the restriction
that the trail must be closed. The problem seems to be
the one between the problem of identifying Eulerian
graphs and the problem of identifying of Hamiltonian
graphs.

References

[1] X. Lin, P. K. McKinley, and L. M. Ni. Perfor-
mance evaluation of multicast wormhole routing
in 2D-mesh multicomputers. Proc. of Int’l Conf.
on Parallel Processing. 1, 1991, 435-442.

[2] X. Lin and L. M. Ni. Deadlock-free multi-
cast wormhole routing in multicomputer networks.

Proc. of Int’l Symp. on Computer Architecture.
1991, 116-124.

[3] L. M. Ni and P. K. McKinley. A survey of routing
techniques in wormhole networks. Computer. 26,
(2), Feb. 1993, 62-76.

[4] J.L. Peterson and A. Silberschata. Operating Sys-
tem Concepts. Addison-Wesley Publishing Co.,
1985.

[5] Y. Saad and M. H. Schultz. Topological properties
of hypercubes. IEEE Transactions on Computers.
37, (7), July 1988, 867-872.

[6] R. J. Wilson. Introduction to graph theory. Long-
man Scientific and Technical, 1985.

[7] Y.C.Tseng, D. K. Panda, and T. H. Lai. A trip-
based multicasting model in wormhole-routed net-
works with virtual channels. accepted to appear
in IEEE Transactions on Parallel and Distributed
Systems.



